
Abstract—In this paper we present a control scheme for 
automatic path tracking of a four-wheeled steering and 
four-wheeled drive (4WS4WD) vehicle subject to wheel slip 
constraint. The wheel slip, containing wheel slip ratio in 
longitudinal direction and slip angle in lateral direction, is a 
vector that serves as an index to avoid the tire-road friction 
saturation. Using linearization and singular perturbation 
theory, a linear and order-reduced design model is obtained,
and the wheel slip is replaced by its quasi-steady state for the 
controller design. We propose a control structure of wheel 
torque and steering to transform the original tracking problem 
to a problem of state regulation subject to input constraint. A 
low-and-high gain technique is applied to construct the 
constrained controller and to enhance the utilization of the 
constrained wheel slip. Simulation shows that the new 
proposed control scheme subject to wheel slip constraint 
coordinates well between wheel steering and wheel torque
during tracking.

1 Introduction
Controller design for a vehicle to track a desired path without 

tire-road friction saturation is an important issue in vehicle 
intelligent cruise control. Saturation of tire-road friction, which is 
associated with magnitude of the wheel slip, quite often leads to 
skidding and causes vehicle instability in a slippery road condition. 
The wheel slip under study is a vector that provides information 
about magnitude and direction of friction force [1]. When the 
magnitude of the wheel slip exceeds the critical value related to
road condition, the friction force will saturate. Most of the 
controller designs consider wheel slip ratio and slip angle separate, 
only few of the designs combine them with some complicated 
modifications (see [2]-[6] and references therein). In this paper, the 
wheel slip is treated in a unified manner and the notion of 
constraining the wheel slip is applied to avoid friction saturation.

As being aware of the fast and locally input-to-state stability 
(ISS) of the wheel subsystem, we use linearization and singular 
perturbation theory [7] to obtain a simplified design model and 
regard the quasi-steady state of wheel slip as the constraint target to 
develop the controller. Based on the design model, a control 
structure of the wheel torque and steering is proposed. This control 
structure is composed of two parts: one is used for decoupling, and 
the other part is used for manipulating as well as limiting the wheel 
slip. By using the control structure, the original tracking problem 
can be transformed to a problem of state regulation subject to input 
constraint, which can be solved by applying a framework of 
semiglobal stabilization (see [8] and references therein). Our 
constrained controller is designed with a low-and-high gain 
technique by which utilization of the wheel slip under constraint is 
enhanced, and so that the tracking performances, such as regulation 
rate and disturbance rejection, can be improved. Uncertainty of 
tire-road conditions for robustness issue is also considered.

Simulation shows that the proposed control scheme during 
tracking is capable of limiting the wheel slip, and has a satisfactory 
coordination between wheel torque and wheel steering. During the 
transient, the scheme can automatically provide auxiliary 

differential wheel torque to improve the cornering performance, 
and furthermore, can provide wheel torque persistently to avoid 
vehicle speed reduction due to the cornering resistance.

2 Vehicle system model
2.1 Modeling of vehicle and path for tracking

As shown in Fig. 1, a 4WS4WD vehicle with a reference path for 
tracking is considered as a vehicle system that comprises three 
subsystems: namely, vehicle body, four wheels, and kinematics 
between the vehicle and the path.

Variables used for the vehicle body are the center of gravity (CG) 
speed Vv  , the sideslip angle , and the yaw rate . Variables 
for the wheels are the wheel angular speeds 

j  ( 1,..., 4j  ). 
Generalized coordinates describing the kinematics are the 
perpendicular distance

cy and the angle  between the direction of 
vehicle velocity and the tangent to the path curve. The dynamical 
equations for these subsystems can be expressed as follows:

2.1.1 Vehicle body dynamics
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where ,xj yjf f , and 
zjM , 1,.., 4j  , defined in the body-fixed 

X Y Z   coordinate, are external forces and yaw moments that 
mainly results from the tire-road friction. Notations m and 

zJ  are 
respectively the mass of vehicle and the inertia about Z  axis. 
Symbols

fl , 
rl , and 

dl  are respectively the distances measured 
from the CG to the front, the rear axles, and to the wheel side.

2.1.2 Wheel dynamics
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where 
wjI  and 

ejr  represent the inertia and effective radius of the 
wheel j  respectively, and 

jT , 
j  are the wheel torque and 

steering angle used for control scheme.
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Figure 1. Vehicle system and tracking path



2.1.3 Interaction between vehicle and path during tracking

Kinematics of the interaction can be derived as
sinvyc  (3a)
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where the path curvature
ref  is given and assumed to be constant

for easily demonstrating the proposed control scheme.

2.2 Calculation of friction force
To calculate the friction forces due to tire-road interaction, we 

need to know the normal load transfer, wheel slip, and friction 
coefficient of each wheel. A scheme [1] to calculate the wheel slip 
and the related friction coefficient is adopted in this article; because 
it is useful for analytical study on the friction saturation and on the 
vehicle system linearization.

2.2.1 Normal load transfer
The normal loads on the four wheels are given as [4]
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where h  denotes the height of CG; g  is the gravitational constant; 

fk 
 and 

rk 
 are respectively the front and rear roll stiffness; 

xa
and 

ya  denote the longitudinal and lateral acceleration of the 
vehicle body respectively and can be obtained by Newton’s Law as

4
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2.2.2  Wheel slip
To calculate the wheel slip 

jS  (see Fig. 2), we need to know, in 
addition, the wheel center velocity 

jV  and the slip angle 
j . The 

jV  of each wheel j  is calculated by
1
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Based on the 
jV , the 

j  can be calculated as

j j j    ,  1tanj yj xjv v  , (6)

where 
j  in terminology is the sideslip angle of wheel j .

The wheel slip 
jS  has two components, 

Ljs  and 
Sjs , that are 

defined respectively along and perpendicular to the direction of 
velocity 

jV  [1]. The wheel slip is characterized by
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2.2.3 Tire model for friction force
The friction force on the tire of wheel j  is given as
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where 
zjf  is the normal load defined by Eq. (4a) and 

xj yj    
 is 

the friction coefficient calculated as
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In Eq. (9), the friction coefficient
xj yj    

, described in the 
vehicle body-fixed coordinate, is transformed from a coordinate 

Lj Sj    
 with a basis same as the wheel slip 

jS . In Eq. (10), 

 0.9, 0.95sjk   is a factor that is used for attenuation in presence of 
tire tread profile. The scalar 

Re s  is a saturation function of 
variables 

jS  and road conditions. When the magnitude of wheel 
slip 

jS  exceeds the threshold associated with road condition, the 

Res  saturates and shrinks, and so does the related friction force in 
Eq. (8). Conversely, the saturation of friction force can be avoided, 
provided the magnitude of wheel slip is limited below the related 
threshold. For analytic purpose, it is commonly assumed that 

Res
has the following features around 0jS  :
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The initial slope 
jk  in Eq. (12) depends mainly on road conditions. 

A better road condition gives a larger slope 
jk  and in turn provides 

a larger friction coefficient. Notably Eqs. (4a), (4b), and (8) can be 
linked as a feedback connection, thus the transfer (4a) can be 
rewritten as
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In Eq. (13), zF  and zsF  are referred to as the dynamic and static 
normal load respectively.

3 Linear design model
3.1 Linearization with model reduction
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Figure 2. The coordinates and angles for calculating wheel slip



The previous nonlinear vehicle system and tire model that we 
consider are linearized around the following free rolling condition:

0 0ref  ,
0 0V v ,

0 0 ,
0 0 ,

0 0j ejw v r ,
0 0cy  ,

0 0 ,

0 0j  ,
0 0jT  , 1,..., 4j  .

Using typical vehicle data to characterize the linearization 
indicates that, as compared to the other two subsystems, the 
resulting linearized wheel subsystem
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based on the singular perturbation theory [7], the linearization can 
be simplified by replacing the wheel subsystem with its 
quasi-steady state
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With the replacement, it can be verified that the following 
linearized vehicle system and tire model are obtained:
3.2 The linearized vehicle system
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where ( , , )xj yj zjf f M are obtained from the following tire model. 

3.3 The linearized tire model

The linearized tire model turns out to be a cascade form. Matrix 

representation for this cascade form is given by
(1) From the control input ( , )j jT   to the quasi-steady state wheel 

slip 
jS:

1

1 1 1
1

1
0

,e zs

f

T

r f k
S

l

v
 



 

 
 
 
 
 
 


2

2 2 2
2

2
0

,e zs

f

T

r f k
S

l

v
  



  

 
 
 
 
 
 


3

3 3 3
3

3
0

,e zs

r

T

r f k
S

l

v
  



  

 
 
 
 
  


4

4 4 4
4

4
0

e zs

r

T

r f k
S

l

v
  



  

 
 
 
 
 
 


(15)

(2) From the 
jS to the friction force ( , , )xj yj zjf f M
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We note that if substituting the tire model (15)-(16) into the 

linearized vehicle system (14), the consequent system has a 

subsystem of ( , )  identical to the linear two-track model 

commonly used in the literature. Also note that in Eq. (16) the 

terms 
zj jf k  and

sj zj jk f k can be respectively interpreted as the 

‘longitudinal stiffness’ and ‘cornering stiffness’ in the literature.

Some assumptions for the tire-road condition are given as follows:
Assumption 1: (tire-road condition)
(1) All the four tires have the same effective radius and attenuation

factor so
ej er r , 

sj sk k , 1,..., 4j  .
(2) The vehicle runs on one of the following road conditions:

(a) The -split road condition so 
1 3 Lk k k  , 

2 4 Rk k k  .
(b) The -uniform road condition so , 1,...,4jk k j  .

Suppose the linearized and order-reduced design system (14)-(16) 
can be stabilized by the control input ( , )j jT   with state feedback 
and meanwhile, the magnitude of 

jS is ensured below a prescribed 
constraint 

cs . Then, the original high order nonlinear vehicle 
system can also be locally stabilized using the same control scheme; 
since Jacobian linearization plus singular perturbation theory 
guarantees that the local stability can be concluded from the 
stability of the reduced (slow) system [7]. Moreover, the magnitude 
of wheel slip can be limited approximately below the constraint 

cs
due to the fast convergence of the wheel slip 

jS  to its quasi-steady 
state 

jS. Hence in the following sections, we will present a 

( , )j jT   control scheme to achieve this concept.
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is chosen as the set point for state regulation.

4.1 Control structure of the wheel torque and steering
Let 

er, 
sk, k and 

cs  be respectively the estimated effective 
radius, attenuation factor of Eq. (10), slope of Eq. (12), and the 
prescribed constraint for limiting 
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Then as shown in Fig.3, the control structure of the wheel torque 

and steering is proposed as:

 1 11

01

00
0 1

e zs
c ball c L

f

T r f k
s S s u

l v 
   

          

 , (19a)

 2 12

02

00
0 1

e zs
c ball c R

f

T r f k
s S s u

l v 
    

            

 , (19b)
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e zs
c ball c L

r

T r f k
s S s u

l v  
     

           

 , (19c)
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e zs
c ball c R

r

T r f k
s S s u

l v 
    

           

 , (19d)

where ( , )L Ru u  is the constrained controller to be defined later.

Substituting the control structure (19) into the vehicle system 

(14)-(16), with Assumption 1, yields
1

4 1

( )
( )

( )
ball c L

ref
ball c R

S s u
x Ax B I

S s u






 
    

  
 (20)

where

c

v

x
y






 
 
 
 
 
 
  

, 

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0

o

A
v

 
  
 
 

 
  

, 

0
0
0
0

ov

 
 
 
 
 
 
  

,

   
   
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1 3 2 2
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  
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 
 

   

 
   

 

   

,

, , ,e e s L s e e s R s

e es s

r r k k k k r r k k k k
diag

r rk k k k

    
   

 

  
 

, if -split 

, , ,e e s s e e s s

e es s

r r k k k k r r k k k k
diag

r rk k k k

    
   

 

  
 

,  if -uniform

Note that the rearranged system (20) takes a norm-bounded control 

( , )L Ru u and has an uncertain diagonal matrix , which reflects 
the parametric mismatch between the real and the estimated of the 
tire-road condition. Properties of the control structure (19) and the 
rearranged system (20) are summarized as follows:
(a) Property of the control structure (19): In linear range, 
manipulating 1( )c ball c js S s u  inside the control structure can be 
regarded as manipulating 

jS of the tire approximately. This 
equivalence can be obtained by substituting Eq. (19) into Eq. (15) 
with the estimated values being selected as 

e e jr k r k .
(b) Properties of the system (20):
(P1) The pair  ,A B  is controllable and the eigenvalues of A  are 

all zero and, therefore, locate in the closed left half plane.
(P2) For the set point (17), the following matrix equation

5 10A B   (21)
 has a solution

 
2
0
4

1

0 1 0 1
s c j zsj

mv
k ks f


 (22)

(P3) The diagonal uncertainty matrix  can be set positive 
definite by choosing the estimated parameters as

e er r , 
s sk k , ( , , )L Rk Min k k k .

In Eq. (22), the denominator term 4
1s c j zsjk ks f can be viewed as 

“the allowed maximum sum of the nominal lateral friction force, 
limited by the prescribed wheel slip constraint cs ”. In this study, 
the limited sum 4

1s c j zsjk ks f  is required to be greater than the 
centrifugal force 2

0 refmv   used in the desired cornering motion. 
More specifically, the ratio  below must satisfy

2
0

4
1

1 ref

s c j zsj

mv

k ks f










(23)

The requirement to make Eq. (23) admissible is equivalent to the 
following assumption:
Assumption 2: The matrix of Eq. (22) is assumed to satisfy

 1 21 ,ref refMax E E     (24)
where

 1 2 2 20E I  ,  2 2 2 20E I (25)

4.2 The constrained controller design 
In this section, we develop the constrained controller ( , )L Ru u  to 

deal with the state regulation problem of the uncertain system (20). 
For the set point (17), define the regulation error as

refe x   (26)

By using the system (20) and Eq. (21), the dynamical error 
equation is obtained as

1

4 1

( )
( )

( )
ball c L

ref
ball c R

S s u
e Ae B I B

S s u






 
     

  
 (27)

To stabilize the error dynamics (27) with norm-bounded control, 
the constrained controller ( , )L Ru u  is proposed as

 
 

1

2

1
1

L c H

R c H

u s E B P e
u s E B P e








   
  

(28)

where
5 50P P     and 0H   are the design parameters; 

1E
and 

2E  are the row partition matrices defined in Eq. (25). The 
design parameter P is the solution of the following algebraic 
Riccati equation (ARE):

5 5 50A P P A P BB P I          (29)

where 0  is required sufficiently small [8]. For a given solution 

( , )P of ARE (29), the design parameter 
H  is chosen 

sufficiently large so that the linear matrix inequality (LMI)
2 2

5
max

1 (1 )
,

( )H H

P I P BB P
B P B  



 


 
  


  , (30)

is satisfied. The LMI (30) is always feasible since its right hand 
side is fixed and strictly positive definite, and its left hand side can 
be set arbitrarily small by enlarging the 

H . Choosing ( , , )HP 
in the manner above is known as a low-and-high gain technique 
developed for input constraint in the literature (see [8] and 
references therein). By this technique, the utilization of the 
constrained control, i.e., the constrained wheel slip in this study, 
can be enhanced and in addition, performance issues such as 
convergence rate and disturbance rejection can be improved. By 



substituting the control (28) into system (27), the ‘actual control’
becomes 

 
 

1

2

(1 )
(1 )

ball H

ball H

S E B P e
S E B P e








  
   

(31)

In particular, when the regulation error e  is sufficiently large, the 
‘actual control’ (31) turns out to be

  1
1

1
(1 ) ,ball H

E B P e
S E B P e

E B P e








  


  2
2

2
(1 )ball H

E B P e
S E B P e

E B P e






  


In this condition, the control (31) behaves as a generalized sliding 
mode control scheme that tends to robustly stabilize uncertain 
systems using all its available input capacity.

4.3 Stability analysis
Let V e P e  be the Lyapunov function candidate. Then, the 

Lyapunov derivative V of the uncertain system (27) under the 

control (28) can be written as
 
 

1

2

(1 )
( ) 2

(1 )
ball H

ball H

S E B P e
V e A P P A e e P B

S E B P e


  





  
       



 
 

1

2

(1 )
2 2

(1 )
ball H

ref
ball H

S E B P e
e P B e P B

S E B P e


 






  

       
(32)

Using property (P3) and Assumption 2 gives the following Fact 1 

and Theorem 1:

Fact 1: The last term of the Lyapunov derivative (32) satisfies
 
 

1

2

(1 )
2 0

(1 )
ball H

ball H

S E B P e
e P B

S E B P e








  
     

, 5e

Proof. Omitted for brevity.

From the Lyapunov derivative (32), Fact 1 indicates that if the 

estimated value ( , , )e sr k k  is chosen such that the property (P3) is 

true, then this choice could ‘help’ the control (28) render the 

uncertain system (27) more stable in sense of Lyapunov stability.

Theorem 1: The Lyapunov derivative (32) can be estimated as
0V  ,  1 2e c e P e c   ,

where 

1 1 Hc  , 2
2 max(1 ) ( )c B P B   .

Moreover,

1lim 0
H

c
 

 , 
20

lim c
 

.

Proof. Omitted for brevity.

Theorem 1 gives an estimate of the stability region established by 
the constrained control (28) and indicates that the state feedback 
system (27)-(28) has a region of positive invariance 

 2 2( )VL c e P e c   and a region of ultimate boundedness 
 1 1( )VL c e P e c   so that

2(0) ( )Ve L c   2( ) ( ), 0Ve t L c t  
1lim ( ) ( )Vt

e t L c


 .

Moreover, theorem 1 indicates that the regions of ultimate 
boundedness and of positive invariance respectively can be set 
arbitrarily small and large, as long as the design parameters  is 
sufficiently small and 

H  is sufficiently large. However, we note
that the proposed design as well as the associated stability analysis 
is established via linearization approach; hence, only local 
stabilization can be theoretically guaranteed for the original 
nonlinear system. While, since the proposed control scheme can act 

as a sliding mode controller to some extent, its potential in locally 
coping with the nonlinearity not yet discussed can be expected.
Finally, by substituting the constrained controller (28) into the 
control structure (19), the control design is accomplished.

5 Simulation results
The nonlinear vehicle model presented in section 2 is used for 

the simulation, in which the friction lag [4] is also included. The 
vehicle data is given as: 1480kgm  , 21950kg mzJ   , 

1.421mfl  , 1.029 mrl  , 0.751mdl  , 29.81m/sg  , 
0.42 mh  , 50539 N/radfk  , 20972 N/radrk  , 0.31mejr  , 

20.7 kg mwjI   , 0.9sk  , 0 28m secv  . The tracking path is 
assumed to be a circle of curvature 1/ 400ref   and covered with 
wet asphalt on left side and dry asphalt on right side (i.e. -split 
condition). The vehicle starts the path tracking with 

(0) 28m secv  , (0) 0rad  , (0) 0rad/sec  , (0) 30mcy  ,
(0) 0 rad   and (0) 90.3226rad/secj  . In accordance with the 

data of the vehicle and that of the road surface [1], the estimated 
values 0.34er  , 0.8sk  , 14.3k  , and constraint 0.05cs   are 
chosen such that property (P3) and Assumption 2 are satisfied, and 

0.3488 1   is calculated. For constructing the controller (28), 
parameters 0.001 , 60H  , and the related P are chosen to 
solve both the ARE (29) and LMI (30). Fig. 4 depicts that the 
vehicle under the proposed control scheme approaches the desired 
path gradually. The vehicle path almost overlaps the desired path 
eventually. Fig. 5 illustrates the corresponding magnitude of wheel 
slip of four wheels, as well as the speed, the sideslip angle, and the 
yaw rate of the CG. The magnitudes of each wheel slip in the 
transient are also shown in Fig. 6, they are almost limited below 

0.05cs   during the tracking. The time profiles of the wheel 
steering angles and wheel torques in coordination are shown in Fig 
7 where differential wheel torque scheme to improve yaw rate 
performance as well as persistent wheel torque to maintain the CG 
speed can be observed. The transient behaviors of wheel angular 
speeds and dynamic normal loads are depicted in Fig. 8 for easy 
reference.

6 Conclusions 
A control scheme for automatic path tracking control subject to 

wheel slip constrained is presented. The control scheme integrates 
the wheel slip ratio and slip angle together to avoid complicated 
modification. Using linearization and singular perturbation theory, 
the linear order-reduced design model is obtained from the 
nonlinear system and the wheel slip is replaced with its 
quasi-steady state for controller design. By the proposed unit-ball 
saturation function to adjust the torque and steering angle of each 
wheel, the vehicle will track the path automatically. The simulation 
example demonstrates the effectiveness of the control scheme to 
limit the wheel slip and to coordinate the wheel steering and wheel 
torque. During cornering, the wheel steering is automatically 
integrated with auxiliary differential wheel torque to improve the 
yaw rate performance. Since the trend of future automobile design 
is to use independent motors to drive electric cars, hence our 
proposed scheme could be considered as one of the controllers used 
for the future electric cars.
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