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Abstract— This paper produces all linear state space mod-
els which match a prespecified set of input/output cross-
correlation and output autocorrelation data, when the model
is installed in a computational environment with specified bits
assigned to the fixed-point simulation. These results allow the
design of digital simulations with no error within the specified
set of cross-correlation and autocorrelation data.

I. INTRODUCTION

Unlike model reduction methods based on least squares,
the q-Markov COVariance Equivalent Realization (q-
Markov COVER, also known as QMC) gives a reduced-
order model that matches exactly the first q Markov param-
eters and the first q output covariance parameters [1][2][3].
As the Markov parameters and covariance parameters char-
acterize respectively the transient and steady-state properties
of a linear system, it is reasonable to use a QMC to
approximate the full order system. The QMC is particularly
useful for the model reduction of engineering systems that
have performance requirements stated in terms of steady-
state output covariance, such as antenna pointing, vibration
control in flexible structures and so on. However, a digital
simulation of a QMC would not yield the correct values of
the response data, due to roundoff errors. This paper will
repair this deficiency.

The QMC theory was originally developed for model
reduction[2], while the realization of all QMC from the
input/output data of an unknown system is useful for
identification[3][4]. Using frequency domain techniques,
Mullis and Roberts[5] and Inouye found reduced-order
models using first- and second-order information. Similarly,
the time domain counterpart – the QMC theory – was
developed by Yousuff, et al [2]. Specifically, the QMC
model reduction method can be extended promptly to con-
troller reduction, with the nice property that matching the
first q Markov parameters of the controller will guarantee
matching of the first q Markov parameters of the closed-
loop system[2].

Most controller design (simulation as well) procedures
available in the literature implicitly ignore the fact that the
implementation of digital controller imposes some funda-
mental limitations on the performance of the controller,
and hence on the closed loop performance. Despite the

amazing speed at which computer processing speed and
storage capabilities evolve, some issues like finite precision
effects that are intrinsic to the digital computer architecture
are still relevant for the control engineer. Specifically, for
arithmetic operations involving fixed-point numbers, the
result of a multiplication must be rounded or truncated. This
quantization error generates roundoff noise at the controller
output. In addition, because the result of an addition can
exceed the finite register length, the dynamic range of
the digital controller is always a concern in a fixed-point
implementation.

Despite the importance of these facts, it is unfortunate
that the disciplines that take care of the control design (sys-
tems and control) and its implementation (signal processing)
have been traditionally separated. For example, in the Hub-
ble Space Telescope the controller and the signal processing
were treated as independent steps, yielding a system whose
performance limitation was the achievable control (not the
mirror error that was so publicized). An extension of LQG
theory to yield digital controllers with optimal performance
in the presence of round-off errors[6][7], provided an order
of magnitude improvement in the point capabilities without
increasing the complexity of the controller.

The existing QMC theory ignores the effect of finite
precision computation. When a QMC is implemented in
a digital system with finite wordlength, the covariance
parameters and Markov parameters will be distorted by
the roundoff errors. Williamson and Skelton[8] studied the
optimal q-Markov COVER for finite wordlength implemen-
tation. The free unitary matrix in the q-Markov COVER
was utilized to minimize the effect of roundoff errors.
Rather than minimizing the roundoff errors, in this paper
we generalize the existing QMC theory to accommodate
the finite wordlength effect. The so-called finite wordlength
QMC (FWL-QMC) can match the Markov and Covariance
parameters of the original model as if there are no roundoff
errors. This consideration is indispensable in digital simu-
lations or controller implementations using QMC theory.

The outline of this paper is as follows: first, we give the
QMC existence condition without finite precision consid-
eration, followed by the roundoff noise model and scaling
condition, then we give the existence condition of the FWL-



QMC, then presents the parameterization of all FWL-QMC.
An illustrative example compares the FWL-QMC and the
conventional QMC with the ideal model.

II. THE CONVENTIONAL QMC EXISTENCE CONDITION

Assume the white noise signal u with covariance U = I

is applied to a real dynamic system (linear or nonlinear).
Denote the output signal as y. Assume u ∈ IRnu , y ∈ IRny .
Denote the output autocorrelation parameters by Ri, and the
input/output cross-correlation parameters (normalized by U )
by Hi, i = 0, 1, 2, ..., q − 1.

Ri , lim
N→∞

1

N

N−1
∑

k=0

y(k + i)yT (k). (1)

Hi , lim
N→∞

1

N

N−1
∑

k=0

y(k + i)uT (k). (2)

For a stochastic linear system, the output autocorrelation
parameters Ri and the input/output cross-correlation pa-
rameters Hi coincide with the covariance parameters and
Markov parameters respectively[1].

Define two Toeplitz matrices from parameters (1) and (2)

Rq ,











R0 RT
1 . . . RT

q−1

R1 R0 . . . RT
q−2

...
...

. . .
...

Rq−1 Rq−2 . . . R0











(3)

Hq ,











H0 0 . . . 0
H1 H0 . . . 0

...
...

. . .
...

Hq−1 Hq−2 . . . H0











(4)

And define the block diagonal matrices

Uq , Iq ⊗ U

where Rq ∈ IRnyq×nyq , Hq ∈ IRnyq×nuq, Uq ∈ IRnuq×nuq .
Define D̄q , Rq − HqUqHT

q . D̄q ∈ IRnyq×nyq is referred
to as the data matrix since it contains all the known data.

The conventional QMC theory has answered the follow-
ing question: ”Does there exist an FDLTI model which
can match data {Hi, Ri|i = 0, 1, . . . , q − 1}? ” If so,
we shall call such a state space model q-Markov COVER.
The following theorem gives the existence condition of a
q-Markov COVER for a given set of data {Hi, Ri|i =
0, 1, . . . , q − 1}.

Theorem 1: [1] Suppose an unknown dynamic system
generates the data {Hi, Ri|i = 0, 1, . . . , q − 1} defined
above, where q > 0 is a specified integer. Then the
following statement are equivalent:
(i) There exist a stable FDLTI model which can match data
{Hi, Ri|i = 0, 1, . . . , q − 1}.
(ii) The data matrix has the property, D̄q ≥ 0,

Proof: See [1]

III. THE ROUNDOFF NOISE MODEL AND SCALING

CONDITION

The q-Markov COVER is a linear model in the form as
follows

{

x̄(k + 1) = Ax̄(k) + Bu(k)

ȳ(k) = Cx̄(k) + Du(k)
(5)

where x̄(k) ∈ IRnr . u is assumed to be a zero-mean inde-
pendent white noise sequence with unit variance. Theorem
1 gives the existence condition of a QMC without any
consideration on the realization. In fact, when finite pre-
cision effect is taken into account, signals and coefficients
are corrupted. We shall be concerned exclusively the signal
errors. The computational model is
{

x̂(k + 1) = A(x̂(k) + ex(k)) + B(u(k) + eu(k))

ŷ(k) = C(x̂(k) + ex(k)) + D(u(k) + eu(k)) + ey(k)
(6)

where ex(k) is the quantization error of the state signal,
eu(k) is input error due to a possible A/D conversion and
ey(k) is caused by roundoff at the outputs. It is known
[9] that neither the quantization error of the input eu nor
that of the output ey depends on the realization, while the
effect of the state roundoff error on the output is realiza-
tion dependent. x̂k ∈ IRnr . (6) is the simulation model
of desirable dimension. For the simulation model, define
the output autocorrelation parameters R̂i as in (1), and
input/output cross-correlation parameters Ĥi as in (2), i =
0, 1, 2, ..., q − 1. For a linear system, the parameters R̂i, Ĥi

are known as Markov parameters and covariance parameters
respectively. It is our intention to find (A,B,C,D) such
that up to q Markov and covariance parameters generated
by (6) match those given data (1),(2). q is free to choose.

Ignoring overflow, in this paper, we model the fixed
point computational error ex, eu and ey as zero-mean,
uniformly distributed white noise sequences independent of
other signals in the system. Each white noise sequence has
a diagonal covariance matrix Ej , where j = x, u, y.

[Ej ]i,i := ρji
ρji

=
1

12
2−2βji (7)

where βji
is the fractional part of the wordlength (number

of bits) used to store the ith variable in a digital device.
With this noise model, the roundoff errors can deteriorate
performance but never destabilize the system. This follows
from the fact that the white noise sources are assumed to
be independent of other signals in the system.

To simplify the analysis, we assume that uniform
wordlength are allocated among the states and input/output
channels, that is, Ex = ρ2

xI , Eu = ρ2
uI and Ey = ρ2

yI .
Define Eq , Iq ⊗ Ex, Wq , Iq ⊗ Eu, Vq , Iq ⊗ Ey for
later use.

When the finite precision effect is concerned, it is known
that there is no upper bound on computational errors,
because the errors are realization dependent[6]. Hence,
increasing the number of bits does not solve the finite preci-
sion problem. One has to pay attention to the realization. To



this end, we shall use the variance oriented l2-norm scaling
constraint on the component of the transformed covariance
matrix, namely, to impose the additional scaling constraint
[6]

[X̂](i,i) ≤ s, i = 1, . . . , n (8)

where s is a given positive scalar related to the available
dynamic range. Without loss of generality, we let s = 1. A
simplified scaling condition that is more tractable than (8)
is

X̂ = I (9)

which can be obtained from (8) by relaxation. It is clear
that all inequalities in (8) hold whenever (9) holds. X̂ is
the state covariance matrix of computational model (6) and
satisfies the Lyapunov equation

X̂ = AX̂AT + B(I + Eu)BT + AExAT (10)

A statement of our problem is, given the input/output
correlation data {Hi, Ri|i = 0, 1, . . . , q − 1} from a real
system, fix the computational environment and scaling
condition (9), find a computed linear model (6) such that
Ĥi = Hi, R̂i = Ri. i = 0, 1, . . . , q − 1.

IV. FWL-QMC EXISTENCE CONDITION

When the finite precision effects is considered, we need to
answer the following question: ”Does there exist an FDLTI
in the form of (6) with finite wordlength (FWL) quantization
errors which can match data {Hi, Ri|i = 0, 1, . . . , q − 1}?
” If so, we shall call such a state space model FWL-QMC.

Define Dq , Rq −Hq(Uq + Wq)H
T
q − Vq . Define S ∈

IRnyq×nyq as the lower shift matrix with ones on the first
sub-diagonal and zeros elsewhere, i.e {S}k,l = δk−l−1.

Theorem 2: Suppose an unknown dynamic system
generates the data {Hi, Ri|i = 0, 1, . . . , q − 1}, where
q > 0 is a specified integer. Then the following statements
are equivalent:
(i) There exist a stable FWL-QMC (with state
roundoff error covariance ρ2

xI) which can match data
{Hi, Ri|i = 0, 1, . . . , q − 1}.
(ii) The data have the property, Dq −
∑q−1

i=1
ρ2

x

(1+ρ2
x)i S

inyDqS
iny

T
≥ 0.

Proof: We shall show such an FWL-QMC can be
constructed if and only if (ii) is true. The proof will be
established after we finish the parameterization.
It can be seen that when ρx = 0, that is, in case of infinite
precision computation, the FWL-QMC existence condition
reduces to the conventional QMC existence condition.

V. PARAMETERIZING THE FWL-QMC

Assume there exists an FWL-QMC (6) which matches the
data {Hi, Ri|i = 0, 1, . . . , q − 1}. Denote û(k) = u(k) +
eu(k). The output sequence of (6) is given by

ŷq(k) = Oqx̂(k) + Ĥqûq(k) + Nqexq(k) + eyq(k) (11)

where

Oq ,











C

CA
...

CAq−1











, Ĥq ,











D 0 . . . 0
CB D . . . 0

...
...

. . .
...

CAq−2B . . . CB D











Nq ,











C 0 . . . 0
CA C . . . 0

...
...

. . .
...

CAq−1 . . . CA C











ŷT
q (k) ,

[

ŷT (k) ŷT (k + 1) . . . ŷT (k + q − 1)
]

ûT
q (k) ,

[

ûT (k) ûT (k + 1) . . . ûT (k + q − 1)
]

eT
xq(k) ,

[

eT
x (k) eT

x (k + 1) . . . eT
x (k + q − 1)

]

eT
yq(k) ,

[

eT
y (k) eT

y (k + 1) . . . eT
y (k + q − 1)

]

where Oq ∈ IRnyq×nr , Ĥq ∈ IRnyq×nuq , Nq ∈
IRnyq×nrq .

To match the data {Hi, Ri|i = 0, 1, . . . , q − 1}, we need
Ĥi = Hi, R̂i = Ri. The Toeplitz matrices (3) and (4)
satisfy the following equation, which is generated by taking
the covariance of the vector ŷq(k) in (11)

R̂q = OqX̂OT
q +Hq(Uq +Wq)H

T
q +NqEqN

T
q +Vq (12)

where X̂ is the state covariance matrix of (6). X̂ solves the
Lyapunov equation (10) and satisfies the scaling condition
(9). Any linear system in the form of (6) that can gen-
erate both Markov parameters and covariance parameters
{Hi, Ri|i = 0, 1, . . . , q − 1} must satisfy (12).

In the traditional q-Markov cover theory, if there exists a
QMC, then there exist infinite equivalent realizations of the
QMC by freely choosing coordinate transformation. That is
not true any more for FWL-QMC, since a different realiza-
tion leads to different covariance parameters. Therefore, we
have to determine the realization in pursuing FWL-QMC.
Note that the data Hi and Ri do not depend upon the choice
of state space realization. Rewrite the scaling condition (9),
(10) and the covariance equation (12)

A(I + ρ2
xI)AT + B(I + ρ2

uI)BT = I (13)

Dq = OqO
T
q + ρ2

xNqN
T
q (14)

We shall proceed to find the parameters {A,B,C,D}
satisfying (13) and (14).

Theorem 3: Given the data {Hi, Ri|i = 0, 1, . . . , q − 1}
generated by a system with unit variance white noise
excitation. Let the integer q > 0 be specified. Suppose
Dq −

∑q−1
i=1

ρ2
x

(1+ρ2
x)i S

inyDqS
iny

T
≥ 0, where Dq and S

are defined as in section IV. Then all stable linear models
{A,B,C,D} that match the given data are parameterized
by
[

D C

B A

]

=

[

Iny
0

0 O+
q−1

]

[Kq Oq] +

[

0

VbÛV T
d Λρx

]

(15)



where OqOT
q = D is the minimal rank factorization of

D, and D , 1
(1+ρ2

x)

[

Dq −
∑q−1

i=1
ρ2

x

(1+ρ2
x)i S

inyDqS
iny

T
]

.

Oq−1 =
[

Iny(q−1) 0
]

Oq . Kq−1 =
[

0 Iny(q−1)

]

Hq.
Jq−1 =

[

0 Iny(q−1)

]

Oq . Û is an arbitrary matrix
of proper dimension satisfying Û ÛT = I . Λρx

,
[

(1 + ρ2
u)−

1
2 I 0

0 (1 + ρ2
x)−

1
2 I

]

. And Vb, Vd are given by

the following SVD

Oq−1 = [Ua Ub]

[

Σa 0
0 0

] [

V T
a

V T
b

]

[

(1 + ρ2
u)

1
2Kq−1 (1 + ρ2

x)
1
2Jq−1

]

= [Ua Ub]

[

Σa 0
0 0

] [

V T
c

V T
d

]

Proof: Observe the structure of matrix Nq , it can be
seen the ith column block can be seen as a shift from the
(i − 1)th column block, that is, for i = 1, 2, ..., ny(q − 1),
Nq(:, i + 1) = SnyNq(:, i). And notice that Nq(:, 1) = Oq .
Then

Nq =
[

Oq SnyOq S2nyOq . . . S(q−1)nyOq

]

=
[

I Sny S2ny . . . S(q−1)ny

]

Iq ⊗Oq

= PqIq ⊗Oq (16)

where Pq ,
[

I Sny S2ny . . . S(q−1)ny

]

.
Thus

NqN
T
q = Pq(Iq ⊗Oq)(Iq ⊗OT

q )PT
q

= Pq(Iq ⊗OqO
T
q )PT

q

=

q−1
∑

i=0

SinyOqO
T
q Siny

T
(17)

Then from (14)

Dq = OqO
T
q + ρ2

x

q−1
∑

i=0

SinyOqO
T
q Siny

T
(18)

In (18), Dq is a known nonnegative definite matrix. Siny

is a known shift matrix. So (18) is a linear matrix equation
with nonnegative definite matrix variable OqO

T
q . It can be

solved analytically thanks to its special structure.
Multiply Sny from the left and Sny T from the right side

of (18). Notice that Sqny = 0

SnyDqS
ny T = SnyOqO

T
q Sny T +ρ2

x

q−1
∑

i=1

SinyOqO
T
q Siny

T

(19)
(18)-(19) gives a Lyapunov equation with variable OqOT

q

Dq − SnyDqS
ny T = (1 + ρ2

x)OqO
T
q − SnyOqO

T
q Sny T

(20)
Furthermore, we can solve for OqO

T
q by observing the

structure of (20). Multiply by 1
(1+ρ2

x)S
jny from the left and

Sjny
T

from the right side of (20), (j = 0, 1, 2, ..., q − 1).

Then sum up all the equations and notice that Sqny = 0,
we get

OqO
T
q =

1

(1 + ρ2
x)

[

Dq −

q−1
∑

i=1

ρ2
x

(1 + ρ2
x)i

SinyDqS
iny

T

]

(21)
So far we get an explicit expression for OqO

T
q ,

then we can proceed to use the existing q-Markov
cover theory [3] [1] to find the parameters. Define
D , 1

(1+ρ2
x)

[

Dq −
∑q−1

i=1
ρ2

x

(1+ρ2
x)i S

inyDqS
iny

T
]

, D ∈

IRnyq×nyq . Let nr = rank(D). When D ≥ 0, let Oq be
given by the full column rank factorization D = OqOT

q ,
Oq ∈ IRnyq×nr .

Remark: The dimension of the reduced-order model is
given by the rank of D. In practice, D is usually full
rank but ill-conditioned. In this case, one can compute the
eigenvalue-eigenvector decomposition of D

D = V1Λ1V
T
1 + V2Λ2V

T
2

where Λ2 contains the eigenvalues with orders of magnitude
much smaller than those in Λ1. Indeed, when D is replaced
with the V1Λ1V

T
1 , we get an approximation of D in the

sense of least square. Based on V1Λ1V
T
1 , we can no longer

produce a QMC matching exactly the parameters. We shall
call such a reduced order linear model ”sub-QMC”. The
advantage of ”sub-QMC” is that it gives a lower order
model which approximates the parameters pretty well. When
D is ill-conditioned, the sacrifice of exactly matching in
favor of lower order model is usually worthwhile.

The conditions (13) and (14) can be rewritten as

I = A(I + ρ2
xI)AT + B(I + ρ2

uI)BT

= [B A]

[

(1 + ρ2
u)I 0

0 (1 + ρ2
x)I

] [

BT

AT

]

(22)

Oq =











C

CA
...

CAq−1











=

[

Oq−1

CAq−1

]

=

[

C

Jq−1

]

(23)

where Oq−1,Jq−1 ∈ IRny(q−1)×nr are defined as

Jq−1 =
[

0 Iny(q−1)

]

Oq, Oq−1 =
[

Iny(q−1) 0
]

Oq

To match the structure of Oq , A has to satisfy

Oq−1A = Jq−1 (24)

and C is given by the fist row of Oq . To match the structure
of Hq, B has to satisfy

Oq−1B = Kq−1 (25)

where Kq−1 ∈ IRny(q−1)×nu is defined as

Kq−1 = [HT
1 H2

T ... HT
q−1]

T

=
[

0 Iny(q−1)

]

Hq

[

Inu

0

]



It follows from (22), (24) and (25) that A, B satisfy the
following equations

[B A]

[

(1 + ρ2
u)I 0

0 (1 + ρ2
x)I

] [

BT

AT

]

= I (26)

Oq−1[B A] = [Kq−1 Jq−1] (27)

These equations can be reduced to the standard form [10]
{AX = B; XX

T = I} by change of variables. Let Ār =
A(1+ ρ2

x)
1
2 , B̄r = B(1+ ρ2

u)
1
2 , then (26) and (27) become

[

B̄r Ār

] [

B̄r Ār

]T
= I (28)

Oq−1[B̄r Ār] =
[

(1 + ρ2
u)

1
2Kq−1 (1 + ρ2

x)
1
2Jq−1

]

(29)
Now we need to answer two questions: ”Does there exist
solutions to (28) and (29)? ” If so, does the model pro-
duced by {A,B,C,D} match the data set {Hi, Ri|i =
0, 1, . . . , q − 1}? ” First we check the solution existence
condition.

The existence condition for (A,B) is [10]

Oq−1O
T
q−1 =

[

(1 + ρ2
u)

1
2Kq−1 (1 + ρ2

x)
1
2Jq−1

]

[

(1 + ρ2
u)

1
2Kq−1 (1 + ρ2

x)
1
2Jq−1

]T

(30)

It can be shown that (30) is true. The remaining question
is to show that the model given by {A,B,C,D} produces
covariance and Markov parameters matching the data set
{Hi, Ri|i = 0, 1, . . . , q − 1}. As D = H0, we have H0

matched. When C is given by the fist row of Oq and A

satisfies (24), we can guarantee that Oq has the structure
as the extended observability matrix. Thus the remaining
Hi (i = 1, 2, ..., q − 1) are matched by the choice of B as
in (25). Hence, we have all the required Hi matched, that
is, Ĥq = Hq . Hereafter, we show Rq also matches.

Consider the output sequence covariance of the FWL-
QMC. With state covariance scaled to identity, and the
assumed input/noise, (12) becomes

Rq = OqO
T
q + Hq(Uq + Wq)H

T
q + ρ2

xNqN
T
q − Vq (31)

We have taken into account of the structure of Nq in (16).
Now that Oq is fully structured, it follows that Nq is
structured. As Hq is matched, Rq is automatically matched.
This completes the proof of Theorem 3.

From Theorem 3, when D ≥ 0, there always exists an
FWL-QMC with parameters given by (15), which implicitly
means there exists solution to (27), even though it is an
over-determined matrix equation.

A special case is the SISO system. It can be shown that
when D ≥ 0, the sub-matrix On = Oq(1 : n, 1 : n) is full
rank, and [B A] = O−1

n [Kn Jn].

VI. ILLUSTRATIVE EXAMPLE
The FWL-QMC has applications in simulation as well

as controller implementations. In both cases, linear models
are installed in digital devices and roundoff errors build up.
Next we design the simulation of a linear model by using
the FWL-QMC. Assume the linearized discrete-time model
of a flexible structure is given as below
Ã =














0.0673 0.0589 0.0641 0.0410 0.0237 0.0100
−0.6875 −0.3817 −0.2456 −0.0216 0.0210 0.0162
−0.2787 −0.3539 −0.5766 −0.7079 −0.3442 −0.1328

1.1390 0.7089 0.6199 0.3092 −0.3626 −0.1470
0.6304 0.4828 0.6183 0.8003 0.8921 −0.0445
0.0954 0.0820 0.1271 0.2288 0.4884 0.9952















B̃ =















−0.0859
−0.1393
1.1390
1.2608
0.3817
0.0416















C̃ =
[

0.5000 0.2799 0.1749 0.1175 0.0904 0.0700
]

D̃ = 0

To demonstrate the effect of roundoff errors, we choose
the computational environment as follows: βj = 4, j =
x, u, y. The simulation model is carried out in the Fixed-
Point Blockset of Matlab/Simulink. For the purpose of this
study the digital simulation on the Fixed-Point Blockset is
the ’plant’ of which the Markov and covariance parameters
are to be measured. Choose q=4. The QMC ignores the
computational error and is denoted as GQMC.

GQMC :

{

x̄(k + 1) = Āx̄(k) + B̄u(k)

ȳ(k) = C̄x̄(k) + D̄u(k)
(32)

Ā =







0.3810 0.2820 −0.0034 −0.0046
0.8945 0.0440 0.1915 0.0063
0.0966 −0.9298 0.2636 −0.2840
0.0266 −0.1446 0.0435 −0.0446






B̄ =







−0.8804
0.4008
−0.2564
−0.0396







C̄ =
[

−0.3258 0.0432 0.0053 −0.0001
]

D̄ = 0

To simulate the model in a fixed-point computer and
preserve the Markov and covariance parameters, one can
apply Theorem 3 to get the simulation model. Use the same
computational environment as above, the simulation model
implemented in the Fixed-Point Blockset is the ’plant’ to be
measured. Let q=4, Theorem 3 guarantees that this ’plant’
matches the first 4 Markov and covariance parameters
of the nominal model. The following simulation model
GFWL−QMC is deduced as an application of Theorem 3.

GFWL−QMC :
{

x̂(k + 1) = A(x̂(k) + ex(k)) + B(u(k) + eu(k))

ŷ(k) = C(x̂(k) + ex(k)) + D(u(k) + eu(k)) + ey(k)

(33)

A =







0.3877 0.2776 −0.0043 0.0002
0.8930 0.0314 0.1985 −0.0005
0.0828 −0.9186 0.2899 0.0141
−0.1751 0.2360 0.7647 0.5722







B =







−0.8790
0.4028
−0.2550
−0.0063







C =
[

−0.3256 0.0451 0.0060 0.0000
]

D = 0
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Fig. 1. Step responses

Pulse Response

Time (sec)

A
m

pl
itu

de

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

G
G

QMC
G

FWL−QMC

Fig. 2. Pulse response

Table 1 compares the parameters generated by GFWL−QMC

and GQMC to these generated by the nominal system. It can
be seen that GFWL−QMC matches exactly the first 4 Markov
parameters and the first 4 covariance parameters. As shown
in table 1, the effect of the roundoff error becomes more
and more apparent when more parameters are investigated.
Figure 1 compares the step responses of the G, GFWL−QMC

and GQMC. Figure 2 shows the pulse responses of these
models.

Markov Parameters
q = 4 βj = 4

G GFWL−QMC GQMC

H0 0.0000 0.0000 0.0000
H1 0.3028 0.3028 0.3028
H2 0.0340 0.0340 0.0340
H3 0.0909 0.0909 0.0854

Covariance Parameters
q = 4 βj = 4

G GFWL−QMC GQMC

R0 0.1080 0.1080 0.1072
R1 0.0236 0.0236 0.0231
R2 0.0361 0.0361 0.0357
R3 0.0251 0.0251 0.0227

Table 1. Comparing the parameters with/without finite
precision consideration.

VII. CONCLUSION

A new algorithm is developed which constructs the
q-Markov COVariance Equivalent Realization (q-Markov
COVER) with finite precision considerations. The existing
q-Markov COVER algorithm will fail to match the param-
eters in digital implementations due to the computational
errors. The new algorithm, which incorporates q-Markov
COVER with the finite wordlength (FWL) effect, guarantees
to match the data. This algorithm will be indispensable in
digital simulations and controller implementation using q-
Markov COVER theory.

VIII. APPENDIX

Proof of Theorem 2 From the constructive proof of
Theorem 3, we have shown that an FWL-QMC matching
the data exists if the condition (ii) is true. And from (12),
it can be seen that Dq −

∑q−1
i=1

ρ2
x

(1+ρ2
x)i S

inyDqS
iny

T
≥ 0

is a property of any FWL-QMC. Thus (i) implies (ii). This
completes the proof.
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