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Abstract— The system matrices optimization order reduc-
tion method calculates models of lower order but of high com-
plexity. Secondary conditions can be formulated to calculate
reduced systems with low complexity. One of the methods to
find these secondary conditions is exploiting genetic algorithm
in order to perform a global search within the search space and
in advanced methods tabu search algorithm is used to perform
a local search within the region found by the genetic algorithm.
In this paper another solution is proposed to simplify the
complexity of the reduced order system and to reduce the
computation effort.

I. I NTRODUCTION
Most of the models based on physical phenomena have

simple structures and consist of sparse matrices, but after
applying the order reduction methods the reduced order sys-
tem usually doesn’t preserve the original simple structure.
In this paper we deal with the system matrices optimization
method [8], [7], which is exploited for a restricted type of
nonlinear systems with following representation:

S :

{

ẋ(t) = Ax(t) + Bu(t) + Fg(x(t),u(t))
y(t) = Cx(t) (1)

where g(x(t),u(t)) comprises the nonlinear part of the
differential equations (for other famous methods of non-
linear order reduction refer to [4], [12], [11]). Starting
from (1) the task of order reduction in system matrices
optimization method is to find a system of lower order
ñ which delivers an approximation of the dominant state
variables. These dominant state variables are chosen by
the designer and are combined in the vectorxdo which
is related to the original vector x byxdo = Rx. Based
on the given system (1) and the dominant state variables,
the system matrices optimization method calculates optimal
matricesE = [Ã, B̃, F̃] andW such that they optimally fit
the snapshots of the dominant state variables of the original
system in the sense of Euclidian norm [8], [7]. By assuming
x̃ as the approximation ofxdo, then the reduced system is
set up as follow:

Sreduced :

{
˙̃x(t) = Ãx̃(t) + B̃u(t) + F̃g(Wx̃,u)
y(t) = C̃x̃(t)

(2)

Accordingly, the vectorg of the nonlinearities is taken
over from the original system (1) into the reduced order
system and no additional nonlinearities are introduced. A
disadvantage of this method is the fact that typically all
elements of the matricesE and W are non-zero. So it is
more desirable to not only reduce the order of the original
system, but also keep the reduced order system as simple
as possible. Our main goal in this paper is to simplify
the reduced order nonlinear system in order to increase
the sparsity (more number of zeros) of system matrices.
For structure simplification also some methods have been
developed that we review them in Section 2. In Section 3 we
present a new simple method that enormously decreases the
size of search space for structure simplification. In Section
4 we show the results of applying the new method and
compare them to the old methods and Section 5 contains
concluding remarks.

II. M ETHODS OFSTRUCTURESIMPLIFICATION
A. Secondary conditions in optimization problems

The general linear equality constrained minimization
problem can be written as follow1:

1The notation‖A‖ in this paper is the square of the Euclidian (Frobe-
nius) norm of matrix A and is defined as

∑
diag(AT

A)

Find X such that it minimizes‖AX − B‖ and fulfills
the equality CX = D.

whereA is an m-by-n matrix (m ≤ n) and CX = D
defines a linear equality constraint. In [5], [3] some methods
for solving this optimization problems are proposed and
used in [8], [7], [6] to find the matricesE and W of the
reduced order model (2). The ability to solve optimization
problems with constraints can be used to combine some
additional features to system matrices optimization method
for order reduction and structure simplification. In [8] this
basic idea is used for improving the steady state perfor-
mance, and in [1], [2] this idea is exploited for structure
simplification by introducing new secondary conditions.

B. Application of secondary conditions in structure simpli-
fication

As it is mentioned in the previous section, in [8], [7]
it is shown that it is possible to force any element in
system matrices to any desirable value by expressing some
secondary constraints in the optimization problem. In [1] the
complexity constraints on the reduced model is formulated
and expressed by secondary conditions as follow:

kE EhE − lE = 0
T

, kW WhW − lW = 0
T (3)

with prescribed vectorsl, k andh. Conditions of this type
can be integrated into the optimization procedure in order
to force some elements in system matrices deliberately
to zero. For example the choicehE = [1, 0, . . . , 0]T

kE = [0, 1, . . . , 0] and lE = [0] forces the first element
in the second row of matrixE to zero. For solving this
type of secondary constraints vectorization and Kronecker
production is needed that results in very big matrices that
restricts its applicability to large scale systems, for more
details refer to [6].

After applying the system matrices optimization method,
usually the system matrices of the reduced order system
are full of nonzero elements and usually some of the
elements are so small. Thus the conjecture is the question
that ”Are they really valid numbers or they are just results
of some errors or round off in numerical computations?”.
The authenticity of this guess can be checked in two ways,
first by replacing some of the small numbers by zero and
check the performance of the resulted system, second by
forcing the related elements to zero by solving the original
optimization problem with appropriate constraints. It is
trivial that the second way is more rational and yields to
better results, but the problem is that often there are a
large number of different choices to carry out this task.
The number of different options is related directly to the
size and complexity of the original system. For instance
in our example (hydropneumatic vehicle suspension) there
are 299 ≈ 6 × 1029 different ways to replace the elements
of matrix E with zero. In fact it is not usually possible to
check every single option independently and find the best
solution, therefore some methods for pioneered searching
such as genetic algorithm or tabu search is demanded. In
the succeeding subsections we elaborate these methods and
existing techniques for structure simplification.

1) Genetic algorithm:With respect to the previous sec-
tion, suitable choices ofl, k andh are needed as candidates
for the optimal simplified reduced order system. In [1], [2]
the genetic algorithm is used to search between different
options. In this method each option is presented in form of
a bit string (so-called an individual) which is a row vector
that only consists of ones and zeros. In an individual ones



show the places, that zeros should be inserted in matrices
E or W. For instance suppose a 2 by 3 matrixE as follow:

E =

(

2 × 10−17 2 10−16

5 6 × 10−17 −8

)

The constraint for the genetic algorithm that forces the three
elementse1,1, e1,3 ande2,2 of matrix E to zero is presented
by the following row vectorgT:

g
T = [ 1 0 1

︸ ︷︷ ︸

1st row of E

0 1 0
︸ ︷︷ ︸

2nd row of E

]

Consequently every row vector that has the length six and
contains only ones and zeros corresponds to a simplified
matrix E. The problem in here is that how many zeros
and where they should be inserted. In [1], [2] the number
and the positions of zeros in the matrices E and W are
computed by the genetic algorithm and the non-zero ele-
ments are afterwards computed by the reduction method and
the performance measurement (so-calledfitness function)
is calculated by simulation of each reduced model with P
different typical inputs u(t) and by comparison with the
behavior of the original system (1). This task is carried
out by evaluating the area between the time curve of each
dominant state variablexi(t) in the original system and the
reduced order system, which is an indicator for the quality
of order reduction. The fitness functionF is shown in (4).

F =

P∑

j=1

n∑

i=1

tNj∫

0

(xi(t) − wi x̃(t))2dt

tNj∫

0

x2

i (t)

︸ ︷︷ ︸

Approximation error

− k · (no. of zero elements)
︸ ︷︷ ︸

Model-
complexity

(4)

wherewi is the ith row of W, tNj
is the simulation time

for the snapshots of thejth typical input. Optionally, the
model complexity of the reduced system is also considered
in this fitness function. The number of zero-elements in E
and W (multiplied with a weighting factor k) is subtracted
from the value of the model approximation, so that systems
with less complexity are ranked better than systems with
the same approximation quality and higher complexity. In
this method the starting population is selected randomly
and it is also mentioned that sometimes some pre-specified
structures from the engineer’s know-how, can be formulated
as an individual that can be added to the starting population.
The tournament selection, two point cross over and normal
mutation are used as genetic operators [9] and the genetic
algorithm produces new generations with better and better
individuals as long as the breaking condition which is the
number of produced generations is not fulfilled.

2) Tabu search:Tabu search is a kind of iterative search
and it is able to eliminate local minima and to search areas
beyond a local minimum [10]. Therefore, it has the ability to
find the global minimum of a multi-modal search space. In
[2] this search method also used for structure simplification
by calculating every solution in the neighborhood of the
current solution and selecting the best one for the next
iteration step. This means that the tabu search algorithm
selects the way that produces the most improvement or the
least deterioration. To avoid cycling problems if a current
visited solution is selected again, a tabu list is used. The
advantage of tabu search is the ability to find better solutions
in local regions nearby the current solution, but because of
the local search characteristic, to perform a global searchfor
complex problems with many solutions in the neighborhood
of the current solution, the calculation time is very high.
Therefore in [2] it is recommended to solve the introduced
problem of structure simplification in two steps by using the
strong points of both search algorithms. First by finding the
region containing the global optimum or at least a very good

suboptimal in the large search space by genetic algorithm
then finding the best solution in this local region by tabu
search algorithm.

III. ROW BY ROW METHOD

In this section we prove that the structure simplifica-
tion problem can be broken into small independent sub-
problems. This idea will reduce the search space in size such
that for systems which have less than twenty dominant state
variables, it is not necessary to use search engines like the
genetic algorithm or tabu search and the optimal answer
can be evaluated with less computation effort. Assume
that matricesχdo, χ̇do ,Ψ and Γ are the snapshots of
the original system for typical inputs which respectively
show the numerical values of dominant state variables, their
derivatives, inputs and nonlinear part as it is shown in (5).

χdo = [xdo(t1) · · ·xdo(tN )], Ψ = [u(t1) · · ·u(tN )]

χ̇do = [ẋdo(t1) · · · ẋdo(tN )], Γ = [g(t1) · · ·g(tN )] (5)

In the following theorem we show that the original opti-
mization problem can be splitted into smaller optimization
problems.

Theorem 1:In the system matrices optimization method
solving the following optimization problem:

min
E

‖ χ̇do − [Ã B̃ F̃ ]
︸ ︷︷ ︸

E

[ χdo
Ψ
Γ

]

︸ ︷︷ ︸

M

‖ (6)

is equivalent to solving̃n independent optimization prob-
lems as follow:

min
eT

i

‖ ẋT
doi

− [Ãi B̃i F̃i]
︸ ︷︷ ︸

eT

i

[ χdo
Ψ
Γ

]

︸ ︷︷ ︸

M

‖, i = 1, 2, . . . , ñ

(7)

where ẋT
doi

is the snapshots of derivative of theith state
variable andÃi, B̃i and F̃i are theith row of the reduced
order system matrices̃A, B̃ and F̃ respectively, that should
be evaluated.
In other words Theorem1 indicates that the reduced order
system matrices can be evaluated completely using (6) or
row by row using (7) and the results are exactly the same.

Proof: Suppose that the matrixEopt =






eT
opt1
...

eT
optn




 is

the optimal solution of least square problem (6) andẽopti
is the optimal solution of (7). Our assumption permits us
to write:

min
E

‖ χ̇do − EM‖ = ‖ χ̇do − Eopt M‖

=

∥
∥
∥
∥
∥
∥
∥

χ̇do −






eT
opt1

...
eT
optn




 M

∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥






ẋT
do1

− eT
opt1

M
...

ẋT
don

− eT
optnM






∥
∥
∥
∥
∥
∥
∥

=
n∑

i=1

‖ ẋ
T
doi

− e
T
opti

M‖

=
n∑

i=1

Ji, i = 1, · · · , ñ (8)



and

min
eT

i

‖ ẋ
T
doi

− e
T
i M‖ = ‖ ẋ

T
doi

− ẽ
T
opti

M‖

= J̃i, i = 1, · · · , ñ (9)

For proving Theorem1 it is sufficient to prove that:

e
T
opti

= ẽ
T
opti

and Ji = J̃i, i = 1, · · · , ñ

Now we suppose thatJi 6= J̃i and we show that it leads to
contradiction. Thus we have two cases as follows:
If we suppose Ji > J̃i then we build the matrix

Êopt =










eT
opt1

...
ẽT
opti

...
eT
optn










, then

‖ χ̇do − ÊoptM‖ = J1 + · · · + J̃i + · · · + Jn

<

n∑

i=1

Ji, i = 1, · · · , ñ

that it contradicts (8).
Another case is that we supposeJi < J̃i then similarly:

‖ ẋ
T
doi

− e
T
opti

M‖ = Ji < J̃i, i = 1, · · · , ñ

that it contradicts (9), therefore

Ji = J̃i, i = 1, · · · , ñ (10)

According to the fact that the answer of (9) is unique
(providedM is full rank) and we have proved that:

min
eT

i

‖ ẋ
T
doi

− e
T
i M‖ = ‖ ẋ

T
doi

− ẽ
T
opti

M‖

= J̃i = Ji

= ‖ ẋ
T
doi

− e
T
opti

M‖, i = 1, · · · , ñ

therefore
e
T
opti

= ẽoptT
i

, i = 1, · · · , ñ

which complete the proof of Theorem1,Q.E.D.
With respect to Theorem1 the original optimization prob-

lem can be replaced by smaller optimization problems for
each row and the optimal solution can be evaluated using
(11).

e
T
opti

= ẋ
T
doi

M
T(MM

T)−1 (11)

and the secondary condition can be simplified by changing
the formulation for each row of matricesE andW as it is
shown in (12).

e
T
i he,i − le,i = 0

T
, w

T
i hw,i − lw,i = 0

T (12)

whereeT
i is theith row of matrixE andwT

i is theith row
of matrix W. The optimization problem (9) with secondary
conditions of type (12) results in optimal solution (13), [6],
[8]:

e
T
opti

= ẋ
T
doi

M
T(MM

T)−1 + (le,i − ẋ
T
doi

M
T(MM

T)−1
he,i)·

·(hT
e,i(MM

T)−1
he,i)

−1
h

T
e,i(MM

T)−1

(13)

The advantages of this task are increment in computation
accuracy and applicability of this method to larger systems.
Another advantage of this replacement is its application in
structure simplification. The same result as in (3) will be
achieved just by choosinghe,2 = [1, 0, . . . , 0]T , and le,2 =
[0], hence the corresponding element of matrixE becomes

Fig. 1. block diagram of hydropneumatic vehicle suspension model

zero. The second method has less complexity and needs
less computation effort in comparison with one introduced
in [1]. For instance for a reduced system of order twenty, in
the last method there are approximately2500 ≈ 3, 27×10150

different ways for simplification (forcing zeros in system
matrices), but with our new method for each row there are
approximately225 ≈ 33, 5× 106 different ways, so that all
different options can be examined (by normal computers)
in acceptable time. The same optimization scheme as in (7)
and (13) can be used to find the matrixW.

For the subsequent considerations it is sufficient to
summarize that if the complexity constraintsl andh,
the original model (1), and the matrix R are given, the
reduction method delivers optimal matricesE and W
fulfilling the constraints and approximating the behavior of
the original model.

IV. EXAMPLE

All above algorithms were tested on the example shown
in Fig (1), which is described in more detail in [6], [7]. It is
an active hydropneumatic vehicle suspension for passenger
cars. The model of the original system is of order 10. The
system matrices are shown below:

A =












0 1, 0 0 0 0 0 0 0 0 0
−4127 0 127, 5 0 0 0 0 0 0 0

0 0 0 1, 0 0 0 0 0 0 0
12, 75 0 −1613 0 1600 0 0 0 0 0

0 0 0 0 0 1, 0 0 0 0 0
0 0 533333 0 −533333 0 0 0 0 0
0 0 0 0 0 0 0 1, 244 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −162 1, 0
0 0 0 0 0 0 0 0 −8100 0












B =












0 0
4000 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 8100












, F =












0 0 0 0 0
−0, 0148 −0, 0148 −0, 0148 0 0

0 0 0 0 0
−0, 000518 −0, 000518 −0, 000518 0 0

0 0 0 0 0
0, 667 0, 667 0, 667 0 0

0 0 0 0 0
0 0 0 17, 5 −71, 43
0 0 0 0 0
0 0 0 0 0












There are seven dominant state variables
(x1, x2, x3, x4, x7, x8 and x9), so a reduced model of
order 7 can be calculated. The order reduction method
without structure simplification calculates the three system



matrices as follow:

Ã =













5,9 · 10
−13

1,0 · 10
0

−3,8 · 10
−13

5,2 · 10
−14

6,7 · 10
−13

7,2 · 10
−14

2,5 · 10
−14

−4,1 · 10
3

−2,4 · 10
−11

1,3 · 10
2

1,2 · 10
−11

−1,4 · 10
−9

−7,9 · 10
−11

1,0 · 10
−11

3,1 · 10
−13

−1,5 · 10
−13

−8,5 · 10
−14

1,0 · 10
0

3,2 · 10
−13

6,9 · 10
−14

1,9 · 10
−14

1,3 · 10
1

7,6 · 10
−3

−1,1 · 10
1

−3,6 · 10
−2

−1,3 · 10
0

8,8 · 10
−2

−8,6 · 10
−2

−4,9 · 10
−14

7,1 · 10
−15

2,9 · 10
−14

5,0 · 10
−15

4,9 · 10
−14

1,2 · 10
0

−2,3 · 10
−15

−2,3 · 10
−12

−1,1 · 10
−14

1,9 · 10
−12

7,3 · 10
−14

−2,5 · 10
−12

3,5 · 10
−13

−7,8 · 10
−14

−1,4 · 10
1

1,2 · 10
0

1,5 · 10
1

−3,0 · 10
0

−2,1 · 10
1

−1,4 · 10
1

−1,9 · 10
1













B̃ =













−2,3 · 10
−14

4,7 · 10
−15

4,0 · 10
3

−4,7 · 10
−13

6,1 · 10
−15

4,7 · 10
−15

−1,3 · 10
0

1,8 · 10
−2

9,7 · 10
−15

9,4 · 10
−15

3,2 · 10
−13

−3,5 · 10
−4

8,0 · 10
−1

2,8 · 10
1













,F̃ =













5,0 · 10
−17

4,1 · 10
−16

4,2 · 10
−17

−8,4 · 10
−14

−3,5 · 10
−14

−1,5 · 10
−2

−1,5 · 10
−2

−1,5 · 10
−2

−1,3 · 10
−11

−8,4 · 10
−12

4,5 · 10
−17

3,6 · 10
−16

4,3 · 10
−17

−7,3 · 10
−14

−5,1 · 10
−14

1,6 · 10
−3

1,4 · 10
−3

1,5 · 10
−3

3,0 · 10
−2

2,0 · 10
−1

2,6 · 10
−18

5,3 · 10
−18

−2,8 · 10
−18

6,7 · 10−15 2,0 · 10
−14

8,8 · 10
−17

−2,5 · 10
−16

1,8 · 10
−17

1,8 · 10
1

−7,1 · 10
1

2,3 · 10
−4

−2,1 · 10
−3

−3,3 · 10
−4

3,2 · 10
0

−6,9 · 10
1













The approximation of the original model is good, but the
complexity of the reduced model is very high because each
of the 98 elements of these matrices is non-zero.

In [2] the following results are found by using the genetic
algorithm and it is shown that if the tabu search algorithm
be used to search the local region found by the genetic
algorithm, a solution with 81 zero elements can also be
achieved.

Ã =








0 1, 0 0 0 0 0 0
−4127, 5 0 127, 5 0 0 0 0

0 0 0 1, 0 0 0 0
0 0 0 0 −16, 8 0 0
0 0 0 0 0 1, 2 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −31, 6








B̃ =








0 0
4000 0

0 0
0 0
0 0
0 0
0 33, 5








, F̃ =








0 0 0 0 0
−0, 015 −0, 015 −0, 015 0 0

0 0 0 0 0
0, 0024 0, 0013 0, 0015 0 0

0 0 0 0 0
0 0 0 17, 5 −71, 4
0 0 0 0 0








Simulations of the original system and the reduced system
proves that this simplification, found by the two search al-
gorithms, is acceptable. To find the simple structure system,
the genetic algorithm needs to calculate approximately 6000
solutions for the global search and the tabu search algorithm
calculates approximately 500 solutions for the local search
within a search space containing299 ≈ 6.33×1029possible
solutions.

By using the row by row method the search area shrinks
to 7 × 214 ≈ 114, 6 × 103 which is 18, 1 × 10−26 times
smaller than the original search space, and the result is
globally optimal according to the defined cost (fitness)
function as follow:

Ã =








0 1, 0 0 0 0 0 0
−4127, 5 0 127, 5 0 0 0 0

0 0 0 1, 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1, 24 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −31, 6








B̃ =








0 0
4000 0

0 0
0 0
0 0
0 0
0 33, 5








, F̃ =








0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0018 0 0.0016 0 0
0 0 0 0 0
0 0 0 17, 5 −71, 4
0 0 0 0 0








V. CONCLUDING REMARKS

The primary method of system matrices optimization
for order reduction of nonlinear systems and its variants
for structure simplification may not be efficient for big
nonlinear systems. Because the earliest method results in
full matrices, which is not suitable for big systems and
other variants that use e.g. the genetic algorithm or the tabu
search need much computation effort and the results are
not optimal for sure. In this paper we introduced the row
by row method which contracts the search area and opens
a new field to optimize the results. There are also a number
of questions and open problems which would be interesting
for further investigation, for instance:

• What are suitable cost functions instead of (4);
• an intelligent method for search in the reduced search

space;
• numerical scaling the state variables and outputs in

order to improve the approximation results.
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