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Abstract— Linear time varying (LTV) systems are com-
monly applied in commercial PDE solvers. Large scale non-
linear PDE-based models are usually discretised by computa-
tional techniques that lead to LTV formulation. Proper Or-
thogonal Decomposition has been largely employed to reduce
numerical PDE-based models, however computational saving
is often far below the expected rate in spite of the dramatic
reduction of the original order. In this paper, we address a
practical solution to this problem by only conducting Galerkin
projection onto pre-selected state variables and estimate the
rest by the known POD basis vectors. The technique saves
considerable computational effort needed to obtain a reduced
order model and enables fast prediction of the future states,
which is essential for control design.

I. I NTRODUCTION

Proper Orthogonal Decomposition (POD) or also known
as Karhunen-Lòeve Expansion is acknowledged as one of
the most prominent model reduction techniques for large
scale models, [6], [2],[7]. The strength of this method lies on
the use of data, either from experiments or from a rigorous
simulation model. The data is collected to extract the main
underlying dynamics or patterns of the ensemble. The
main dynamics is then incorporated into a set of optimal,
orthonormal basis functions. Typically the number of basis
functions that span the original data is very few compared
to the original order of the data and still can capture
the original dynamics within reasonable accuracy. This
method is thus very favorable for data obtained from high-
fidelity models, especially those originated from numerical
simulation of PDE-based models, which generally suffer
from high order due to the fine spatial discretisation.

A continuous PDE-based model for a functionT : X ×
T→ R with D(·) as the operator may be written as:

∂T

∂t
= D(T ) (1)

Then a residualR (x, t) is defined as:

R (T (x, t)) =
∂T

∂t
−D (T ) (2)

In proper orthogonal decomposition, it is postulated that
T (x, t) can be expressed as Fourier expansion[8].

T (x, t) =
∞∑

i=1

ai(t)ϕi(x), x ∈ X, t ∈ T (3)
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with basis functions ϕi(x) are orthonormal and
(ϕi(x), ϕj(x)) = δij .

Truncated expansion ofT (x, t) to n-th order is given by:

Tn (x, t) =
n∑

i=1

ai(t)ϕi(x), x ∈ X, t ∈ T (4)

The POD method requires that the Galerkin projec-
tion of the residualRn (x, t) on the space spanned by
ϕi (·) , i = 1, . . . , n vanishes.

(R (T (x, t)) , ϕi (x)) = 0, i = 1, . . . , n (5)

From (5), the reduced order model is derived asn-th or-
der ODE which solves the unknown POD basis coefficients
ai(t):

ȧi (t) =

(
D

(
n∑

i=1

ai(t)ϕi(x)

)
, ϕi (x)

)
(6)

In practice, the computational domainX×T is discretised
as X̂× T̂, with X̂ ⊆ X and T̂ ⊆ T. The resulted dimension
of X̂, K is typically high. Numerically (1) is solved as
discreteK-th order model with the solution vector at every
time stepT ∈ RK .

In the reduced order model computation (6),n ¿ K,
so dramatic computational saving is expected. This is true
when we have an LTI system asD (·) is fixed. However,
when we have nonlinear or LTV system, the Galerkin
projection procedure is still expensive becauseD (·) varies
and has to be updated constantly. Thus often the achieved
computational saving is below our expectation, especially in
the case when fast prediction of a long horizon is required
to for optimal control design. It is not surprising that even
though theoretically POD is applicable to both linear and
nonlinear models, linearization in large-scale case is still
mandatory to obtain reasonably fast prediction.

Some work has been done to improve numerical tractabil-
ity of large scale model reduction for modest scale (of
dimension≈ 102) as well as linear subspace approach
of balanced model reduction for nonlinear systems. The
main problem is, model reduction methods attempt to
separate dominant dynamics from the less dominant ones.
Truncation of states is in principle truncation of dynamics,
not truncation of the original states. From computational
point of view, if the system under investigation has a lot
of different dynamics (the transformation matrix is of high
rank) and/or the model is large scale and varying, there is
barely significant computational gain because the effort to



obtain a reduced order model could be almost the same as
finding the original solution with some numerical iterations.

In this paper, we propose a practical solution to overcome
this problem by conducting Galerkin projection on pre-
selected states only instead of the whole dimension of the
state variables. We show that by conducting such procedure
we managed to reach the expected computational saving
and eventually to control an LTV system. The LTV system
itself is obtained from a discretisation of a 2D non linear
heat conduction problem.

The paper is organized as follows. First, the technique
used to estimate the whole states of the system based on
limited information is discussed, then the discretised 2D non
linear heat conduction model is presented. Subsequently,
the application of the acceleration technique to the 2D
non linear heat conduction model is shown and finally,
the control design based on the reduced order model is
elaborated. The last section covers the conclusion and
outlook.

II. M ISSING POINT ESTIMATION

Consider the solution ofK-th order model resulted from
the discretisation of (1) of a particular time stepT ∈ RK .
As written in (4), we can approximateT by its truncated
expansionTn.

T ≈ Tn =
n∑

i=1

ai(t)ϕi(x) (7)

If a vector asT which initially resides inK-dimensional
space can be well-approximated byn-th order expansion,
then T is an element of an ensemble of intrinsic low
dimension. It follows, that generally, onlyn points of
information is required to reconstruct the original vector
[6].

Suppose that only limited entries ofT are known, and
denote this incomplete copy of vectorT as T̃. This can be
expressed as

T̃ = m.T (8)

with m ∈ RK is a mask vector with one at the index of the
available data and zero at the index of missing data. The
product notation in (8) represents pointwise multiplication.

Our main objective is to find the estimates ofai(t), i =
1, . . . , n based on the incomplete datãT. The estimates of
the POD basis coefficients are denoted asãi(t) to distin-
guish these coefficients to those obtained when the data is
intact. If ãi(t) is known, then the complete approximation
based on limited information can be reconstructed as

T̃D =
n∑

i=1

ãi(t)ϕi(x) (9)

The vectorT̃D approximatesT̃ on the maskm because
it approximates both the available and the missing entries
of T̃. As the non-missing entries of̃T equals to the
corresponding elements onT, then T̃D also approximates
T.

This relation can be defined in an inner product on the
maskm

‖T̃− T̃D‖m = ‖T− T̃D‖m (10)

with ‖T‖2m = (m.T,m.T) indicates that‖.‖2m is defined
only on the non-missing data.

By the formulation of the missing-point inner product
(10), we can find̃ai(t) by requiring that the error function

E = ‖T̃− T̃D‖2m (11)

to be minimum.
Expansion of theE leads to

E =


T̃−

D∑

i=1

ãi(t)ϕi(x), T̃−
D∑

j=1

ãjϕj(x)




= ‖ T̃ ‖2m −2
D∑

i=1

ãi(t)
(
T̃ , ϕi(x)

)
m

+
D∑

i,j=1

ãj(t)ãi(t) (ϕj(x), ϕi(t))m (12)

DifferentiatingE with respect to thei−th coefficient gives

∂E

∂ai(t)
= 0−2

(
T̃ , ϕi(x)

)
m

+2
D∑

j=1

ãj (ϕi(x), ϕj(x))m = 0

(13)
from which it follows the equation to solve the coefficient
estimates̃ai(t)

D∑

j=1

ãj (ϕj(x), ϕk(x))m =
(
T̃, ϕi(x)

)
m

(14)

which can be expressed as linear system

M ã = f (15)

where
Mij = (ϕi(x), ϕj(x))m

and
fi =

(
T̃ , ϕj(x)

)
m

(16)

Thus, with the knowledge of limited information, we can
estimate the basis coefficientsãi(t) and in this way estimate
the other unknown data. This technique, Missing Point
Estimation (MPE) has been used for data compression of
static images.In this paper, this technique is going to be
implemented for dynamic systems.

III. N ONLINEAR HEAT CONDUCTION MODEL

The computational domainX for the nonlinear heat
conduction model of a thin plate is depicted in Figure 1.
The thickness of the plate is1cm. The continuous model
for the nonlinear heat conduction model is given by:

ρc
∂T

∂t
=

∂

∂x

(
k

∂T

∂x

)
+

∂

∂y

(
k

∂T

∂y

)
+ S (17)



Fig. 1. Computational Domain of the Heat Conduction Model

where T (x, t) is the temperature distribution along the
plate,k is the conductivity constant, andS represents the
external sources, namely the incoming heat flux along the
west boundary and the constant temperature distribution
along the north boundary. In (17), the conductivity constant
is temperature dependent where refractive indexn = 1.48,
Boltzman constants = 5.67 × 10−8W/(m2K4), average
normal absorption coefficienta = 33.4 and some physical
constants areα = 1.059, B = −80, R = 8.12.

k = αeB/RT + 2
16n2sT 3

3a
(18)

The model is thus originally a nonlinear PDE-based model.
To simulate (17), the computational domainX is discretised
into 44 orthogonal grid cells in they direction and 33
orthogonal grid cells in thex direction. The method used
to discretise (17) is Computational Fluid Dynamics Finite
Volume Method [9].

By Finite Volume Method, in every grid cell, (17) is
integrated over a specified time horizon and a finite grid
cell volume ∆V = ∆x × ∆y × 1cm. The algorithm is
implemented in MATLAB, but generally CFD commercial
packages which use Finite Volume also implement the
same code. For algorithm details please refer to [9].
∫ t+4t

t

∫

∆V

ρc
∂T

∂t
dV dt =

∫ t+∆t

t

∫

∆V

∂

∂x

(
k

∂T

∂x

)
dV dt

(19)

+
∫ t+∆t

t

∫

∆V

∂

∂y

(
k

∂T

∂y

)
dV dt +

∫ t+∆t

t

∫

∆V

SdV dt

If temperature at specific grid point and at the future time
step is denoted byTP (k + 1), then based on (19), we can

write the discretised equation as

ρc
∆x∆y

∆t
TP (k + 1) = ρc

∆x∆y

∆t
TP (k + 1)

+
kE(k + 1)ATE(k + 1)− kP (k + 1)ATP (k + 1)

δPE

+
kP (k + 1)ATP (k + 1)− kW (k + 1)TW (k + 1)

δPW

+
kN (k + 1)ATN (k + 1)− kP (k + 1)ATP (k + 1)

δPN

+
kP (k + 1)ATP (k + 1)− kS(k + 1)ATS(k + 1)

δPS

+ S(k)∆V

whereE, W,N, S denote the eastern, western, northern, and
southern neighboring grid cells andδPE , δPW , δPN , δPS

are the distances from a particular grid cell to its eastern,
western, northern, and southern grid cells, respectively.

Recursive formulation of the discretised equation is
shown in (20), where all the unknown temperature of the
whole grid cells are collected withinT(k +1) ∈ R1452 and
the coefficients are also functions of the temperature itself
due to the dependency of the conductivity constant. If the
time step is chosen small enough, the conductivity constant
at specified grid pointkP (k + 1) doesn’t differ too much
from kP (k), and we can use conductivity constant at the
current time step to evaluate the temperature distribution at
the future time step.

A(k)T(k + 1) = A0(k)T(k) + S(k) (20)

Equation (20) is the numerical model for the nonlinear
2D heat conduction model and represents a discrete LTV
system.

IV. A PPLICATION OFMPE

The recursive equation (20) is the basis for the numerical
model. POD-based reduced order model is derived as the
projection of (20) onto a set of orthonormal basis functions,
Φ = [ϕ1(x), ϕ2(x), . . . , ϕn].

A(k)T(k + 1) = A0(k)T(k) + S(k)
ΦT A(k)Φa(k + 1) = ΦT A0(k)Φa(k) + ΦT S(k)

a(k + 1) = Ar(k)a(k) + Sr(k) (21)

It is clear from (21), the reduced order model needs to
be updated at every time step and in fact still a function
of the whole temperature field, asAr(k) and Sr(k) are
temperature-dependent. This process is generally quite ex-
pensive.

To derive reduced order model based on limited informa-
tion, first rewrite (20) for these chosen points only.

ãPT̃(k + 1) = ãoT(k) +
∑

j=W,E,S,N

ãjT̃j(k + 1) + S̃(k)

T̃(k + 1) =
ão

ãP
T(k) +

∑

j=W,E,S,N

ãj.

ãP
T̃j(k + 1) +

1.

ãP
S̃(k)

(22)



Referring to (15), we can plug̃T(k + 1) as our ”limited
information” into the termf .

M ã(k + 1) = Φ̃T T̃(k + 1) (23)

ã(k + 1) = M−1Φ̃T T̃(k + 1) (24)

The explicit expression for̃a(k + 1) involves inversion of
M , but this can be calculated offline becauseM is only the
inner product of the incomplete basis vectors. The termΦ̃
refers to the set of incomplete basis vectors.

To complete the derivation, we expressT̃(k+1) = Φ̃ã as
in (22), and after rearranging we obtain a recursive model
for ã(k + 1)

ã(k + 1) = Ãr(k)ã(k) + S̃r(k) (25)

whereÃr(k) andS̃r are still functions of time, but updated
based on limited number of data instead of the whole data
at a particular time step.

Point Selection
The next natural question will be how to select points
in R1452 to have a good approximation despite dramatic
information reduction? First, since the reduced order model
is going to be used for control design, it is imperative to
include points adjacent to control inputs to accommodate
changes in manipulated variables. In this case, the control
inputs are western and northern boundaries. Further, there
is boundary condition applied to the insulated eastern
and southern boundaries, and the information of the zero
temperature gradient across these boundaries may be lost
if the points adjacent to them are excluded. Hence, in the
first step, we take points which have direct connection
to the boundary conditions and control inputs. Figure 5
depicts grid points that belong to this category marked by
red line. The next step is selection of additional points.
When we consider the coefficients obtained from complete
dataa, then a group of selected points can be described as:

T̃ = Φ̃a

and we know the estimates ofa based on incomplete data
can be obtained as:

Φ̃T Φ̃ã = Φ̃T Φ̃a (26)

We can use (26) to require the coefficients obtained from
incomplete datãa ≈ a. This is equivalent by requiring

Φ̃T Φ̃ ≈ I (27)

To distinguish more important points to less important
points, we observe the contribution of basis vector compo-
nents of a point to the inner productΦT Φ. This is conducted
by removing one point and see the effect how far the new
incomplete inner product̃ΦT Φ̃ in the absence of this point
to the complete inner productΦT Φ.

‖ΦT Φ‖ ≤ ‖Φ̃T Φ̃‖+ ‖∆‖ (28)

Fig. 2. Selected Boundary Points

The point with large‖∆‖ is more important than the points
with small ‖∆‖. Once the points are ranked, then we take
the point with the largest‖∆‖ as the first candidate. The
second candidate is the second largest, and we see whether
Φ̃T Φ̃ with two missing points and missing boundary points
are still well defined. This procedure is continued until
nadd points are selected.

A more formal discussion on well-posedness of sub
domain has been discussed in [8] which indeed relates
to the condition number of the incomplete POD basis
inner product, unfortunately there has not been significant
attention to the potential of implementing this concept in
model reduction for dynamical systems.

In the case of heat conduction model, 300 snapshots
Tsnap = (T(1), . . . , T(300)) are collected from an initial
condition of zero temperature to be subjected to incoming
west heat flux of500kW/m2 and north temperature of
100¦C. The orthonormal POD basis vectors are obtained
as singular value decomposition of the snapshots

Tsnap = ΦΣΨT Φ ∈ R1452x1452, Ψ ∈ R1452x300

There are 6 basis vectors corresponding to 6 largest singular
values taken, so in the reduced order modeling,Φ ∈
R1452x6. To simulate the reduced order model based on
limited data, 150 boundary points are taken, andnadd = 50
additional points are included from the criterion of‖∆‖.
Thus there are 200 points used as basis of information to
update the reduced order model (25). The plots of the most
dominant basis vector (the one correspond to the largest
singular value) of the complete data and the incomplete
data are shown in Figure 3. At the locations where the



points are not selected, the basis vector component is zero.
Simulation with this MPE-based reduced order model takes
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Fig. 3. Left: most dominant basis vector with complete data, right: most
dominant basis vector with incomplete data

about 35 seconds, while the original simulation takes about
120 minutes. The required computational gain is at least
100 times faster than the original model to enable fast, long
horizon prediction of 100 time steps ahead. Further, when
the original model is reduced by classic POD procedure, the
simulation takes about 10 minutes. Hence the MPE-based
reduced order model is 20 times faster than the classic POD
based procedure and more than 200 times faster than the
original model.
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Fig. 4. Maximum deviation of every time step of reduced order model
by classic POD

As shown in Figure 4 and 5, the temperature deviation
when we only use limited data is quite reasonable, accounts
to about2¦C, which is about1% of the plate temperature
range which lies in the100¦C to 200¦C. Indeed the
approximation by classic POD is more superior, but this
is compensated by a lot more computing effort.
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Fig. 5. Maximum deviation of every time step of reduced order model
by MPE

V. CONTROLLER DESIGN

With the available fast model, a model based controller
can be designed. The control objective is to achieve a
desired temperature distribution optimally. Since we use
reduced order model as the base of the control design, the
control objective has to be translated in terms of reduced
order model.

Definition 1: Given the temperatureTref (x, t), with x ∈
X and t ∈ T, find a control inputu(t) ∈ U such that the
squared L2-norm of the tracking errore(t) = rref − a(t)
wherer(t) = ΦT Tref is minimized withu(t) defined as:

u(t) = argmin
u∈U

Topt∑
t=0

‖rref (t)− a(t)‖2

As the controller is going to be applied to a discretised
model, the time notationt in the next discussion is replaced
by the time step notationk = t

∆t .
Consider again the MPE-based model equation (25).

After decomposing the term̃S into the control inputu ∈ R2

(there are west heat flux and northern temperature as the
control inputs) andB(k), we obtain a discrete, LTV state
space equation for̃a(k + 1). For convenience, we refer
ã(k + 1) in the following discussion as the state variables
x(k + 1).

The state space equation is:

x(k + 1) = A(k)x(k) + B(k)u(k)
y(k + 1) = Cx(k)

The designed controller for this system is an LQR with
a reference signal. The modified classic LQR objective
functions to be minimized then reads:

J(xo, u) =
Ns−1∑

k=0

[
(r(k)− x(k))T Q(r(k)− x(k))

]

+ uT (k)Ru(k)
+ x(Ne)T E [r(Ne)− x(Ne)] (29)



The optimal control inputu∗ has to be found such that
J (x0, u∗) ≤ J (x0, u)∀u ∈ U . Such input, is found to be
[3]

u∗ = −F (k)x(k)−Gv(k + 1) (30)

where

F (k) =
(
R + B(k)T P (k + 1)B(k)

)−1
BT (k)P (k + 1)A(k)

G(k) =
(
R + BT (k)P (k + 1)B(k)

)−1
BT (k)

where P (k + 1) is the solution of symmetric Riccati
equation.

The steady state closed loop response with this LQR
controller of prediction horizon equals 100 time steps can be
seen in Figure 6. The deviation from the desired temperature
is still reasonable, considering that the model used as the
reference for the controller is based on 200 data points only.
This shows the capability of MPE-based reduced model,
which is computed very fast, to control a full order model
with reasonable deviation.
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Fig. 6. Closed Loop Response

VI. CONCLUSION AND OUTLOOK

We have proposed a methodology to modify classic POD
procedure which enables fast prediction of the states of
the original model. With Missing Point Estimation (MPE),
we are able to do fast prediction with limited available
data. This is advantageous for control design, as well as
other possible needs such as fault detection. This technique
can also be used as a means to estimate variables which
cannot be measured or missing from experiments. There
are many areas still challenging to be explored, such as the
suitable input choices for wide-operating range coverage,
stability issues, and more advanced optimisation techniques
to choose the number of pre-selected states.
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