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Row by Row Structure Simplification

A. Yousefi B. Lohmann M. Buttelmann

_ Abstract— The system matrices optimization order reduc- Find X such that it minimizes|AX — B|| and fulfills
tion method calculates models of lower order but of high com-  the equality CX = D.
plexity. Secondary conditions can be formulated to calculate where A’is an m-by-n matrix 2 < n) andCX = D

reduced systems with low complexity. One of the methods to defines a linear equality constraint. In [5], [3] some method
find these 'secondary conditions is exploiting genetic algorithm ; Ar equality cc y !

in order to perform a global search within the search space and OF_Solving this og)tlmlz_atlon problems are(f‘r%)osed and
in advanced methods tabu search algorithm is used to perform used in [8], [7], [6] to find_the matrice® an of the .

a local search within the region found by the genetic algorithm.  reduced order'model (2). The ability to solve optimization
In this paper another solution is proposed to simplify the —problems with constraints can be used to combine some
complexity of the reduced order system and to reduce the additional features to sdystem matrices optimization metho
computation effort. for order reduction and structure simplification. In [8]hi

l. INTRODUCTION basic idea is used for improving the steady state perfor-

. ance, and in [1], [2] this idea Is exploited for structure
Most of the models based on physical phenomena ha%%Frl o ; i e
simple structures and consist of sparse matrices, but a plification by mtro&ucmg new secondary conditions.

applying the order reduction methods the reduced order sys- L . . T
tem usually doesn’t preserve the original simple stmctqﬁg. Application of secondary conditions in structure simpli
In this pager we deal with the system matrices optimizatioHcation

method [3], [7], which is exploited for a restricted type of As it is mentioned in the previous section, in [8], [7]
nonlinear systems with following representation: it is shown that it is pé)ss'lblgl to florc% any element in
cin system matrices to any desirable value by expressing some
S: { Xg; = éxgg + Bu(t) + Fg(x(t), u(t)) (1) secondary constraints Yn the optimization problem. In I] t
yir) =Lx complexity constraints on the reduced model is formulated

where g(x(t), u(t)) comprises the nonlinear part of theand expressed by secondary conditions as follow:
differential equations (for other famous methods of non- T T

linear order reduction refer to [4], [12], [11]). Starting ke Ehg —lg =0", kwWhw-lw=0" (3
from (1) the task of order reduction in system matrices . . . .
optimization method is to find a system of lower ordeWith prescribed vectork k andh. Conditions of this type

7 which delivers an approximation of the dominant staté&an be integrated into the optimization procedure in order
variables. These dominant state variables are chosen Iy force some elements in system matrices deliberately
the designer and are combined in the vectar, which t0 zero. For example the choicehg = [1,0,...,0]

is related to the original vector x byxq, = Rx. Based kg = [0,1,...,0] andlg :>]£0] forces the first element
on the given system (1) and the dominant state variableis, the second row of matri¥ to zero. For solving this
the system maitrices optimization method calculates optimeype of secondary constraints vectorization and Kronecker

matricesE = [A, B, F] and W such that they optimally fit Production is needed that results in very big matrices that
the snapshots of the dominant state Variables of the otigin@stricts its applicability to large scale systems, for enor
system in the sense of Euclidian norm [8], [7]. By assumingetails refer to [6].

% as the approximation atgo, then the reduced system is_After applying the system matrices optimization method,
set up as follow: usually the system matrices of the reduced order system

alre full of nonzero I(?Ie_l[rllentshand usually _sorg:e of the
%(t) = A%(t) + Bu(t) + Fg(W%, u elements are so small. Thus the conjecture is the question
Sreduced : { ygtg _ éigtg + Bult) + Pe( ) (@) that "Are they really valid numbers or they are just results
of some errors or round off in numerical computations?”.
Accordingly, the vectorg of the nonlinearities is taken The authenticity of this guess can be checked in two ways,
over from the ongm_al system (1) into the reduced ordefirst by replacing some of the small numbers by zero and
system and no additional nonlinearities are introduced. sheck the performance of the resulted system, second by
disadvantage of this method is the fact that typically alforcing the related elements to zero by solving the original
elements .of the matriceB and W ahe non-zero. So it'is optimization problem with appropriate constraints. It is
more desirable to not only reduce the order of the originafvial that the second way is more rational and yields to
system, but also keep the reduced order system as simplgtter results, but the problem is that often there are a
as possible. Our main goal in this paper is to simplifjarge number of different choices to car[jy out this task.
the reduced order nonlinear system in order to increasthe number of different options is related directly to the
the sparsity (more number of zeros) of SKStem matricesize and complexity of the original system. For instance
For structure simplification also some methods have beén our example ghydropneumatm vehicle suspension) there
developed that we review them in Section 2. In Section 3 Weye 299 ~, 6 x 1029”different ways to replace the elements
present a new simple method that enormously decreases Hifmatrix E with zero. In fact if is not usually possible to
size of search space for structure simplification. In Sectiocheck every single option independently and find the best
4 we show the results of apﬁlylng the new method ando|ytion, therefore some methods for pioneered searching
compare them to the old methods and Section 5 contaidgch as genetic algorithm or tabu search is demanded. In

concluding remarks. the succeeding subsections we elaborate these methods and
Il. METHODS OFSTRUCTURE SIMPLIFICATION existing techniques for structure simplification.

) . ) .o .. tion, suitable choices df k andh are needed as candidates

The general linear equality constrained minimizatiofior the optimal simplified reduced order system. In [1], [2]
problem can be written as folldw the genetic algorithm is used to search between different
options. In this method each option is presented in form of

1The notation||A || in this paper is the square of the Euclidian (Frobe-a bit string (so-called an individual) which is a row vector
nius) norm of matrix A and is defined 88 diag(ATA) that only consists of ones and zeros. In an individual ones
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show the places, that zeros should be inserted in matricesboptimal in the large search space by Pene_tic algorithm
E or W. For instance suppose a 2 by 3 matkxas follow: then fr|1ndlmg _tkp]e best solution in this local region by tabu
search algorithm.

B ( 2x 1077 2 107 )
5 6 x 10 -8 Ill. ROwW BY ROW METHOD

The constraint for the genetic algorithm that forces theghr  In this section we Brove that the structure simplifica-
elements:; 1, e; 3 andesy o Of matrix £ to zero is presented tion problem can be broken into small independent sub-
by the following row vectorg™: problems. This idea will reduce the search space in size such
that for systems which have less than twenty dominant state
g"=] 10 1 010 ] variables, it is not necessary to use search engines like the
— — genetic algorithm or tabu search and the optimal answer

Is¢ row of £ 2,4 row of £ can be evaluated with less computation effort. Assume

Consequently every row vector that has the length six anyo original system for typical inputs which respectively

contains only ones and zeros corresponds to a simplifi ow the n ical val fd t stat iablest thei

matrix £. The problem in here is that how many zero W e aumernica’ vajues of gominant state varaniest Liel

and where they should be inserted. In [1], [Zé the r]umberenvatlves, inputs and nonlinear part as it is shown in (5).
S

and the positions of zeros in the matrice and W are
computeo[I) by the genetic algorithm and the non-zero ele- Xd° = [Xao(t1) -+ Xao(tn)l, ® = [u(tr) - u(ty)]

ments are afterwards computed by the reduction method and Xdo = [Xdo(t1) - Xao(tn)], T' = [g(t1) - - - g(tn)] ©)
the performance measurement (so-calfidess function i . .
is calculated b){ simulation of each reduced model with fn_the following theorem we show that the original opti-
different tyPica inputs u(t) and by comparison with themization problem can be splitted into smaller optimization
behavior of the original system (1). This task is carriedroblems. _ L

out by evaluating the area between the time curve of eachTheorem 1:In the system matrices optimization method
dominant state variable;(¢) in the original system and the solving the following optimization problem:

reduced order system, which is an indicator for the quality

gat matriceSxdo, Xdo , ¥ and I' are the snapshots of

of order reduction. The fitness functidn is shown in (4). min| fao—[4 B F| X\ﬁo H ©6)
N, E Xdo —_—— T
n (i) — wi X(8))2dt E e
F = Z 0 — k- (no. of zero element}  (4)
s N ) is equivalent to solving: independent optimization prob-
| #® cModel, lems as follow:
L ~ ~ ~ Xdo
Approximation error m_irn H )-(EOi _ [A1 Bi Fz] [ \%{ ] ||’ i = 1’ 2’ . ’7:[[
wherew; is thei;, row of W, ¢y is the simulation time i 7z
for the snapshots of thg,, typical input. Optionally, the & M

model ?omplexity of the rﬁducedbsyst?m is alslo considered @)

in thjs, fithess function. The number of zerq-elements in . . I )

ano[1 W {mu?nprled with a weighting factor 58 5 sugtractedls"here X3o, is the snapshots of derivative of thig, state
frow Ithe value ?f the model alﬁ)péoélmatlopl, so that systemgriable andd;, B; and F; are theiy, row of the reduced

with less complexity are ranked better than systems wi atricad B E ra i

the same ::Hoproxmatlpn quality and higher complexity. | (radg\r/g us;teerg matrices, Band I respectively, that should
this method the starting population is selected randomily gther words Theorem1 indicates that the reduced order
and it is also mentioned that sometimes some pre-specifisgstem matrices can %e evaluate compﬁetefy using (6) or
structures from the engineer’s know-how, can be formulate@w by row using (7) and the results are exactly the same.

as an individual that can be added to the starting population eT

The tournament selection, two point cross over and normal opt1 _

mutation are used as genetic operators [9% and the geneticProof: Suppose that the matriKopt = : is
etter and better )

alg_orjthm produces new generations with | and T

individuals as long as the breaking condition which is the . . Coptn

number of produced generations is not fulfilled. the optimal solution of least square problem (%) anght,
%)_Tabu search:Tabu search is a kind of iterative searchis the optimal solution of (7). Our assumption permits us
nd i

ti le to eliminate | minima and to search arede write:
eyoncfaal%caﬁ mlnlmum?18f.allhere ore, It has the a%lllty to

find the global minimum of a multi-modal search space. In min || Yao — EM]|
2] this search method also used for structure simplificatio =

|| Xdo — E0pt MH

y calculating every solution in the neighborhood of the el
current solution and selecting the best one for the next _ S . M
iteration step. This means that the tabu search algorithm = || Xde :
selects the way that produces the most improvement or the elotn
least deterioration. To avoid cycling problems if a current T T M
visited solution is selected again, a tabu list is used. The Xdoy  Copty
advantage of tabu search is the ability to find better saistio = :
in local regions nearby the current solution, but because of T oT M
the local search characteristic, to perform a global sefarch Xdon ~ Coptn
complex problems with many solutions in the neighborhood LA T
of the current solution, the calculation time is very high. = > |l *do; — €opt; M]|
Therefore in [2] it is recommended to solve the introduced i=1

problem of structure simplification in two steps by using the n
strong points of both search algorithms. First by finding the = Z Ji, i=1,---,7 (8)
region containing the global optimum or at least a very good pt
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and

) ol %) Agl)
T - frg) L
52+ 1Dags + o]

. . T T « T ~T
mqlﬂn ” Xdo; — €i MH = H Xdo; — €opt; M”
= jia Z:17 7ﬁ (9) [
. o .. RN s
For proving Theoreml it is sufficient to prove that: i i
T ~T T . ~
€opt; = Copt; and Ji=J;, i=1,---,0 L | o *
~ 3
Now we suppose thaf;  J; and we show that it leads to ~ -
contradiction. Thus we have two cases as follows: — - i —
If we supposeJ; > J; then we build the matrix S } nd T
e;rph -
. +
S ~T: 1 ‘o
Eopt = €opt; |, then -
: _ *D 1 = ne X
egpt * "y —sm *j)
N ~ B
| Xdo — BoptM| = Ji+--+Jit+-+Jn

n Fig. 1. block diagram of hydropneumatic vehicle suspensiodeho
< > T =10
i=1

that it contradicts (8).

Another case is that we suppode< J; then similarly: zero. The second method has less complexity and needs
T T _—_ N less computation effort in comparison with one introduced
| Xdo; — €opt; M| = Ji < Ji, i=1,--- 7 in [1]. For instance for a reduced system of order twenty, in

; ; the last method there are approximatgf® ~ 3, 27x 1050
that it contradicts (9), therefore different ways for simplification (forcing zeros in system
J=J i=1--7 (10) matrices), but with our new method for each row there are
_ LT T _ ’ approximately2?® ~ 33,5 x 10 different ways, so that all
According to the fact that the answer of (59) is uniquedifrerent oBUons can be examined (by normal computers

(providedM is full rank) and we have proved that: in accespta le time. The same optimization scheme as in (7)
o T v T and (13) can be used to find the matRX.
min | Xao, — e M| = || Xdo; — Eopt; M| For the subsequent considerations it is sufficient to
. summarize that it the complexity constrainisandh,
= Ji=J; the original model 1%_, and the matrix R are given, the
= 155 —eT M|, i=1,---,7 reduction method delivers optimal matricd and W
do; ™ Fopt; WD T fulfilling the constraints and approximating the behaviér o
therefore the original model.
eop':i:é ¢T, =17

Op‘

which complete the proof of Theorem@ E. D.
With respect to Theorem1 the original optimization prob-

lem can be replaced by smaller optimization problems for V. EXAMPLE
t(afllc)h row and the optimal solution can be evaluated using
' €apt; = Xao, M (MM™T)™* (11)  All above algorithms were tested on the example shown

. o . in Fig (1), which is described in more detail in [6], [7]. It is
and the secondary condition can be simplified by changirgn active hydropneumatic vehicle suspension for passenger
tfhe formulatkgn for each row of matricds andW as itis  cars. The model of the original system is of order 10. The
shown in (12). system matrices are shown below:

efhei —loi =07, wihy;—lyvi=0" (12)

s

wheree{ is theiy, row of matrix E andw' is thei,, row —aer " fs 8 6 68 3 6 6
of matrix W. The optimization problem ﬁb) with secondary 12,75 0 1618 0 10 00 0 0 0
E:gcipdltlons of type (12) results in optimal solution (13)},[6" * = 6 S S B R R RNV 8
. 0 0 0 0 0 0 0 0 —162 1,0
0 9 0 0 0 0 0 0 —8100 0
eg‘pti = kgoiMT(MMT)71 + (le,i - kg‘oiMT(MMT)ilhe,i)' gooo § —o‘%143 —0,2)148 —0,%148 § §
T T\—1 -1, T T\—1 0 0 —0,000518 —0, 000518 —0,000518 0 0
'(hevi(MM ) he‘ri) heﬂi(MM ) B=| § 0 F= 0,667 0, 867 0,667 0 0
13) 5 8 6 0 6 s rhas
0 0 0 0 0 0 0
0 8100 0 0 0 0 0

The advantages of this task are increment in computation
accuracy and applicability of this method to larger systems
Another advantage of this replacement is its application in

implificati i i here are seven ominant stat varjables
structure simplification. The same result as in (3) will b . s e 7, 2 ARd 2o S0 A reduced mo eII o%

achieved just by choosirge > = [1,0,...,0]", andles =  §rger’7 can’be calculated. The, order reduction method
[0], hence the corresponding element of malbbecomes without structure simp |ﬁcat|'on calculates t%e ‘t:hree ayst
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matrices as follow:
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The approximation of the original

complexity of the reduced model is very high because eac
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| |
(SN RE-Y
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W N =R

model is good, but the

of the 98 elements of these matrices is non-zero. )
In [2] the following results are found by using the genetic
algorithm and it is shown that if the tabu search algorithm

be used to search the local region found by the genetié]
algorithm, a solution with 81 zero elements can also be
achieved.
(3]
0 1,0 0 0 0 0 0
—4127,5 0 127,5 0 0 0 0
X 0 0 0 1,0 0 0 0 ] [4]
A = 0 0 0 0 —16,8 0 0
0 0 0 0 0 1,2 0
0 0 0 0 0 0 0
0 0 0 0 0 0 —31,6
0 0 0 0 0 0 0 [5]
4000 0 —0,015 —0,015 —0,015 0 0
~ o] 0 ~ 0 0 0 0 0
B= 0 0 ] B = { 0,0024  0,0013  0,0015 0 0 [6]
0 Q 0 0 0 0 0
0 0 0 0 0 17,5 71,4
0 33,5 0 0 0 0 0
(7]

Simulations of the ori%inal system and the reduced system
i

proves that this simpl

gi]orithms,.is acceptable. To find the simple structure system
t

e genetic alﬂorlthm needs to calculate approximatel¥)600
e global search and the tabu search algorith

solutions for t

ication, found by the two search al-[8]

(9]

calculates approximately 500 solutions for the local seard10]
within a search space containifdf ~ 6.33 x 102?possible

solutions.

By using the row by row method the search area shrin

to 7 x 214 ~ 114,6 x 10% which is 18,1 x 10~25 times

smaller than the original search space, and the result is
lobally optimal according to the defined cost (fithess)

unction as follow:
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V. CONCLUDING REMARKS

The primary method of system matrices optimization

I

o

coocoo Hocoooco

]

o
-
-

for order reduction of nonlinear systems and its variants
for structure simplification may not be efficient for big
nonlinear systems. Because the earliest method results in

full matrices, which is not suitable for big systems and

other variants that use e.g. the genetic algorithm or the tab
search need much computation effort and the results are

not optimal for sure. In this paper we introduced the row

by row method which contracts the search area and opens
a new field to optimize the results. There are also a number
of questions and open problems which would be interesting

for further investigation, for instance:

« What are suitable cost functions instead of (4);
. gB |(r:1tell|gent method for search in the reduced search

ace,;

« numerical scaling the state variables and outputs in
order to improve the approximation results.

[11]
K2,

.10—13 7,2.10" 14 2,510 14
.10™9 —7,9.10"11 1,0 - 1011
.10713 6,910 14 1,910 14
100 8,8 1072 —8,6-1072
.10~ 14 1,2 - 109 —2,3.10715
.10712 3,5-1013 _78.10"14
.10t —1,4- 10! —1,9 - 10t
210717 _g4.10714  _35.10714
-1072 —1,3.-10" 1 _g4.10712
c10—17  _73.10714 _51.10714
.1073 3,0-1072 2,0.10"1
.10—18 6,7 - 10—15 2,010 14
L1017 1,8 - 10t —7,1- 10!
.10—4 3,2 - 109 —6,9 - 101
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