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Reduced-order Adaptive Controller Design for Disturbance
Attenuation and Asymptotic Tracking for SISO Linear
Systems with Noisy Output Measurements

Qingrong Zhao

Abstract— In this paper, we study the reduced-order adaptive con-
trol design for SISO linear systems under noisy output measements,
as compared to the full-order adaptive control proposed in 1]. We
make the same assumption as [1] and follow the same design atigm,
where we simplify the dynamic order of the controllers by ushg a
slightly modified design at a particular step of the control cesign. The
dynamic order of the controllers obtained in this paper isn — 1 or
n—2 less than those presented in [1], depending on the eigen-stture
of a particular feedback matrix. We prove rigorously that reduced-
order controllers admit the same robustness properties ashbse of [1].
The order reduction will simplify the controller structure enormously
without any sacrifice in performance. A numerical example isncluded
in the paper, which demonstrates the improved performance esulting
from the order reduction, even though there is no theory jusifying
the improvement.

Index Terms—adaptive control; nonlinear H°° control; cost-to-
come function; integrator backstepping.

Zigang Pan

ping methodology is introduced in [7], which solves the adaptive
control design for parametric strict feedback or parametric pure
feedback nonlinear systems, where the design is mainly focused
on the selection of a Lyapunov function for the closed-loop
system and rendering its derivative function nonpositive. This
result brings a period of intense research into nonlinear adaptive
control design, where a large volume of results flourish, see the
book [8] for a list of references on this topic. The integrator
backstepping methodology is a systematic design procedure of
controllers for nonlinear systems which offers a lot of flexibility,

in terms of the choice of the value function and the virtual control
law. How to properly choose these design flexibilities remains
an open question [9]. It has been shown that a systematically
designed nonlinear adaptive control law has better performance

for linear systems than that of the certainty equivalence based
|. INTRODUCTION design when the system is free of disturbance. Yet, this nonlinear

Adaptive control has attracted a lot of research attention ifl€sign approach stops short of directly addressing the robustness
control theory since 1970s. The classical approach for adaptivsoperty of the closed-loop system, and may be nonrobust when
control design of linear systems has been based on the certaiffi¢ System is subject to exogenous disturbance inputs.
equivalence principle [2]. In this approach, the controller is de- The objective of robust adaptive control are to improve the
signed as if the unknown parameters in the system are knowfiansient performance, to accommodate unmodeled dynamics, and
In imp|ementati0n, these unknown parameters are rep|aced Eg/ tolerate exogenous disturbance inputs. These objectives are
their on-line estimates. The certainty equivalence based desigfte same as those that motivates #€°-optimal control prob-
leads to relatively simple controller structure. Many differentem [10]. Intuitively speaking, the adaptive control design makes
parameter identifiers can be used as long as they satisfy cert&i$e of more information about the system under control than a
properties independent of the controller design. Any stabilizingimple robust control design, which suggests that adaptive con-
control law can be used as well. This approach has shown feollers should have better robustness. Yet earlier adaptive control
be successful for linear systems with or without stochastic diglesigns are shown to be nonrobust. Even though robustification of
turbance inputs [3], [4]7 when |0ng term asymptotic performanc@"le Certainty equivalence based design has been obtained in 1980s
is considered. Yet, early adaptive control design based on thigrough 1990s [11], they still fell short of directly addressing the
approach has been shown to be nonrobust when the systélisturbance attenuation property of the closed-loop system. It has
to be controlled admits unmodeled dynamics and deterministiReen shown that the objectives of robust control can be achieved
exogenous disturbance inputs [5]. This motivates the study & studying the disturbance attenuation property of the closed-loop
robust adaptive control design in late 1980s and early 19908ystem in theH-optimal control problem. The game-theoretic
The certainty equivalence based approach fails to generalize @pProach toH*°-optimal control further converts the problem
nonlinear systems where there exist severe nonlinearities. This thi0 & soft-constrained zero-sum game problem, where the upper
motivates the study of nonlinear adaptive control design in 1990¥alue of the game need to be guaranteed to be bounded [12].

In 1990s, adaptive control for nonlinear systems was investhis motivates the worst-case analysis based approach to robust
tigated intensely, motivated by the complete characterization @daptive control design [13], [14], [15], [1], where the measure
the feedback linearizable or partially feedback linearizable sy$f disturbance attenuation, asymptotic tracking, and transient per-

tems [6]. A general nonlinear design tool of integrator backstegormance are all incorporated into a single soft-constrained zero-
sum game cost function. The unknown parameters of the system
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with imperfect state measurements into one with full informatiorpaper ends with some concluding remarks in Section VI and an
measurements. This full information measurement problem &ppendix.
then solved using the integrator backstepping methodology for

a suboptimal solution. The above outlined design paradigm has

been applied to identification problems [13], which yields new In this paper, the reduced-order controller design is motivated by
classes of parameterized robust parameter identifiers for linethe results of [1]. The linear system under consideration satisfies
and nonlinear systems. It has also been applied to robust addpe following assumption.

tive control problems [15], [1], which leads to new classes of Assumption 1.The linear system is known to be at mast

Il. PROBLEM FORMULATION

parameterized robust adaptive controllers with strong robustnegignensional;n € IN. o
properties. These successes motivate us to further investigate tBigadding additional dynamics if necessary, the true system admits
approach in greater detail. dynamics

In this paper, we generalize the result of [1] by obtaining & = Ai+ Bu+ Dw; 2(0) = i (1a)

reduced-order adaptive controllers, as compared with the full-order
controllers proposed in [1], which admits exactly the same robust-
ness properties. We assume that the true system is observalberez is then-dimensional state vector; is the scalar control
admits an known upper bound of dynamic order, admits a strictlipput; y is the scalar system output) is the g-dimensional
minimum phase transfer function from the control input to thelisturbance inputy € IN; all input and output signalg, u, andw
output, and admits a known sign of high frequency gain, and hase continuous; and the matricds B, C, D, andE are generally

a known relative degree. The true system may be uncontrollablnknown. System (1) satisfies the following assumption.

from the control input and uncontrollable part is assumed to Assumption 2:\(A, Q) is observable. The transfer function
be stable in the sense of Lyapunov. Furthermore, the criticallfZ (s) = C(sI — A)~' B is known to have relative degreec IN,
stable uncontrollable modes must be uncontrollable from thend is strictly minimum phase. The uncontrollable part (with
disturbances. These assumptions are the same as those of [@gpect tou) of (1) is stable in the sense of Lyapunov. Any
We make use of the parameter estimator and state estimatgrcontrollable mode corresponding to an eigenvalue of the matrix
dynamics obtained in [1]. The difference between our design and on the jw-axis is uncontrollable from the disturbange ©

that of [1] lies in the control design step, in particular, the step By Assumption2, there exist a state diffeomorphism= 7'z

0 of the integrator backstepping procedure. Instead of generatiggd a disturbance transformatiean= Mw such that the system
the reference trajectory for the entire state vector of the filter fas expressed as

the measurement output, whichrisdimensional, we generate the - —

reference trajectory foF: a particular linear combination of this state = Az + (yAen +ud2n2)f + Dw; 2(0) =20 (28)
vector, which is essential for the robustness proof, via a one or ¥ = Cz+ Ew (2b)

two dimensional dynamic system. This leads to the reduction Qfare7 is unknown: M is an unknowny x ¢ dimensional matrix

n — 1 or n — 2 integrators in the dynamic order of the controller, € IN; 0 is the o-dimensional vector of unknown parameters
wheren is the known upper bound of the dynamic order of the c H\I"and the matricest, As11, Asrs, D, C. and E admit the '
true system. The specific number of the order reduction depenﬂﬁlowiﬁg structures-A — (L'l‘ ) X' o "+1 =0 forl<

— 1 )nXny L, — Yy — Y =

on the eigen-structure of the feedback matrdy,. When Ay has . <r—landi+2<j<n Asz=10 b Abiso Abis I;
at least one real eigenvalue, the dynamic order of the controllgg120 — 10 _71)}_ o : W on, o_xl(;]«.— 'I)'he equationr (,2)

may be reduced by — 1. Otherwise, it may only be reduced by i c5jieq the design model which satisfies Assumptions 5
n — 2. Once stef of the backstepping procedure is modified, thedescribed below.

rest of the backstepping procedure is essentially similar to that Assumption 3:The matricesD and E are such thatZE'>0.
of [1], where a controller is formed. It is then proven that theDefineC _ (EE/)‘% andL = DE'.
controller achieves a guaranteed level of disturbance attenuatiﬂ'&cording to the structure oft, Asis,
for any continuous exogenous disturbance inputs, total stability f(Hartitioned intod = [by 6.]', whereby is the high frequency gain
the closed-loop system with respect to the exogenous disturbaquH(S)’ 0, is a (o — 1)-dimensional vector.

inputs and the initial conditions, and asymptotic tracking of the Assumpﬁon 4:The sign of high frequency gaity is known.

reference trajectory when the disturbance inputs&geand L. W.L.O.G, assumé, > 0. There exists a known smooth nonneg-

Thes_e results are exgctl_y the same as [1]. This completgs Bve radially-unbounded strictly convex functid?(d), such that
preview of our result. Similar to [1], as a result of our assumption

: ) _ % € © :={#: P(A) < 1}. Furthermore, for ang € ©, we have
the closed-loop system may achieve asymptotic tracking even _ o

. . . 0 .
under exogenous Q|sturbange inputs generated by unknoyvn IlnearFOr the system (2), the control law is generatedy) —
exo-system which is stable in the sense of Lyapunov. This resul

S . . ut(t,y[oyz]), wherey : [0,00) x C — R.
is illustrated by a numerical example in the paper. Assumption 5:The reference trajectory, is r times contin-

The balance of the paper is organized as follows. In Section Iyously differentiable, where the signgl; and the derivatives
we present the formulation of the problem and discuss the gene@ﬂ”, cee yf[) are uniformly bounded and available for feedback.
solution methodology. Next, we summarize the estimation design The objective of the control design is to make the system
result of Section 3 of [1] in Section Il for the convenience ofoutputCz to track the reference trajectogy asymptotically while
readers. In Section IV, we present the controller design step usiadtenuating the effect ofy, w, and 6. The uncertainty triple
integrator backstepping and the main robustness results for they, 6, W, )) belongs to the sy = R™ x © x C.
controllers. An example is included in Section V to illustrate the Definition 1: A controller x is said to achievedisturbance
performance improvement resulting from the order reduction. Thattenuation levely if there exist [(t,0,x,y0,4) > 0 and

y = Ci+Ew (1b)

<
the parameter vectdt is
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lo(%0,60) > 0 such that for allt > 0 the following inequality Assumption 6:The weighting matrixQ is given by

holds: SO (P - 1)0D
5 _ wu-1 0 0 oS—1 € 84 — 0
sup Sy <0 @ @=% {o A}E +[ 0 0
(£0,0,W[g,00)) EW
where the cost functiod; is whereX is the worst-case covariance matrix defined in (Zs)>
. 0 is n x n dimensionalie is a scalar function defined by(r) =
- / (21— ya)? +U(r, 0,2, yo.)) — ¥ lwl?)dr (=7 (1)) /K., V7 > 0; K. > v*Tr(Qo) is a constant; and the
0 ’ matrix X will play the role of worst-case covariance matrix of the
—%0 — goﬁgo —73|zo — 530@_1 — lo(Zo, 00) parameter estimation error. o
0

5 Soft projection is introduced based on Assumption
where 6, € © is the initial guess off, and Qo > 0 is the Define p := mingy_cgo—1 P(0,6s), then,p > 1. The design
quadratic weighting matrix, quantifying the level of confldencamu try to guarantee that the estimafidies in the open se®, :=
in the estimatdy, %o is the initial guess ofzo, andII; Y'>o0is {0: P < (1+ p)/2}. then, we have thaly > co > 0 always.
the weighting matrix, quantifying the level of confldence in the Define the smooth projection function
estimatei,.

The definition above intends to guarantee that,> 0, the 3 % (25 (é)) Vb € ©,\0
squaredl; norm of the output tracking errar; — yq on [0,¢] is P(0) = 0( ] P©) vico (6)
bounded byy? times the squared, norm ofwy ¢ plus a constant oxb

that depends only on the initial condition of the system. then, it is obvious thatP,(d) is smooth on the se®,, and
Let & denote the estimate of andd denote the estimate ¢t —’é)’P @) < 0,V e 7@ Then the identifier dyna;r;ics are

In order to bring the adaptive control problem into the frame-
work of H°°-optimal control for affine-quadratic nonlinear sys-
tems with imperfect state measurements, the system dynamics (2@,4 ¢? LC)IT +TI(A — ¢? Lcy — HC’(<2 _ 7*2)cn
is expanded by adding the simple dynamicsfof) = 0. Define +DD' —C’LL' +~+*A =0 (7a)
&:= (¢',2"), which satisfies the following dynamics:

summarized as follows, which is the result of [1].

Y=—(1-e)Zd'C'(v*¢? —1)Cd%; Z(0) =~ Q" (7b)

. 0 _ _
= =: A D 4a Gy — — 2 202 _ — ol =
£ yAo11 + udars A] £+ [ }w £+ Dw(4a) 5 S2(?C = 1)(1 —e)CDD'C’; s5(0) 2Tr( )(70)
= = = b Py
y = [0 CJetBu=Ctt Bu (4) e=K.'sy'; T= [@2 1n+¢>2q>’} (7d)
The worst-case optimization of the cost function (3) can be carried ) - 272 .
out in two steps: first a supremization o¥gb) andw with known Ay = A —("LC -1IC"C(¢" —v77) (7e)
measurement waveform, and then supremization over all possible d = A;® + yAa1; + uAziz; P(0) = 0nx0 (79

measurement waveforms, the idea is precisely explained by the . 5N d e A
following identity for each fixed > 0: EQPTQ(G) , ;@ O (ya ?x) [E e’ | Qs
+y° X C (y — C); 6(0) = 0o (79)

i=—®3P,(0) 4+ Az — (v I 4+ dXd")C' (ya — CF)

-2 A i Ry
The inner supremization can be interpreted as the evaluation of — [2D 7P I + 95| Qte + (y Az + uAn2)0
the worst-case performance with a known output waveform. As +C(MIC" +4°®5P'C + L) (y — C); £(0) = &0 (7h)
a function of output, the control input waveform is independent W (¢, £,€,5) = |0 — 0|51 + |z — & — D0 — )51 (7i)
of the actual disturbance input waveform, and can be viewed asyi; — _ ;1 — .12 — 44 — & — (0 — 6) 1 apgs + [AF
an open-loop time function. This step is actually the identification - 5
design step, which is carried out first. In this paper, we make use —€e(v°¢" =IO — blprcrca + |0
of the results of [1] for this step. +|C% — yal” —¥*Cly — Ca* +2(0 — 0)'P.(0) (7))
The outer supremization can be interpreted as the computation o )
of the worst-case measurement waveform against a given contiy€res=(7) := 1/Tr( (7)), which is introduced to avoid the
law, which is crucial for the determination of the achievability ofcOMPputation of3™" on line; @ is a filtered signal of andwu; W

the objective (3). This step is the control design step, which w@ the )’a“fe/ function for the identifier design step;= ¢ — ¢ and
will discuss in detail in Section III. = (0',z")"; w. denotes the worst-case disturbance.

Now we will turn to the discussion of these two steps in the Lemma 1. Consider the dynamic equation (7b). Let Assumption

sup Jyi < sup sup Jye  (5)
(£0,0,W[0,00)) EW Y[0,00) (£0,0,W[0,00))1¥[0,00)

2 2 2
= 77w — w.|

next two sections. 6 hold andy > C Then, K.'I, < 3(1) < v7°Q¢h
2Tf(Q0) <Tr(Z7Y(1)) < K., Y7 €]0,1].
III. TDENTIFIER DESIGN We make the following assumptions.

In this section, we mainly summarize the result of identifier Assumption 7:If the matrix A — ¢2LC is Hurwitz, then the
design described in Sectidgh of [1] for the convenience of the desired disturbance attenuation level> ¢~!. Otherwise, the
reader. desired disturbance attenuation leyet ¢ . o

We choose = [¢ — £[3,,. Vo) + 1, where¢ is the worst-case  Assumption 8:The matrixIl, is chosen as the unique positive-
estimate for¢; Q is the nonnegatlve definite weighting function; definite solution to the algebraic Riccati equation (7a). o
and/ is part of the weighting function to be designed in the control Assumption7 makes the observations that the quantjty’ is
design step, and is a constant in this step. the ultimate lower bound on the achievable performance level for
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the adaptive system using the proposed design method. Assumyhichnz must track. In [1]nLq iS generated by an-dimensional
tion 8 is made to simplify the identifier structure, which impliesdynamics with statens. In this paper, we explore method to
that the matrixA; is Hurwitz. reduce the dimension of the dynamics required to generatdy

To simplify the estimator dynamics, we may generatby 2n-  choosingyr, to be some specific linear combinatiompfit will be
dimensional prefiltering system fay and u: 7 = Asn + pny, shown that if the matrixd; has at least one real eigenvalue, then
n(0) = 0; \ = AfX + pou, A(0) = 0, wherep, is ann- nrq can be generated via a scalar dynamic equation. Otherwise,
dimensional vector such tha# s, p,,) is controllable. LetM; = 7.4 can be generated via a second-order dynamics. This way, the
[A’J}*lpn ... Afpn pnl]. Then, @ is given by order of the adaptive controller is reducedsy 1 or n —2. Next,
1 - we will discuss these two cases separately.
® = [A}'m .. Am o M Ao Case 1 The matrix A; has at least a real negative eigenvalue

+ [ A:}’IA oo AR A ] Mf_lﬁglg ap. Let the real vector be a left eigenvector ofl; associated

with ao. Definenr = a’n, then, we obtainir = Arnr + Pny,
wheredg = ap andp,, = a’p,. By Lemma3, we have that/p,
is non-zero. The reference trajectory gt to track isnra, which

il di h duced-ord ller desian in detail can be generated by a scalar systet = Arnra+ pnyqa. Then,
We will discuss the reduced-order controller design in detalil. o signaly, = nr — a'n, andnrg = Nra.

The controller design will be based on the following inequality. Case 2 The matrixA; has no real eigenvalue. Let and jis

sup Jyt < sup sup Tyt < be a pair of complex conjugate eigenvalues4gf; Let u; be the
(0,0,W[0,00)) EW Y[0,00) (0:0,0[0,00))1¥[0,00) left eigenvector ofd ; associated withu, then the left eigenvector
t of Ay associated withii; is @i, which is the complex conjugate
sup {/ (ICE — yal® + |&cl — [ = ¥*CPly — Ci[*)dr of u;. In this case, we defingr = [R(u1) S(u1)]'n. Then, we
¥10,00)€C LJo , obtainnz = Arnr + pny, Wherep, # 0 by Lemmas3,
—lo (8)

. . | R(pr) =S(pa) | [ R(u)

Our purpose is to guarantee that the supremum is less than or Ar = [%(ul) R(11) } o Pn = [%(US)] Dn

equal to zero for all measurement waveforms. Insteag ofe can

equivalently supremize over the transformed variable ((y — Generatejrq by ra = Arnra + pnya. Then, the signahz® can

Cz). The problem is then a nonline&f > control problem with pe chosen ag, = [1 1]P~'ng, where the invertible matrix®

full information. The variables. and &, will be designed at this 1 0

stage. The control design far will make use of the integrator —2R(u1) 1 - Clearly,nz

backstepping methodology. is minimum phase and has relative degiewith respect to the
On the basis of the cost function (8), we only need to achievimput y. Then,nq = [IL  1]P~'nga.

v level of disturbance attenuation with respect to the equivalent According to both two cases, the mateds; is a Hurwitz matrix,

disturbancev. The variables to be controlled in the control desigrthen there exist a positive definite matfixsuch that the following

step areZ, sz, 7, A, 6, andz. The control variables to be designed generalized algebraic Riccati equation admits a positive-definite

areu and&.. Since there is a nonnegative definite weighting orsolution Z, by Lemma2 of [1].

& in (8), we cannot use integrator backstepping methodology to

design feedback law fog.. Then, we will set{. = 0 in the ARZ + ZAR + 7P ZpapnZ +Y =0 9)

backstepping design fo#, and then optimize the choice @f ) ] )

based on the value function derived in the backstepping proceduft terms of the matrixZ, we define the value fu2nct|on for the

at the end., sx, and @ are always bounded by the identifier dynamics ofijr := 1z — nrq to be Vo(ijr) = ‘ZR‘ZI' /The~n, the

design, so we will treat their dynamics as part of the zero dynamiderivative ofVy is given by, wherex (7jr) = v~ "C™ Pn Zilr.

in backstepping. Denote the elements ©fby [%1, ..., &x].

Observe the lower triangular structure in the dynamicsnpf

a1, ..., &r, we will use integrator backstepping methodology toThis shows that the dynamics Gf: achieves attenuation level

stabilize them. Since, the system (1) is strictly minimum phasgyom the disturbance to the outputy /27, if &, is the control

we expect thaki,+1, ..., » Will be bounded oncg is bounded. yariable and is set t&; = yq. However, i, is a state variable,

A is not necessarily bounded without control. But the dynamiCgerefore, i, is called the virtual control input, and the desired

of A is directly affected by, and therefore, can not be stabilized control law s, = y, is called the virtual control law.

In conjunction .W'th"v L1, ..., Ir USING backstepplng. Then, we  This completes the virtual control design for the dynamics.

assume thai is bounded and treat its dynamics as part of the The construction of steps after Stépwill closely follow the

zero dynamics in the backstepping design. Theoretically, it can k%‘?eps in [1], and hence will not be included here. The resulting
shown that\ is bounded with the derived control law. control law and value function are

Based on the above discussion, we start the backstepping

This completes the summary of the identification design of [1]

IV. CONTROL DESIGN

is given byP = [ Arpn  Pn |

Vo=—liirl} +7%0% — 7(v — v0)* + 201 ZPn (1 — )

procedure. u=jp = —Vi(am.ﬂi,nﬂ + ...t amdn — yff) — a,)(10a)
Step 0: The dynamics of; are given by: bo
. . — 1
= Afn+ pni1 + pa(v/C) V=\77R\ZZ+Z§Z? (10b)
Jj=1

According to [1], we need to generate a linear combinatiomn,of

nz, whose transfer function from is strictly minimum phase and  1Note that the vectofl 1] can be generally chosen[; 1] where
has relative degreé. Then, we need to generate the signal; k1 > 0.
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and the time derivative of’ is We consider the same system as Exantblef [1]. The true
system is given by

V=—zi —lirly = > Bi%} +5.Q8 + 70" =7 (v - 7,)? i 11077 1 0.1 0
=1 & —l001] ¢2]+lo u—O—[O O]ﬁ)
. . . i 060 X 0 0 O
where z;, i = 1,...,r are transformed variables introduced in 3 s
the designa.., oy, Bi, i = 1,...,r, andg. are known functions y = [ 100 ] x+ [ 0 0.1 ] w

defined in detail in [20]. This completes the backstepping deSig\pvhere the initial condition for the state and the true value of

procedure. . . e . the parametef are set to be;1(0) = 1, 2(0) = 1, 23(0) = 2,
Based on the value functions of identification design and contr(!)j{nde* — _4. The design model (see [1]) is easy to obtain via the
de3|gp, we optam the following value funcpon for. the Closed'IOOpstate and disturbance transformations. The reference trajectory is

adaptive nonlinear systeri = V' + W, which satisfies generated by the following differential equatioty = —z4 + d;
” ya = xq, Whered is the command signal. The initial statg(0)
U=—|z1 — ya|* =7 )z — & — 80 — 0)|2-1 aq1 — ZBJZJQ is chosen to bé). The parametef is assumed to belong to the
e set[20, 0] with the projection functionP(#) chosen asP(f) =
1 0.01(0 + 10)2. The initial estimates for the parametgrand the
115! state variables were chosen @s = —1 andi, = [L 0 0]'.
For the adaptive controller design, we choose- 0.4, =1,
+|€c+%§r|% - |77R|‘2Y +72|w\2 —’Y2|U’—wopt\2 (11) K.=0.4, arFl)dA:O.Glg. J o8 @
Then, the calculation shows that there exists a real eigenvalue
of the matrix Ay which is equal to—3.170. Therefore, we can
. 9 o e . achieve the controller structure simplificationsof- 1 integrators.
Wopt=CE Dy + (I = CEE)DX (€~ €) Other design parameters are chosertas: 1.068 x 10* and
+PE'C(& — x) B1 = 0.1. The command signaf(¢) and the disturbance input
. w = [Wr we] are set to bed(t) = 4sin(t), w1 (t) ={Band-
From (11), the optimal choice fdf is £. = £ — 55, The optimal  |imited white noise with powen.03, seed6000, and sampling
choice may be too complicated for implementation, we can alsgeriod 1 sec, andw,(t) = 0.2sin(3t + .
choose¢ = ¢ as a suboptimal choice. Both of these choices yield The simulation results are shown in Figute We simulate
that the closed-loop systems are dissipative with storage functigRe closed-loop performance under reduced-order and full-order

—E(’YQCQ - 10— é@/c@@ +2(0 - é)/Pr(é) -

Qi

where the worst-case disturbance is

U and supply rate-|z1 — yal* + 7*|w|. controller. Graph(a), (c), and(e) show the system response with
It is seen that the controller structure can be finally simplifiedhe reduced-order controller. Gragh), (d), and (f) show the
by n — 1 integrators or byn — 2 integrators. system response with the full-order controller. We observe that,

Till now, we have finished the design for the entire closed-loofior both cases, the tracking errors satisfy the desired attenuation
system, which involves states, &, 0, 3, sx, 7, nra, andX. We  level, the parameter estimates asymptotically oscillate around the
turn to study the robustness of the closed-loop system, which frue value—4 due to the sinusoidal disturbance, the control inputs
made precise in the following theorem. are bounded by8. We also observe that the transient response

Theorem 1:Consider the robust adaptive control problem for-and steady-state behavior under the reduced-order controller are
mulated in Section Il, with Assumptions — 8 holding. Then, much better than those under the full-order controller. It shows
the robust adaptive controlle defined by (10a), with either that the reduced-order controller achieves a better closed-loop
optimal worst-case estimaﬁé or the suboptimal choicé = g performance, which is observed in most of the simulations that
achieves the following strong robustness properties for the closede have done. Furthermore, the improvement in performance is
loop system. more pronounced for higher-order systems.

1) The controllerz achieves disturbance attenuation leydbr VI. CONCLUSION
any uncertainty triplgzo, 6, wo,o0)) € W.

2) Given ac, > 0, there exists a constart. > 0 and a
compact se®. C O, such that¥(zo, 0, Wy e)) € W
with |zo| < cw; |W(t)| < cw; Yt € [0,00), all closed-loop
state variables are bounded as folloWs:< [0, 00), |z(t)| <
ce, [E()] < e, O(t) € Oc, ()] < ce, nra(t)] < ce,
A0 < ce, Koo <B(t) <v72Q0 " Kot <ss(t) <
7 (Tr(Qo)) ™" .

3) For all (:Eo,@,’d}[o,o@) € W with tb[o,oo) € LoN Loo,
limy o0 (z1(t) — ya(t)) = 0.

Proof: see the full version [20]. [ ]

In this paper, we present the reduced-order adaptive controller
design for SISO linear systems with noisy output measurements.
The assumption for our study are exactly the same as that of [1],
and we use the same design paradigm as well. The adaptive
controller design is proceeded in two steps. The first step is
estimation design which is the same as [1]. We summarized their
results here for convenience of the readers. The controller design
step uses integrator backstepping methodology, where the step
0 is different from [1]. Instead of generating;, which is n-
dimensional as in [1], we generate a reduced-order sigpal
When the matrixA; has at least one real eigenvalug:; is a
scalar signal, which results in an order reductiomof 1. On the

V. AN EXAMPLE other hand, when the matrid; has only complex eigenvalues,
nra IS two dimensional, which results in an order reduction of

To illustrate the performance of the reduced-order controllen—2. The rest of the steps of the integrator backstepping procedure
designed in this paper, we present an example in this section. are essentially similar to that of [1]. The controller designed is
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Fig. 1. Comparison of system responses under reduced-oodéober
and system responses under full-order controller, with conumiaput
d(t) = 4sin(¢t) and arbitrarily varying disturbances.
a), (c), (e): reduced-order controller; (b), (d), (f): full-erd
controller. (a), (b): Tracking error; (c), (d): Control input; (éf):
Parameter estimate.

exists anx 1 real vectorP such that the paifA, P) is controllable.

Proof: See full version [20]. ]

Lemma 3:Consider an x n real matrix A andn x 1 real
vector P, the pair(A, P) is controllable. Let the matrixl has an
eigenvalue);. Let a be a left eigenvector ofA associated with
A1. Then,a’ P is non-zero.

(1]

(2]

K]

(4]

(5]

[6] A. Isidori, Nonlinear Control Systemsrd ed.

[7

8

(9]

[10]

[11]

[12]

(23]

[14]

proven to achieve strong robustness properties: achievement of mg]
desired disturbance attenuation level with respect to continuous
exogenous disturbance inputs with the ultimate lower bound for

the attenuation level being™'; total stability with respect to

exogenous disturbance input and the initial condition for th 3

—_

closed-loop system; asymptotic tracking of the reference trajectory

when the disturbance input belong £ (| L. These results are

the same as those of [1]. A numerical example demonstrates tHe]
performance improvement resulting from the order reduction, even

though there is no theoretical justification for the improvement. 14

Extensions of this result may be worked out for SISO linear
systems with partly measured disturbance, and for SISO line&#9]

systems with repeated noisy measurement. These extensions are

straightforward, based on this result, and will not be pursued iQO]

the immediate future.

VII. APPENDIX
Lemma 2:Consider an x n real matrixA4, there exists d x n

real vectorC' such that the paifA, C) is observable. Then, there

Proof: See full version [20]. [ ]
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