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Abstract— Reduced Galerkin models of fluid flows are traditionally
obtained by the Galerkin projection of a low-dimensional flow expan-
sion onto the the Navier-Stokes equation. A new approach in this
application domain is the a posteriori model parameter estimation
to correct for distortions due to the low dimensional compression.
Preserving model structure, this leads to considerable improvement
in dynamic prediction the cylinder wake benchmark.

I. I NTRODUCTION

Dynamic parameter estimation and adaptation need no motiva-
tion in the control community. This note is part of a relatively re-
cent effort to extend these methods to control-oriented models and
feedback design in fluid systems. Computational fluid dynamics
(CFD) models strive to provide the highest resolution, with system
size ranging fromO(104) states in 2D flows toO(106) for 3D
configurations. In contrast, control-oriented models emphasize the
difficult balance of a drive for simplicity, necessary for practical
feedback design, with the need to capture (just) enough of the
relevant dynamic envelope. Possible approaches include black/gray
box system ID, which worked well in relatively narrow & nearly
linear regimes (e.g. [1], [2]. Linear system reduction methods [3]
are applicable in some large-scale models (e.g. [4], [5]). Here
physics-based reduced-order methods are used to generate an a
priori very low-order model. More specifically, we focus on proper
orthogonal decomposition (POD) Galerkin models, generated by
of flow data [6].

According to standard procedure, the nominal POD model is
obtained by compression (termedthe Galerkin projection) of the
first principles governing equation to the span of a selected set
of modes in an appropriate Hilbert space (cf.§II). An unwanted
side effect of the compression is the truncation and distortion of
critical energy flow paths. A practiced remedy is the inclusion of
a turbulence model, such as eddy viscosities [6]–[8]. Values of
viscosity coefficients are commonly based on solution matching
or on a priori qualitative hypotheses (e.g., a quadratic dependence
on the wave number) that provide a measure of stability, but lack
a rigorous mathematical justification [9], [10].

This note explores the possibility to employ parameter estima-
tion tools to correct the reduced model parameter, using reliable
CFD simulation or experimental data. Corrected parameters in-
clude energy transfer coefficients. The utility of a posteriori param-
eter corrections is illustrated using the cylinder wake benchmark.
Indeed, it is shown that while the POD Galerkin framework is
useful to determine the form and basic properties of the reduced
system, drastic parameter corrections may be needed to match
empirically observed system dynamics.

This paper is focused solely on modeling issues. Complement-
ing discussions of control design with low order Galerkin models

can be found e.g, in [11]–[13] by these authors.

II. T URBULENCE REPRESENTATION INGALERKIN MODELS

The development of low-dimensional Galerkin models for
highly irregular turbulent flows is intimately linked to the empirical
observation of large-scale coherent structures and a turbulence
cascade to small-scale stochastic eddies. Coherent fluid motion
can be considered as regular, low-dimensional, and deterministic.
Coherent structures resolve most of the fluctuation energy and its
production. In contrast, small-scale fluctuations are considered as
high-dimensional and stochastic. This contribution resolves most
of the enstrophy (square of the vorticity) and dissipation. The en-
ergetic coherent-structure contribution to the velocity fieldu may
be captured in a low-dimensional POD Galerkin approximation,

u =
N∑

i=0

ai(t) ui(x), (1)

where ui, i = 1, . . . , N represent the location-dependent or-
thonormal POD modes, andai, the time-dependent Fourier co-
efficients. Following a notation of Rempfer [9], the mean flowu0

is formally included in the expansion witha0 ≡ 1.
The conventional method to derive a Galerkin system, governing

the temporal evolution of the Fourier coefficients, is by the
Galerkin projection of (1) onto the incompressible Navier-Stokes
equation. The resulting Galerkin system has the form

d

dt
ai = ν

N∑

j=0

lij aj +
N∑

j,k=0

qijk aj ak for i = 1, . . . , N, (2)

with constant coefficientslij and qijk. The linear and quadratic
terms represent the viscous and convective Navier-Stokes terms,
respectively. Here,ν is the reciprocal of the Reynolds number
Re. The pressure term may vanish, be negligible, or change
the numerical values of the coefficientsqijk. However, this term
generally does not effect the basic form of (2) [14].

The energy-flow cascade from the resolved large scales to
the neglected small scales implies that a large portion of the
dissipation may not be resolved in the Galerkin system (2).
Hence, the fluctuation level of the Galerkin solutions tends to
be too large or even diverge. Realistic fluctuation amplitudes
require a model for the energy loss. Table II summarizes the
modeling task. The Galerkin approach shares this modeling task
with all engineering turbulence simulations, including unsteady
RANS and large eddy simulations (LES). Typically, the energy
flow to the neglected small scales is modeled by adding an ‘eddy’
viscosity νt to the kinematic viscosityν = 1/Re in the (non-
dimensionalized) evolution equation. In a pioneering Galerkin



model of the wall turbulence [7], the linear term of (2) is replaced
by νeff

∑N

j=0
lij aj with an increased viscosityνeff := ν + νt.

Effectively, the Reynolds number is lowered to the laminar regime
until the observed fluctuation level matches the level predicted by
the Galerkin system. This approach is pursued in numerous other
studies.

A refined turbulence representation for Galerkin models has
been proposed by Rempfer [9]. In a study of transitional boundary
layers, modal eddy viscosities are introduced, i.e. each POD mode
has an effective viscosityνeff,i which replaces the kinematic
viscosity in thei-th Galerkin system equation. This ansatz takes
into account that the unresolved energy loss per unit fluctuation
energy tends to increase with decreasing scale, i.e.νeff,i increases
with the POD mode indexi. The modal eddy viscosity may be
determined by solution matching [8] or may be derived from
a modal energy flow consideration [15]. The main idea of this
approach is also pursued in spectral viscosities for Fourier modes
(see, for instance, [6]).

properties large scales small scales

dimension low-dimensional high-dimensional
dynamics deterministic stochastic
level of
resolution

resolved in the
Galerkin approxima-
tion

modeled in the
Galerkin system

kinematic role energy enstrophy
energetic role production dissipation

TABLE I
ROLE OF RESOLVED LARGE AND NON-RESOLVED SMALL SCALES

The energy-flow cascade from large to small scales is also
observed in periodic [16], [14] and transitional flows [9]. In
particular, the dissipative effect of the higher POD modes on the
first POD modes is still intact. For instance, a Galerkin model
resolving only the first harmonics with two POD modes may be
improved by an eddy viscosity representing the energy-transfer
term to the higher harmonics. This ansatz is pursued in the current
cylinder wake study.

III. D ISSIPATIVE DYNAMIC ESTIMATION

The estimator used here utilizes a quadratically dissipative
structure [17], [18]. Dissipativity is commonly used in esti-
mation and adaptation [19]. The particular form used here is
motivated primarily by its simplicity, including the uncoupling
of the estimation of each parameter. On a heuristic level, it
also seems natural in the context of Galerkin fluid-flow models,
which are directly associated with quadratic energy terms and
whose structure naturally lends itself to energy-based design.
This applies both to feedback control [20], parameter estimation,
and eventually, adaptive control. Indeed, one advantage of the
dissipative framework is the seamless modularity of the controller
and the estimator, if this road map is to be followed.

The basic structure of the estimator is outlined for completeness.
To simplify notations, details are provided for the estimation of
diagonal parameters of the linear component of the model (e.g.,
the dissipation coefficients). Modifications for other configurations
relevant to this note are minimal. The basic assumption is that
the reduced-order model provides ample representation of its
state dynamics when correct parameter values are used. A state
trajectory obtained from a simulation of a reliable CFD model —
or an experiment, if available — represents the correct dynamics.

The reduced Galerkin system is written in the form

d

dt
a = (L(a) + d{σ}) a. (3)

Here, a := [a1, . . . , aN ]T comprises the Fourier coefficients in
(1). L(a) := L0 +

∑N

i
ai Li is an affine matrix-valued function

consisting of the coefficients in (2). The constant in (2) vanishes
if the base flowu0 is a steady Navier-Stokes solution. Otherwise,
the constant is removed by a translation to the fixed point of the
Galerkin system.σ := [σ1, . . . , σN ]T is the unknown parameter
vector and the symbol “d{σ}” stands for the diagonal matrix
defined byσ (i.e., [d{σ}]kl := δklσk). Indeed, the modal eddy-
viscosity ansatz of§II leads to a diagonal matrix termd{νeff,i lii},
realizing [lij ] in (2) has negligible off-diagonal terms.

The estimator is then of the form

d

dt
â = (L(a) + d{σ̂}) a − d{κ} 4a, (4a)

d

dt
σ̂ = d{a} d{α}2 4a, (4b)

whereκ := [κ1, . . . , κN ]T andα := [α1, . . . , αN ]T are positive
design parameters, the hat ‘̂ ’ indicates an estimated variable, and
4 indicates an estimation error, i.e.4a := a − â. Since correct
readings of the statea(t) are available, so is4a(t), enabling the
simulation of the dynamic estimator (4).

Denoting the weighted error vectorξ := [4a
T d{α}, 4σT ]T ,

error dynamics are of the form

d

dt
ξ =

[
−d{κ} d{a}d{α}

−d{a}d{α} 0

]
ξ. (5)

Equivalently, for eachi = 1, . . . , N ,

d

dt

[
αi4ai

4σi

]
=

[
−κi αiai

−αiai 0

] [
αi4ai

4σi

]
. (6)

Each of these subsystems is dissipative with respect to the
storage (Lyapunov) functionVi = 0.5(α2

i4a2
i + 4σ2

i ): d
dt

Vi =
−κi4ai. Drawing intuition from the standard dissipative mass–
and–spring system, which is structurally similar to (6),κi controls
dissipation andαi controls lossless incremental energy flow from
the estimation errors4σi to the state errors4ai, where it is
dissipated. Quantitative parameter selection guidelines are trivial
when estimation is about a nearly constant attractor, where (6)
are linear time-invariant second-order systems. Clear guidelines
become elusive with more complex attractors. As a general rule,κi

needs to be balanced withαi: a relatively largeκi will suppress the
“innovation” 4ai and prevent adaptation, while a relatively small
value may result with undesirable oscillations. The stipulation that
the nominal model structure is capable to correctly represent its
own state dynamics is, at best, a good approximation. Considering
in addition the inevitable measurement noise, an overly aggressive
adaptation has to be avoided to prevent tracking high-frequency,
unmodeled components of the measured innovation signal.

IV. M ODELLING THE LAMINAR CYLINDER WAKE

The laminar vortex shedding behind a circular cylinder is used
here as a benchmark example and the dynamic observers of§III
are employed to improve a low-dimensional Galerkin model of
this system.
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Fig. 1. Transient and attractor dynamics of a direct numericalsimulation
(DNS) and the original Galerkin systems. Top: Phase portraitof attractor
orbits in terms of(a1(t), a2(t)). The figure displays data of DNS (solid
curve), of the eight-dimensional Galerkin model (4) and of the Galerkin
system (7) (¤) with the original coefficients computed by the Galerkin
projection. Bottom: Transient dynamics visualized in terms oflog(r) from
a DNS (solid curve) and from the Galerkin projection (dashedcurve),
demonstrating both the lower growth rate and the higher steady state value
of the latter. Time is scaled with respect to the attractor’s vortex shedding
periodT .

A. The reduced Galerkin model

The cylinder wake has been studied extensively (see, e.g., the
review articles [21]–[23]). The following brief description of an
empirical Galerkin model of the cylinder wake is taken from [16],
where a detailed discussion of the model construction and an
analysis of its properties can be found.

The system is considered at the reference Reynolds number
of 100, which is far above the critical value of47 [24] for the
laminar shedding regime. The natural flow is then defined by
a periodic attractor. A POD Galerkin model is obtained from
a reference simulation of the attractor. As in [25], the 8-mode
Galerkin approximation of the attractor accurately reproduces the
simulation. These modes represent the first four vortex shedding
harmonics. In fact, already the first pair captures some 96% of the
perturbation kinetic energy, a very efficient representation indeed.
However, a Galerkin model based on these two modes alone —
essentially an ideal oscillator — is structurally unstable and lacks

the means to stabilize any preferred oscillation amplitude. A shift-
mode, introduced in [16], [20], provides these functions through
a representation of the energy flow between the slowly varying
mean flow and the leading Karhunen-Loève modes. The shift-
mode is defined as the normalized difference between the mean
flow of natural vortex shedding and the unstable steady Navier-
Stokes solution.

A three-state Galerkin model is based on the Galerkin approxi-
mation (1) with the unstable steady Navier-Stokes solutionus as
the base flow, the von Ḱarmán pairu1,2, and the shift-modeu∆

as the third mode,

u = us + a1u1 + a2u2 + a∆u∆.

The Fourier coefficientsai, i = 1, 2 and a∆ define the Galerkin
state space. The Galerkin projection outlined in§II leads to a
Galerkin system of the form [16]

d

dt




a1

a2

a∆



 =




σo −ω − γa∆ −βa1

ω + γa∆ σo −βa2

αa1 αa2 −σ∆








a1

a2

a∆



 .

(7)
An enforced phase-invariance assumption leads to multiple occur-
rence of the same coefficients, e.g.σo, ω, α, β, γ. This assumption
is well obeyed numerically and can be derived analytically in the
limit of spatially periodic structures. Notice thatσo is included
with a positive sign, capturing a positive net production over
dissipation and energy transfer. The value ofσ∆ is included with
a negative sign, capturing a net energy dissipation in the linearly
uncoupled shift-mode.

A critical fact that ought to be remembered in the context of
any very low order fluid flow model is that its validity dynamic
envelope is inherently limited. Here, the purpose of the model is
to capture the natural transients from the unstable steady flow
to the attractor as depicted in Fig. 4, below. Indeed, with an
appropriate actuation term added, the model can then be used to
design feedback compensators for reference tracking within that
envelope [20].

The Galerkin system (7) captures very transparently key in-
gredients of the wake flow [16]: (i) The instability of the steady
flow (represented by the zero state), (ii) the dominant oscillation
frequency and its dependence on changes in the mean flow, (iii)
the existence of an attractive invariant manifold of transients from
the neighborhood of the steady flow to the attractor, and (iv) the
stability of a limit cycle attractor. However, with the parameters
computed by the Galerkin projection, the model over-predicts the
perturbation kinetic energy of the limit cycle (K = 0.5(a2

1 + a2
2))

and under-predicts the growth rate near the unstable steady flow.
Both of these facts are visualized in Fig. 1.

The over-predicted limit cycle amplitude is explained by the
truncation of the modal energy cascade in the reduced system.
Indeed, already the restoration of three additional harmonics in the
Galerkin model corrects this distortion [16], [25]. The fact that a
POD model of the attractor is not capable to predict dynamic
properties at another operating point, such as the steady flow,
is not surprising. As shown in [16], a good prediction of the
transient near the steady solution is obtained when the POD modes
are replaced by the dominant stability eigenmodes of the Navier-
Stokes equation linearized around its steady solution [24]. Our goal
here is to illustrate the advantages of an a posteriori correction of
the distortions caused by the Galerkin projection, using dynamic
estimation. This simple example demonstrates quite dramatically



both the extent of the distortion in the a priori Galerkin projection
and the feasible improvement. In fact, a model, as simple as (7),
can provide a decent, if not perfect representation of the flow.

Fig. 1 reveals a clear partition of trajectories into two compo-
nents: A nearly exponential growth during a finite transient, and
fast transition to steady state. The estimation procedure is divided
accordingly into a component relevant to the steady state, followed
by an estimation of the growth rate focusing on the transients. As
we use fairly clean simulation data, it could be justly argued that a
static estimation (e.g. a least-mean-square procedure) may also be
employed. However, the use of a dynamic procedure is justified in
the larger context of more complex flows, e.g. long-term transients
where the attractor cannot be characterized by a constant scalar or
vector.

B. Dynamic estimation of modal dissipation
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Fig. 2. Transient trajectories of̂σo (dash-dots) and̂σ∆ (dots).

A transition to cylindrical coordinates
[

a1

a2

]
=

[
cos(φ)
sin(φ)

]
r ⇒ K = 0.5r2, (8)

separates energy carrying variables from phase dynamics:

d

dt

[
r

a∆

]
=

[
β 0
0 α

] [
σo

β
−r

r −σ∆

α

] [
r

a∆

]
, (9)

d

dt
φ = ω + γa∆. (10)

Evident from this form is that the attractor is determined by the
values ofσo/β and σ∆/α, and that the growth rates are then
determined byβ and α. Here, we focus on the attractor, and
estimateσo and σ∆, given the nominal a priori values ofβ and
α. The scaling factors in the matrixd{β, α} will be adjusted in
a second step.

Following the general pattern of (4), the dynamic estimator is
of the form:

d
dt

[
r̂

â∆

]
=

[
σ̂o −βr
αr −σ̂∆

] [
r

a∆

]
+

[
κo 0
0 κ∆

] [
4r
4a∆

]
,

d
dt

[
σ̂o

σ̂∆

]
=

[
α2

or 0
0 −α2

∆a∆

] [
4r
4a∆

]
.

(11)
Sincer anda∆ are constant over the attractor (or slowly varying
under a drift in the incoming flow), eigenvalue assignment in the
appropriate counterparts of (6) can be used to determine design
parameter values: Selecting a desired exponential decay rateλ,
we setκo = κ∆ = 2λ, αo = λ/r and α∆ = λ/a∆. In an

adaptive implementation, the selection ofλ would be guided by
the expected level and spectrum of measurement noise. Here, we
make the arbitrary selection ofλ = 1.

Nominal values of the coefficients of (7) were obtained by a
Galerkin projection of the flow, normalized with respect to the
cylinder diameter and incoming flow velocity (i.e., setting both
to one). These values are:β = 0.0190, σo = 0.0480, σ∆ =
0.0480, ω = 0.9336, ω∆ = 0.0342, andα = 0.0196. The limit-
cycle values of the Galerkin system arern = 2.4823 anda∆ n =
2.5242. (where the subscript “n” stands for ”nominal”). The steady
state values from direct numerical simulation (DNS) of the Navier-
Stokes equation arer = 2.2608 and a∆ = 2.2295. The latter
are accepted as the correct values. The design coefficients are set
accordingly, asκo = κ∆ = 2, αo = 1/2.2608 = 0.4423 and
α∆ = 1/2.2295 = 0.4485. Figure 2 depicts transient estimates of
σ̂o andσ̂∆, initiating the dynamic estimator with the correct values
for r̂, â∆, and the nominal values ofσo andσ∆, for σ̂o and σ̂∆.
Indeed, the steady state values,σ̂o = 0.0424 and σ̂∆ = 0.0449
are the expected values from the algebraic equalities ofσo = βa∆

and σ∆ = αr2/a∆, using the DNS steady state values ofr and
a∆. Following adaptation, the attractor radius is corrected, and
matches the DNS prediction as in Fig. 1.
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Fig. 3. Attractor calibration. Top: The attractor of DNS trajectories
of (a1, a∆) (dots) is matched by the corrected Galerkin system (solid),
but GS transients still overshoot. Bottom: The mismatch between log(r)
growth in DNS (bold) and the corrected Galerkin system (doted) is clear;
as a reference, the original GS response (dashed) from Fig. 1grows at a
similar rate, as well as over-predicts the attractor.

C. Dynamic estimation of growth rates

While the corrected estimation of the energy transfer coefficients
σo andσ∆ resolved the issue of attractor distortion, the three states



model is still incapable to predict growth rates correctly. Fig. 3
compares a transient simulation by a DNS model with a simulation
of the corrected system (7). While the two are qualitatively similar,
the Galerkin system under-predicts the growth rate and supports
a non-physical overshoot. In fact, the corrected lower values of
σo andσ∆ resulted with both a wider manifold (Fig. 3,top) and
a lower growth rate (Fig. 3,bottom). The slow growth rate is
a consequence of the (small) difference between the dominant
oscillatory eigenmodes near the steady flow and the attractor’s
POD modes [16].
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Fig. 4. Transient dynamics calibration in the Galerkin system. Top:
Transient trajectories of(a1, a2, a∆) from a DNS (dots) and as predicted
by the scaled Galerkin system (12) (solid line). Middle: Thelogarithmic
perturbation growthlog(r) of a DNS (bold) and of the scaled Galerkin
system (dashed). Bottom: Comparison of the DNS manifold(r, a∆) (solid)
and the Galerkin model prediction (dashed).

The adaptation in this section builds on the system structure in
(9), where the vector field is defined by a cascade of two matrices,

multiplying the state. The inner right matrix
[

σo

β
−r

r −σ∆

α

]

defines the attractor, and will be left fixed with its value from the
previous section. The outer left matrix,d{β, α}, determines the
growth and convergence rates, and will be replaced by a scaling
matrix d{µo, µ∆} that will be the subject of adaptation.
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Fig. 5. Transient trajectories ofphase(a1, a2) from a DNS (solid) and
as predicted by the scaled Galerkin system (dashed).

The dual challenge includes the fact that adaptation must utilize
the short exponential growth section of the reference, as well as
an intrinsic mismatch between the postulated model and the actual
system dynamics (e.g., as represented by DNS data). The solution
will be to iterate a non-aggressive adaptation procedure multiple
times until the adapted variables converge to a limit. Since the
subject of adaptation are exponential growth rates, the reference
trajectories will bexr = log(r) and x∆ = log(a∆). Thus, the
adaptors will be of the form

d
dt

[
x̂r

x̂∆

]
=

[
κo 0
0 κ∆

] [
4xr

4x∆

]

+

[
σo

β
− a∆ 0

0 r2

a∆
− σ∆

α

] [
µ̂o

µ̂∆

]
,

d
dt

[
µ̂o

µ̂∆

]
=




α2

1

(
σo

β
− a∆

)
0

0 α2
2

(
r2

a∆
− σ∆

α

)




[
4xr

4x∆

]
.

(12)
Adaptation was iterated over the interval[T, 3T ], where, again,T
is the attractor’s vortex shedding period. The initial guesses for
µ̂o and µ̂∆ were the respective nominal values ofβ = 0.0190
and α = 0.0196. In the limit, adapted values wereµo = 0.081
andµ∆ = 0.75. That is, the basic growth rate forr is increased
roughly four folds, and the convergence rate is set at about an order
of magnitude larger than that, or roughly forty folds the prediction
by the Galerkin projection. Fig. 4 compares the adapted model
with the DNS simulations: The non-physical overshoot is removed,
the geometry of the invariant manifold formed by transients is
in good match with the simulation, and early growth rates are
essentially identical. The corrected prediction of the Galerkin
model growth rate is somewhat higher than DNS prediction,
closer to the attractor, but the distortion is much smaller than
in the nominal model. This small difference can be explained



by neglected nonlinearities, including the fact that the dominant
expansion modes need to be modified away from the attractor [16],
whereas our model uses a fixed set of modes.

V. CONCLUSIONS

The prevalent practice in physics-based reduced-order models,
such as POD Galerkin models, is to rely on first principles models
for parameters evaluation, that is, on the Galerkin projection. This
simple example illustrates the need and utility of complementing
these a priori evaluations with a posteriori dynamic estimation
using relevant observed trajectories. Indeed, a posteriori dynamic
estimations resulted with substantial parameter modification that
help to reconcile observed behavior and the first principles model
predictions vis-a-vis energy flow and dissipation. In closing, Fig.
5 shows that the prediction of the nominal model vis-a-vis phase
dynamics also reveals some distortions, albeit on a much smaller
scale. These distortions have been explained in [16] in terms of
the need to modify dominant expansion modes near the steady
flow.

Turbulence representations for Galerkin models of high-
Reynolds-number flows are also expected to benefit from the
dynamic observers discussed in this note. Current research of the
authors indicate this opportunity.
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