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Abstract—We propose a new probabilistic framework for ~ which finds a good solution in polynomial time [12]. For
nonparametric identification and estimation of dynamic sys- interested readers we refer to [4], [2], [8]. However, due
tems. Under the parametric paradigm, a model of the system y, meagyre theoretic issues, standard MCMC s limited to
and a set of observations are given and the parameter space . . . g . . . .
of the model is searched to optimize an objective function. problems with a fixed dlmenspn, i.e., parametric estlmathn
However, if we are uncertain about the model, the parametric Problems, and cannot be readily extended to problems with
approach can easily overfit data and lead to risky decisions. In varying dimensional parameters, i.e., nonparametric estima-
nonparametric estimation, the model uncertainty is introduced  tjon problems. Reversible jump MCMC (RIMCMC) solves
in a systematic manner to find both the model and associated this issue by introducing reversible jumps between dimen-

parameters of the system. In this paper, we consider a dynamic . ino det inistic di . tching t f i
system consisting of a varying number of subsystems with Slons using deterministic dimension-matching transtorma

noisy observations. The objective is to identify the subsystems tions [9]. This method differs from other nonparametric
at each time step and estimate the associated parameters methods, in that it allows the comparison among different

such that the observations are explained the best. We develop models simultaneously while estimating parameters associ-
an efficient algorithm based on Markov chain Monte Carlo  ata4 with each model. The different models are considered
methods and apply our approach to multiple target tracking ) .
problems. We address the issues with the subsystem initiation simultaneously based on the ev@ence at hand so th_at the
and termination and initial state estimation. In simulation our ~ Models not supported by the evidence are not considered
algorithm shows excellent performance for tracking a varying  as frequently as the models supported by the evidence. In
number of maneuvering targets with nonlinear dynamics. In  addition, the method provides numerical values representing
some cases our algorithm outperforms any linear filtering  configence in different models and bypasses the model
algorithm with perfect associations. . . .
choice structure of the other nonparametric methods, which
| INTRODUCTION [ig]uire prior modeling and testing for the different models
In parametric estimation problems, we are given a set In this paper, we develop a probabilistic framework
of (noisy) observations from a known model and the goabr nonparametric identification and estimation of dynamic
is to estimate the parameters of the model such that sorsgstems. We consider a dynamic system with noisy obser-
objective function is maximized (or minimized). For exam-vations, which consists of a varying number of subsystems.
ple, in linear regression, we minimize the sum of square@ur goal is to identify the subsystems at each time step and
errors. In many practical problems the method of maxiestimate the associated parameters, including the dynamics
mum likelihood provides a good solution for parametricof each subsystem, such that the observations are explained
estimation problems. However, if there is uncertainty abouhe best. Each subsystem can be either present or absent
the model, the parametric estimation methods, such as theeach time step following a Markov transition probability
maximum likelihood estimation, can easily overfit data anéhdependently from the other subsystems. In addition the
lead to risky decisions. The recognition of the limitationsnitial state of a subsystem is unknown when it appears
of parametric methods led to the surge of nonparametrar reappears. The main difficulty lies in the identification
methods such as an information criterion [1], Bayesianf subsystem initiation and termination times. We take a
information criterion [21], minimum description length [10] Bayesian hierarchical modeling approach [18] to formulate
and Bayes factors [13]. But difficulties in formulating thea general framework. Under our framework, observations
prior models and testing for different models make therare partitioned into subsystems to which they belong, and
difficult to be applied to complex problems. thus, it becomes a trivial task to use the existing efficient
Solving complex problems by sampling methods sucpharametric methods to estimate the parameters of subsystem
as Markov chain Monte Carlo (MCMC) has become morelynamics.
tractable due to increased computational power. MCMC- The multiple target tracking problem is a good ex-
based algorithms now play a significant role in many fieldample of the dynamic system we have described. Un-
such as physics, statistics, economics, and engineering [der the most general setup, a varying number of targets
In some cases MCMC is the only known general algorithmare moving around in a region with continuous motions,
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and the positions of these moving targets are sampled RIMCMC algorithm for solving the nonparametric identifi-
random intervals. The position measurements are noisgation and estimation problems. We also describe an online
with detection probability less than one, and there is gersion of the algorithm. In Section IV, the algorithm is
noise background of spurious position reports (false alarmspplied to track a varying number of targets moving with
Targets appear at random in space and time. Each targemnlinear dynamics, and the performance of the algorithm
persists independently for a random length of time and thds analyzed.
ceases to exist. A track of a target is defined as a path
in space-time traveled by the target. The seminal paper by”' DYNAMIC BAYESIAN MODEL SELECTION
Sittler [22] introduced the major concepts about multiple Let us consider a discrete-time dynamic syst§naom-
target tracking and a method to evaluate tracks. He pointg@sed of subsystems; for i = 1,..., K where K is the
out two major problems in multiple target tracking: dataotal number of subsystems. Each subsystem can be either
association and state estimation. However, in the worgresent or absent at any given time. When a subsystem is
case, one has to search over all possible tracks, which pgesent over consecutive times, its state evolves according to
equivalent to searching over the collection of all partitionginique dynamics independently from other subsystems. Let
of observations. This combinatorial optimization problem iR™ be the state space of each subsystemXjet R C R"
NP-hard since it is a multidimensional assignment problere the state of; andU; € R” be a control input ta5; for
[16]. Subsequently, more computationally efficient algot = 1,...,7. R has a finite volumé/z. The dynamic of
rithms have been proposed using heuristics to reduce tie is F* : R* x R? — R™. Let F = {F" : 1 <i < K}.
size of the search space [23] [17]. The multiple hypothesiEhe state transition is noisy such that
tracker (MHT) introduced in [17] uses heuristics such as i ii 77 i
pruning, gating andV-scan-back logic but at the expense Xip = FUXLUD + V
of accuracy. where Vi € R™ is a noise process. When there is no
As opposed to finding the optimal association, there is atpbnfusion we will denote the subsysteinas the subsystem
alternative suboptimal approach for data association, callédLet M; € {0,1} be a Markov chain denoting the status
the joint-probabilistic data-association filter (JPDAF) [3].of the subsysteni, such thatM; = 1 if the subsystem
The main limitations of JPDAF are that it assumes a fixet present; otherwis@/; = 0. Let p‘(j, k) for j, k € {0,1}
number of targets at all times and it cannot initiate obe the transition probability afZ;. Using the independence
terminate tracks. On the other hand, probabilistic multiassumption, we can combiné; into a single Markov chain
hypothesis tracking (PMHT) uses probabilistic associationsf;, € {0,1}* on a product state space with the transition
between observations and targets to avoid the maintenanuebability
of a hypothesis tree [24]. But PMHT also assumes a fixed K i s
number of targets and does not allow track initiation and P(Miy = mya|My = my) = [T,2, p'(mi, miy)-
termination. Our framework can be considered as a full Let A be the transition matrix forM, and the i-th
statistical extension of PMHT for tracking an unknownrow of A be distributed from the Dirichlet distribution
number of targets. With the development of particle filtersp(q?, . .| agK), wherea € [0,1]2" *2" . Since we do not

multitarget tracking algorithms have been extended to noRxsume that the transition matrik is known in advance,

linear dynamics. In [11], PMHT is applied with particle 3 prior model onA4 allows us to estimated based on
filters, but this method requires suboptimal estimation ofpservations.

the states of targets. JPDAF is used in [20] with particle | et X, be the state ofS at time ¢ such thatX;
filters, but the descnbe((jj I|m.|It:.;1t|fons of JPDt;AF rem;a_m th Xt“T, LX) € Rk whereky = #{i 0 M}
same. See [6] for more detail information about multitarg l<i<KyandM" = 1forr =1,....k. U, is

track?ng algorithmg. S defined similarly. Letf* be the conditional density of the
This paper provides a probabilistic framework for lay-ou4 giate of the subsystemgiven its current state and

ered _dynamic systems and an efficient RJ.MCMC basetg:)ntrol. Then the conditional probability of;,; is given
algorithm. We are able to construct an efficient sampl

by taking the advantages of the structure of the prob-
lem and proposing targeted local moves. We apply thisP(Xi+1 € dviy1| Xy = x4, Uy = ug, My = my, Myiq = my11)

method to multitarget tracking problems, and demonstrate . fildayy|og up) i miy =1m; =1
the robustness of the algorithm against outliers. In some =[l;—; { Pb(dziiq) if mi =1,m; =0
cases, when we apply our algorithm to nonlinear dynamics, 1 otherwise

it outper_forms any linear filtering algorithm with perfectwherep%(x) is a priori density of the initial state of the
associations. subsystem.

The remainder of this paper is structured as follows. Sec- LetY? € R™ be an observation vector fgr=1,. .., n,.
tion Il presents a probabilistic framework for nonparametrig.,, . obtservation model is Y
identification and estimation of dynamic systems, called the ‘ A
dynamic Bayesian model selection. Section Il describes an Y = H(X})+ V",
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where V/” € R™ is a noise process. Léi(y|z) be the where z;.; = {z1,...,zp}. Hence our main objec-
density of the observatiop given the stater. Now we tive is to estimateP(My.r|Y1.r), P(Xi.7|Mi.7,Y1.7),
assume that the observations = {Y;',...,Y,”'} are P(Uy.r|Mi.r,Y1.7), P(A|Yi.7), F|Y1.r and so on.
distributed according to the mixture model such that

Vi~ M with(ley) - forj =12, m,

where w;” is the weight of the subsystem, and Many practical problems are involved with high-

ki T H 7 i
2_r=ow;’ = 1. The weightw; can be interpreted as the dimensional, high-complexity probability distributions. In

fchancﬂe; thatba r?nQOnL\I); I(/:[?Oéen okzjservatlo_n bIIS generatg%er to make an inference or prediction, one must integrate
rom the subsystem. Let W, be random vanables asso- ., o hase complex distributions, but there is rarely a

ciated with the weightss,. We assume¥, are distributed closed-form analytical expression for the high-dimensional

iri ictri i 0 ky i _

;ron: the Dt'.”Chle.t dlstr|_bu_t|(3jnD(6t (’j : t’ 5tﬂ/)’ a]\cnd |ndetpen integrals. Markov chain Monte Carlo (MCMC) is a family
eRS Oixe[rlér]n?,;lé'edzgtng gloiz(:igne\?ar(i)abls ezorssuc?éh .that of stochastic algorithms that uses Markov chains to estimate
Jo e . t __ the integrals which have no closed-form analytical expres-

Z} =i, if j-th observation comes from the subsystém sions

J i i i ) 5 — aplr
andZ; are drawn from the d|str|put|onB(Zt ir) — W In MCMC, an irreducible and aperiodic Markov chain
for r = 0,1,...,k. We associate all observations that . . T
. is constructed such that its stationary distribution is the
are not generated from the known subsystems with clutter

and letw? be its weight. The observations from Clutterposteriqm(@) whered is the set of parameters of interests.
are unifo?mly distributed oveR™ c R. Let Viw be Then given the current state, the sampler proposes a

i H 1 1 /
the volume of R™. We consider these observations acand|date stat¢’ from a proposal distribution(6, 6'). Then

outliers. If the j-th observation is generated from clutter,%he proposal is accepted with probability

we setZ] = 0. Hence given the allocation variablg, the min {1 w(G’)q(e’,G)}

1. ALGORITHM
A. MCMC and Reversible Jump MCMC

observations are distributed as » m(6)a(6,6)

. B o h(dy‘xzj)’ 2 40 so that the detailed balance of the Markov chain is pre-
PY{ edylZ, =2,X, =x) = { dy/Vgm, 21 =0, served. Then, by the ergodic theorem, one can estimate
. . E 0)] of a bounded functiorf(-) b
independently forj = 1,...,n;. We note that this mixture ~ ** [/(6)] of a bounded functiory () by

model formulation is similar to the probabilistic associations f=2=00 o f(6)

of PMHT [24]. o
We assume‘/;i is a white Gaussian process with Zerowhereﬁi is the state of the Markov chain at thh iteration

mean and a covariance matriXi. X¢ have the scaled [8]. The firstm samples are burn-ins and discarded for the
inversey? distribution, i.e.,%7, ;i ~ Inv-x?(vi, 09,,2) for estimate calculations. For more detail, see [4], [2], [8].
l=1,...,n[7). The hyperpardmeteril is called the degree ~ The standard MCMC is limited to problems with fixed
of freedom andy,, is the scale parameter. We also assuméimension and cannot be easily extended to problems
V7 is a white Gaussian process with zero mean and \ith varying dimension parameters due to the measure
covariance matrix.¥, and the hyperparameters are assignelieoretic issues. The reversible jump MCMC (RIMCMC)
similarly. resolves this issue by introducing reversible jumps between
Now to make an inference on the described model, weimensions using deterministic dimension-matching trans-
need to estimate the dimensionalityand a set of parame- formations [9]. In RIMCMC, different types of moves are
ters associated with, for everyt. However, since at eagh considered to traverse across the combined parameter space
explicit associations between parameters-at, t andt+1  C. If the MCMC sampler proposes a move typeand a
are required for the state transitions of subsystems, we cofew stated’ from ¢, the move is accepted with probability
sider each instance of the subsystem status as a model. So . (6" i (6 ) tma(0') | Dgm (6,10)
there are2X possible models at ea¢chThe model labeling min {1’ 7(0)jm @) ami(w) | 0(0.u) } ’
wherej,,, (6) is the probability of choosing the move type

is explicit in our formulation and we work with the union
spaceC = UkelC Ck, Where(Cy is a parameter subspacewh(_}n in Stated; g,n1 () andgms(u’) are the proposal den-
Fities ofu andw/, respectively; and,, is the deterministic

associated with the-th model andC = {1,...,2%}. Inthe
following sections we show that this highly complex mOded|mension-matching bijection such that, (6, u) — (¢, u')
Pand g (@, v') = (0,u). The Jacobian arises from the

selection problem is efficiently solved by reversible jum
change of variables fron¥, v) to (6’,v’) [18].

MCMC. Lastly, the joint distribution of all the variables
(except those for noise models) can be expressed as

P(Mi.r, X170, Ui, Yiir, Zv.m, Whir, 017, A, o, F) B. DBMS RIMCMC
= PgF)lP(Q)P(A|a)P(X17Ml)P(UlzT) We now present an RIMCMC algorithm for solving
X [[,=17 P(Myy1, Xp41|My, X¢, Uy, F, A) DBMS problems. Le# be the set of the unknowns of which

X HtT:l P(Yi|Zy, X)) P(Z| Wy, My)P(Wy 6y, My)P(0¢), we are interested in finding the posteriefd) given yo.r.
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In construction of the algorithm we assume that 60 = (merge). For submove (i), we choose the placement split;
cee = 5ft for all ¢ and bothé and a are held fixed. for submove (iii) and (iv), the forward split; and for sub-

Each MCMC step consists of the following moves: (amove (ii), the backward split. In general, the acceptance
track split, track merge or track update move on randomlgrobability is min(1, R) with an acceptance rati®? =
selectedt, (b) weight update move fol;, (c) allocaton =) p p R R whereR,, — Puta@.(t) p

" . 7 (@) 1imtp1itp2T; m P (0,(i,t)) ' 1P

update move forz;, (d) transition matrix update move for , o og
A, (e) covariance matrices update move, and (f) dynamiés/(qml)q(zt))’ Ry2 = 1/q(n2), and R; = W’ q(x)
update move. The track split and merge moves of (a) af€notes the proposal density of A similar merge move
dimension-varying moves while the other moves are withi#$ applied for each submove type and a merge move is
the same dimension. The moves (b) and (c) are the GibB§cepted w.pmin(1, R~*) with appropriate substitutions.
moves onWW, and Z, for ¢ selected in (a). In moves (a)- We also define
(c), we propose a new stat® which differs fromé only R — Pyl 20 XD A, g Anigaa, o P(20W]IMS)
at some timet. Since only a small neighborhood ofis b P(ng;;X‘;}),AJiv[ffglMtAwft&%%{’g;(;wva\fygﬁﬂv
affected by this move, the _acceptz_ince pr_obablllty is hlgh where PEZiZWz\lNIE:tsi = (vgff)téz1+lo+l»'(B(t(13t+1)6,6)
and computed efficiently. Since it is required to consider , _
parameters at all times for the moves (d)-(f), we choose ttand o = #{j : Z;> = 0,5 € nY} andl; = #{j : Z; =
moves (d)-(f) with some small probability,;; while the i,j € nY} and B(-) is the Beta function.
moves (a)-(c) are chosen with probability (W.p.} pa. Placement Split: Propose a new stateX;® ~

The moves (b)-(f) are routine, and we refer the readers t% Z’J?;l/\/ (.|yg’ Ey>. The acceptance ratio becom@s=
[18]’ [7] R pé)(Xt”)R R 1 WO

Now we describe the dimension varying moves of (a)."* 1 mAtpl g x) "t ‘
We choose a track split move w.p,, and a track merge  Forward Split: For the forward split, a new stafg;" is
move w.p.d,, such thath,, +d,, <1 wheren; = >k, proposed fromF*(X;_,,U;_,)+n wheren, ~ N (-0, X%).
andng = KT — n,. A track update move is chosen w.p.For the submove type (ii)R = R, R,, R, W} and for the
1 —by, —d,,. For the convenience of our discussion belowsypmove type (iv)R = R, fl(XhllX?)Rmetho_

. . L(X?
we define submove types. We say the moveia) has the Backward Split: This por(not\%) is available when

submove type: (i) ifM;_, = M, =0, () if M, =0 (pi)-1 eyists and is differentiable whereF%, is
and My, =1, (i) it M, = LandM,, =0, and (V) 5 “coordinate function of  for the state variable
if M;_,= MgH =1. The f[rack update move is 5|mllar tq X. We samplens ~ N(]0,%) and set X/ =
the track split move descnbed.below, except the Q|menS|o(rF§()_1(Xt¢+l — ). The acceptance ratio becom&s—
stays the same. We choose tihand a subsystem and O(Fi) " (Xi 1 —m2) | 1170

update its state at time For the sake of space, we omit /it ftm i1 ‘a—nz Wy

the description of the track update move. For details about IV SIMULATION RESULTS

the algorithm, see [15].

1) Track split and merge moved:et G, = {(i,t) : We use a unicycle dynamic model for our simulations.
Mi =1,1<i< K,1<t< T} For a split move, we The state vector is = (z,y,6)” where(z,y) is a position
select(i, t) w.p. py(0, (i, t)), wherep, (6, (i,t)) > 0 on G§ of a vehicle in a plane and is a heading of a vehicle.
andpb(g7 (i,t)) =0 on Gy, and propose a new SubsystemThe continuous state equation:z'is: (90 cos @, psin G,w)T
at (i,t) by splitting the weight of cluttefV’? into 1W/° and Where ¢ is a directional velocity andv is an angular
W/i. The move is rejected iV° = 0 or [n?| = 0 where Velocity. andw are control inputs. If andw are constant
nd = {j: th = 0} since such move is not reversible,over the sampling period’, its discretized state equation

For a merge move, we sele@t t) w.p. pq(0, (i,t)), where (With noise) is

pa(0, (i,1)) > 0 on Gy andpy(f, (i,t)) = 0 on GY, and Tier = @+ Zoysin(Le) cos(f + L) + vy,
merge the subsystem &t ¢) into clutter. _ n 3 sin(2Ls) cos(6y + L) + v
In a track split move, we take the following steps to zt“ Zt w Pt 2 T2 8,2
proposef’: i1 = O+ wiTs + vy 3,
1) Proposey; from Beta distributiony); ~ Be(2,2); whereV; = (vi,1,vs.2,v1,3)7 are white Gaussian noises.
2) SetWt’? = W and W/ = WP(1—m); Now suppose there is more than one target moving with
3) SetM;" =1 and M{" = M for r # i, the dynamics described above and the type of target can

4) Proposer, for X/'. The proposal ofi, is different be classified by its directional velocity. We havg,, =
for each submove type and it is described below; Fi(X] = (z%,yi,0), o', wi) + V;' and eachy’ is constant.

5) Propose the allocation variablgg’ € {0,i} for j € Letp = (o', ..., 0%). But we letw; be a random variable
n{ using the posterior of/; given the other variables. uniformly distributed ovef—x /4,7 /4]. So the targets are
The remaining variables are unchanged. free to change their heading at any time as they desire

There are three different split (merge) moves: placemeand the tracking algorithm is required to distinguish them.
split (merge), forward split (merge), and backward splitMe assume that the initial state of a target is uniformly
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distributed overR = [0, L]?> x [—m,n]. Hencepi(z) =

S for eaqhi. We use]yno = 29 andd,, = 24 as | | | | | | ‘:§jﬂ
the probabilities for split and merge moves, (9, (i,t)) 035

is assigned such thdt,¢) positioned before or after an
established track is weighted three times higher than tt
remaining(i, t) € G¢.

We consider a linear observation model

V) =HX]+V/” where H:{é (1) 8]

if j-th observation comes from the targét The co-
variance matrices for the noise processes &e =

diag((.05TSapi)2, (.O5Ts(pi)2, (2%)2) for each; and X¥ = : ¢ ° NumberSVMCMCstgps ¢ ° X101.0
diag((.27%)?, (.2T,)?). The transition matrixA is held fixed
such thatA;;, o 105-41Gk) where d; is the Manhattan Fig. 1. Experiment |d.,,d, vs. number of MCMC samples

distance between two statg¢sand k in their binary repre-
sentations. So the number of targets varies according. to
The false alarms are uniformly distributed over the regioB. Experiment Il - DBMS vs. Optimal Linear Filter

R? = [0, L]* and the number of false alarms has a Poisson \we have compared the performance of our algorithm
distribution with mear\Vz-. The Dirichlet prior on weights 4qainst the optimal linear filter using Kalman filters on the
is & = 1. The detection probability is). same scenarios used in Experiment I. The multiple tracking
Assessing the convergence of MCMC algorithms is usUgigorithm such as MHT uses Kalman filters, hence, if the
ally a difficult task. It is especially challenging in our casegpservations are correctly partitioned, i.e., when the data
since the dimension of the parameter space changes [gksociation is correct, MHT will give the optimal estimates
We can measure the distance between the true tracks af¥tording to the linear dynamics. For each scenario, we first
the estimated tracks since we are working in a simulatiopartitioned the observations into the original tracks from
environment. Let\y.,, and X7, be the parameters of true which the scenario was generated. We then run Kalman
tracks. LetMlT be the estlmate with maX|mum posteriorfiters on each track and comparet], estimated from
and letX.7 be the estimate of states givéi;.r. We use Kalman filters against the estimates from DBMS. For the

two metrics: Kalman filters, we use the usual linear model for tracking
[14]. The state vector is = [z,y,2,9]T where(z,y) is a
i (Mg, Myr) = g 02y S0, 1M # M) position on a plane angi:, 3) is a velocity vector. Let be
) the sampling interval. Then the dynamic and measurement
to measure the distance between models and
models are
( T’Ml T7X1 T7M1 T) Ti41 = AlEt+G’U]t
=1— KT(Zt 121 ) (M*z MtZ:O) o Yt = th‘f'vt,
FI(M; = M = 1)e~ 2 (X =XDTEEH (X =X)) where
52
to measure the distance between the models and states 1040 2 (?2
simultaneously. Herel(-) is an indicator function. We A= 0 109 .G = 0 % , and
used the first two components of; to evaluated, in 00 10 6 0
experiments below. 0001 0 9
C 10 00
A. Experiment | - Convergence “lo 1 0 0|
We setKk =3, T =20, L =100,Ts; =1, A\Vrz =1 Here w; andv; are Gaussian noise processes with zero

andy = (4,6,8). We generated ten random scenarios themean and covarianc€) and R, respectively. We used
ran each scenario ten times (the first 20,000 samples age= am, x diag1,1) and R = am,, x dlag(l 1), where
used as burn-ins). All observations are assigned to clutter, = max; ; (¥’ ) andm, = max; (%! G x)- We varya

at the initial state of the sampler. Figure 1 shadys and to check if the estlmates are influenced by the changes in
d, averaged over 100 runs against the number of MCMCovariance.

samples. Any tracks with length less than three time steps Table | summarizes these results. Note that the observa-
are discarded from the estimates. We note that the mettions are not partitioned for DBMS and the estimates for
d, is very conservative and visual inspection shows that aflyBMS are averaged over ten repeated runs. The estimates
distance less than .1 is almost a perfect match. from the optimal linear filter are not influenced by the
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TABLE |

DBMS vs. OPTIMAL LINEAR FILTER
Test | DBMS Optimal Linear Filter
Case dy de (@ =1) | dg (¢ =5) | dz (o =10)
1 0.1205 0.1200 0.1233 0.1243
2 0.1319 0.1637 0.1660 0.1666
3 0.1605 0.2253 0.2277 0.2281
4 0.1206 0.1051 0.1034 0.1032
5 0.1480 0.2606 0.2610 0.2612
6 0.1223 0.1648 0.1675 0.1680
7 0.2085 0.2260 0.2283 0.2289
8 0.1688 0.2000 0.2018 0.2022
9 0.1371 0.1225 0.1238 0.1241
10 0.2007 0.1397 0.1437 0.1445
0.05 L ; L ] : L L

7
Number of MCMC steps x10*

Fig. 3. Experiment Ill:d,, vs. number of MCMC samples

Fig. 2.  An example of the inaccuracy of the optimal linear filter (true
trajectory - straight line; optimal linear filter estimates - dotted line with (o — w s s s w w
crosses; DBMS estimates - dashed line with diamonds) Number of MCMC steps it

. . Fig. 4. Experiment lll:d, vs. number of MCMC samples
changes in covariance. In some cases, DBMS outperforms

the optimal linear filter (shown in boldface). This means,

in these cases, DBMS outperforms any linear filterings robust against false alarms (results fdfz> = 2,4, 6,8
algorithm even if the linear filtering algorithm is given are shown).

perfect information about data association. Since we can . )

directly apply the nonlinear dynamics with DBMS, it doesP- ExPeriment IV - Online DBMS RIMCMC

not suffer from the approximation error of the linear filters. The algorithm described in Section 1lI-B is a batch
In addition, MHT is unlikely to achieve the values listed inalgorithm. A suboptimal online version of the algorithm can
Table I, since it is not possible to have perfect associatiore easily implemented by sliding a window of lendth.

in all cases due to heuristics required for MHT suchrhe setting is the same as Experiment | exd@pt 500 and

as gating,N-scan-back and pruning. Figure 2 shows ad = 250. A single scenario was randomly generated. Three
example of such estimation error. We note that MHT witrdifferent window sizesl’,, = 10, 20, 30 are considered and
3-scan-back completely fails to track the turning object invindows are forwarded by a single time step. At each online

Figure 2. step, the algorithm is run for a fixed number of MCMC
) samples. For each window size, we have tried three different
C. Experiment IIl - False Alarms numbers of MCMC samples (2000, 4000, and 8000). So

We apply different rates of false alarms to assess thbere are nine cases and we ran each case 10 times. The
robustness of the algorithm against outliers. The setup &verage performance of our algorithm (written in Matlab on
the same as Experiment | but we valyz: from 1 to a PC with a 2.6-GHz Intel processor) is shown in Table Il
10. We first randomly generated ten scenarios and thewhered,, andd, are measured over the whole duratibn
for each scenario, different false alarm rate was applied fthe performance improves as we increase the window size
generate a test case. So we have a total of 100 test cassesd number of MCMC samples at the expense of increasing
We ran each test case 10 times (the first 20,000 samples ase=cution time. Note that the average valueg pfandd,,
used as burn-ins). Figure 4 and 3 show that the algorithin Table Il are smaller than the values reported in earlier
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TABLE I

PERFORMANCE OFONLINE DBMS RIMCMC [41
Tw | MCMC samples| dm dg sec / 5]
(burn-ins) time step
2000 (1000) 0.1208 | 0.1467 | 5.1654 6]
10 4000 (2000) 0.0739 | 0.0987 | 10.2112
8000 (4000) 0.0444 | 0.0663 | 20.2626
2000 (1000) 0.1117 | 0.1379| 5.7962 [7]
20 4000 (2000) 0.0675 | 0.0928 | 11.4747
8000 (4000) 0.0453 | 0.0666 | 22.8454 [8]
2000 (1000) 0.0987 | 0.1261| 6.3159
30 4000 (2000) 0.0671 | 0.0934| 12.5211
8000 (4000) 0.0507 | 0.0732| 25.0049 [9]
[10]

experiments. This is because for this lengthy scenario there
are intervals in which no targets are present and whgiy,
the algorithm correctly identifies that there are no targets,
the resultingd,, and d,,, are zeros in those intervals, thus
lowering the overall averages.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a dynamic Bayesian model selectifi!
framework for layered dynamic systems in which the modgh 4
selection problems are solved sequentially. An efficient
algorithm based on reversible jump Markov chain Mont »
Carlo is described and extended to online computations. The
multitarget tracking problem is formulated as an instance ¢£6]
the dynamic Bayesian model selection problem. We have
shown that the algorithm is robust against outliers. In somgyz,
cases, when we apply DBMS to nonlinear dynamics, DBMS
outperforms any linear filtering algorithm with perfect asso-lg]
ciations. This framework can be easily generalized to other
applications such as signal processing and computer vision
by using it as a general dynamic pattern recognizer. Wee!
are currently working on extending the algorithm for the
identification and estimation of hierarchical systems and
hybrid systems. (20]
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