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High Bandwidth Fast Tool Servo Control
Xiaodong Lu and David L. Trumper

Abstract— Fast tool servo is one of the key components in
manufacturing complex surfaces with nanometer-scale res-
olution. This paper presents the controller design for an
electromagnetically driven fast tool servo. First, the non-
linear and frequency-dependent actuator is linearized with
dynamic nonlinear compensation method. Next, the plant is
compensated with lead-lag controller plus integrator to achieve
the cross over frequency at one twentieth of the sampling
frequency. Finally, repetitive controller is plugged into the
compensated loop of the last step to improve the tracking of
spindle synchronized trajectory and the rejection of spindle
rotation induced disturbance. Based on the integrator gain of
the compensated loop, a method of tuning repetitive controller
gains is presented to ensure the closed loop system phase
margin in spite of changes of repetitive controller poles.
Experiment is conducted on a diamond turning machine.
For 100kHz sampling frequency, the achieved closed loop
bandwidth is 10kHz with -3dB attenuation. The maximum
stroke is 50um for up to 1kHz operation and the maximum
acceleration is 160 g up to 3kHz. An aluminum part is turned
with sinusoidal surface to demonstrate the usability of the
control.

Index Terms— Fast tool servo, Mechatronics, Feedback
linearization, Repetitive control

I. I NTRODUCTION

Fast tool servo (FTS) technology can enable precisely
manufacturing complicated surfaces with nanometer-scale
resolution requirement. Such surfaces are used in a wide
range of products, including films for brightness enhance-
ment and controlled reflectivity, as well as in micro-optical
devices such as Fresnel lenses and microlens arrays. The
limits on stroke, bandwidth, acceleration, and position noise
of the FTS impose limits on the types, quality, and rate at
which the intended surfaces can be produced. The require-
ments for high throughput drive simultaneously the need
for high bandwidth, high acceleration, and accuracy for the
FTS.

Electromagnetic actuators are possible to achieve as high
force density as 9105N/m2 at 1.5Tesla flux density and
thus as high acceleration as 4000 g on a 3mm thick iron
disk. As an promising alternative solution to the well-
established piezoelectric actuator [1][2][3], the electromag-
netically fast tool servo do not have such problems as signif-
icant hysteresis loss when materials undergoing deformation
and the bandwidth-limiting structural resonance modes of
the PZT stacks. Hence the electromagnetically driven fast
tool servos are possible to operate at higher frequency than
the piezoelectric counterparts.
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Fig. 1. Electromagnetically driven fast tool servo model.

However, there are several obstacles that limit the per-
formance of the electromagnetically driven fast tool servo.
First, the actuating forces nonlinear with air gaps and excit-
ing currents will result in significant tracking errors, which
will greatly degrade the tracking performance of fast tool
servo. Second, the eddy current induced along the magnetic
path will introduce frequency dependent disturbance field
and thus further complicate actuator behavior especially at
high frequency operation.

On the basis of the static feedback linearization method
in [4] , this paper present a dynamic nonlinear compensation
method to linearize the actuator. By inverting the actuator
operating principle, a feed-forward compensator can be de-
signed to compensate the actuator nonlinear and frequency
dependent characteristics. As the fast tool servo trajectory is
synchronized with the spindle rotation, repetitive controller
is plugged into the feedback loop to enhance performance
of the spindle harmonic trajectory tracking and improve
rejection of spindle-generated disturbance.

These methods are implemented on an electromagneti-
cally driven fast tool servo. The experiment results show
that the fast tool servo can achieve 10kHz 3dB bandwidth
and 160 g acceleration. With the repetitive control, the
following errors can be reduced to 7 nm when tracking
a 10µm peak to valley sinusoidal trajectory at 1kHz.

II. FAST TOOL SERVO MODEL

Fig. 1 shows the configuration of our electromagnetically
driven fast tool servo. Design details about the fast tool
servo design can be found in [5]. The backbone of the
moving assembly is a carbon fiber tube. On its rear end
is attached a disk-shaped armature and the cutting tool tip
is installed on the front end. The whole moving assembly is
suspended to the FTS frame by two flexures. The armature
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is push-pull driven by a pair of circular E-type solenoids in
the rear and front sides. The air gaps between the armature
and solenoid surfaces are set at 100µm to allow a 50µm
stroke. The coil windings are implanted into the slots of the
solenoids.

A simplified model of the fast tool servo is

F =
µ0A

8
(

Ni1
g0 − X

)2 −
µ0A

8
(

Ni2
g0 + X

)2, (1)

where µ0 is the permeability,A is the effective area of
the armature,g0 is the air gap at the middle position,N
is the turn number of the coils,I1 and I2 represent the
exciting currents in the front and rear solenoids, andx is
the displacement relative to the reference position in the
middle of the two solenoids.

For the mechanical system, a simplified model is,

X(s)

F (s)
=

1

Ms2 + Cs + K
, (2)

where M is the mass of the moving part, C is the damping
from the supporting flexures and the plastic film inserted
between air gaps, and K is the stiffness of the flexures.

The position sensing capacitance gauge can be repre-
sented by a low pass filter with a pole at 40kHz.

Y (s)

X(s)
=

1

τss + 1
, (3)

where Y is the sensor output, andτs is the filter time
constant associated with the position sensor.

The whole system is controlled by digital computer with
sampling timeTs, thus the associated zero-order-hold will
bring aboutTs/2 time delay. The A/D and D/A convertor
conversion time and computation time adds up toTc. Since
Ts is selected based onTc plug the task switching time,
they are very close to each other. So the total system time
delay will be:

Td = Tc + Ts/2 ≃
3

2
Ts. (4)

The transfer function for the whole time delay will be:

Xd(s)

X(s)
= e−

3

2
Ts , (5)

whereXd is the delayed version of position signal X.

III. D YNAMIC NONLINEAR COMPENSATION

The electromagnetically driven actuator is difficult to
control in the sense that the actuating force is proportional
to the current squared and inversely proportional to the air
gap squared. A feedback linearization method was proposed
to compensate these nonlinear behavior in [4]. The idea is
to compensate the nonlinear model of the actuator using
a static inverse model as the compensator, so that all the
nonlinear effect cancels out. However, in high frequency
operation, the actuating force will decrease with frequency
because the magnetic field cannot penetrate the magnetic
material as result of the induced eddy current.

To reduce the eddy current induced along the magnetic
flux path, in the design phase sintered soft magnetic material

is selected for making both the armature and the solenoids.
But the eddy current still will appear at high frequency
region.

The exist of the eddy current will degrade performance
of the linearizing compensator in [4]. To solve this problem,
we need a more detailed model than equation (1). The
actuator is composed of a pair of solenoid. According to
the Maxwell equations we incorporate the eddy current into
the model:

H1 =
Ni1

g0 − X
, H2 =

Ni2
g0 + X

, (6)

H1 = E(s)H1, H2 = E(s)H2, (7)

F =
µ0A

8
(H1)

2
−

µ0A

8
(H2)

2, (8)

whereH1 andH2 represent nominal magnetic field intensity
assuming there does not exist any eddy current,H1 and
H2 are the actual magnetic intensity,E(s) represent the
eddy current attenuation effect. Although the eddy current
process is governed by partial difference equation,E(s) can
be approximated with a half order system with constant -
45 degree phase lag at high frequency. By this partition
of the actuator model, we can inverse the model part
by part as shown in fig. 2.K1(x) and K2(x) are the
nonlinear position dependent gain between ampere-turn and
the nominal magnetic intensity, and the ”square” block
relates the total magnetic field to the actuating forces. The
two inputs of the dynamic compensatorFD1 and FD2 are
the desired forces for each solenoid. In order to reduce the
requirement on thedi

dt
, a constant force biasFB is added

to the desired actuating forceFD of the whole actuator,

FD1 =

{

FD + FB when FD ≥ 0
FB when FD < 0.

(9)

FD2 =

{

−FD + FB when FD < 0
FB when FD ≥ 0.

(10)

Since the biased force will cancel each other, we have

F = FD. (11)

According to fig. 2, if E(s) is ignored as constant,
then the resulting compensator will be the same as that in
[4]. Basically, this dynamic compensation method is feed-
forward model based method. The effectiveness is highly
dependent on the model accuracy. So in practice, it can
partially compensate the nonlinearity of the actuator, butis
not expected to linearize the actuator completely.

IV. L OOPCOMPENSATION

Based on the dynamic nonlinear compensation, the plant
can be represented by a linear model:

Xd(s)

FD(s)
=

e−
3

2
Ts

(Ms2 + Cs + K)(τss + 1)
, (12)

In order to achieve as high bandwidth as possible, lead
compensator is required to ensure enough phase margin.
However, the bandwidth of the closed-loop system is lim-
ited by the sensor bandwidth and the non-minimum-phase
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Fig. 2. Dynamic nonlinear compensation block diagram.

element e−
3

2
Tss. Ideally, if the loop transmission goes

across the 0db line with -20db/decade slope, the time delay
determine that the cross over frequencyωc is limited by

−
3

2
Tsωc −

π

2
> −π (13)

=⇒ ωc <
1

6
ωs. (14)

where ωs is the sampling frequency. Considering the
aliasing effect of the digital controller and the additional
phase lag from the sensor dynamics, the intended crossover
frequency of the loop transmission is set at 1/20 of the
sampling frequency:

ωc =
1

20
ωs. (15)

The phase lag from the time delay at this crossover fre-
quency will be

−
3

2
Tsωc = −

3

2

2π

ωs

ωs

20
= −27◦. (16)

The lead-lag compensator is designed to provide 70 degree
phase advance atωc. At low frequency region, an integrator
is added to increase the controller gain. The compensating
controller takes the form of

C(s) = K(1 +
KI

s
)(

τZs + 1

τP s + 1
), (17)

whereKI is the integrator gain,τZ = 7/ωc andτP = 7ωc

are the time constants for the zero and pole of the lead-lag
compensator.KI is selected to ensure that the system has
30 degree phase margin.

V. REPETITIVE CONTROL

The trajectory of the fast tool servo is synchronized with
the spindle rotation and thus are composed of multiple
harmonics at the spindle rotation frequency. Hence most of
the trajectory energy are concentrated at multiples of spindle
frequency. In order to reduce the tracking error, according
to the internal model principle, the resonator models need
to be incorporated into the control to enhance the gain of
the loop transmission at these frequencies. The repetitive
controller are designed as:

N
∑

i=1

Kis

s2 + ω2

i

. (18)

where,ωi is the i-th resonant frequency of the repetitive
controller corresponding to the spindle harmonics,Ki is
gain of the associated resonator and N is the total number of
the implemented resonators. All these resonance frequencies
are set below the crossover frequency of the compensated
loop in the last section. This repetitive controller is im-
plemented as a plug-in type as shown in fig. 3. In the
figure, R is the trajectory input,X is the output position
and e is the tracking error signal. The integrator gain is
K0, which is smaller than the controller gainKI in the
last section because additional phase lag will be introduced
when plugging these resonator into the loop. Hence, the
integer gain needs to be reduced to ensure stability. Actually
the integer can also be interpreted as a resonator with
resonant frequency of 0:

Integrator :
K0

s
=

K0s

s2 + ω2
0

, (19)

whereω0 = 0. From this point of view, all the resonator
gains can be tuned to match the integer gain at the cross
over frequency.

The integrator in section IV is

CI(s) = 1 +
KI

s
. (20)

The integrator with repetitive controller plugged in is

CR(s) = 1 +
K0

s
+

N
∑

i=1

Kis

s2 + ω2

i

. (21)

To ensure controllerCI and controllerCR have the
same complex gain at the cross over frequencyωc of
the compensated loop in section IV, we need match their
imaginary part ats = jωc:

−
KI

ωc

= −
K0

ωc

+
N

∑

i=1

Kiωc

(−ω2
c + ω2

i
)
, (22)

=⇒ KI = K0 +

N
∑

i=1

Kiω
2
c

(ω2
c − ω2

i
)
. (23)

When the phase balancing equation of (23) is satisfied, the
controller with multiple resonators plugged in will provide
the same phase margin and the same cross over frequency
as the the controller in section IV, and thus the stability is
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Fig. 3. Block diagram of repetitive controller structure.
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Fig. 4. Resonator gain weighting coefficient as a function ofωi/ωc .

guaranteed. According to equation (23), there is a weighting
function for the resonator gains

W (ωi) =
ω2

c

ω2
c − ω2

i

. (24)

As shown in figure. 4, the horizontal axis is the normalized
of the resonant frequency and the vertical axis is the gain
weighting coefficient. The higher the resonating frequency
ωi, the more weighting the associated gain and thus more
phase lag associated with this resonator. This relation is
highly nonlinear. Forωi < 0.5ωc, the gain weighting
coefficientW do not change much with the highest value
of 1.3 atωi = 0.5ωc.

Usually all the resonating frequencies are smaller than
half of the intended cross over frequencyωc. In this case,
the phase balance equation (23) can be approximated as :

KI = K0 +

N
∑

i=1

Ki. (25)

This means that the resonators can be taken as integrator
when selecting their gains. As for how to set the value of

E
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Fig. 5. Resonator implemented in the AFC format.

the resonator gains, this depends on the disturbance force
and trajectory amplitudes at various harmonics. A practical
way is to set:

K0 =
KI

2
(26)

Ki =
KI

2N
, for i = 1, ...,N. (27)

This is useful especially for varying spindle speed case.
When the spindle speed is changing and thus the resonating
frequencies of the repetitive control need to change accord-
ingly, Ki can be kept as constant without sacrificing the
system stability.

In order to compensate the spindle speed variations,
each resonator is implemented in the adaptive feed-forward-
cancellation (AFC) format as shown in fig. 5.θ is the
spindle rotation angle, andni is the order of harmonics of
the spindle rotation frequency. If the speed has an angular
velocity of Ω, then theni = ωi/Ω. According to the proof
in [6], it can be shown that the relation betweene andUi

in Fig. 5 is equivalent to the corresponding resonator block
in fig. 3. In this implementation, the resonating frequency
is locked to the spindle rotation and thus can effectively
reduced the spindle-synchronized trajectory and improve the
rejection of the spindle-induced disturbance.

VI. EXPERIMENT AND RESULTS

The controller is implemented using a DSPACE 1103
board, and all the digital controllers are in the discrete
domain.
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Fig. 6. Actuator Static Characteristics Result.
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A. Plant Identification

In order to implement the dynamic nonlinear compen-
sation method of section III, a static performance test is
performed to get the actuator characteristicsK1(x) and
K2(x). The actuating force as a function of armature
position and exciting current is shown in fig. 6 for the rear
solenoid . From this result,K2(x) can be fitted out and
implemented in the nonlinear compensator.

To compensate the eddy current effect, theE(s) can
be extracted by identifying the frequency response from
exciting currentI(jω) to the induced voltageV (jω) across
the two terminals of the solenoid as shown in fig. 7. The
eddy current begin to dominant at 4kHz. A rational transfer
function can be fitted to the test result for the frequency
rang from 1k to 10kHz and is implemented for the dynamic
compensator.
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B. Loop Compensation

The compensated loop transmission is shown in fig. 8.
The sampling frequency is 100kHz, and the cross over
frequency is 5kHz with 30 degree phase margin. The
structure resonating peaks above 20kHz will not destabilize
the system. The closed loop frequency response is shown
in fig. 9. The achieved -3dB bandwidth is 10kHz. Fig. 10
shows a 100nm step response of the closed loop system.
For the fixed position command, the regulation root-mean-
square(RMS) error is 1.2nm when the spindle is turned
off. After the spindle is turned on, the error degrades to
3.5nm RMS because of the PWM noise from the spindle
amplifier. The full stroke of 50µm can be achieved up to
1kHz operation. The maximum acceleration is 160 g when
tracking a 9µm peak-to-valley 3kHz sine wave.

C. Repetitive Control

For the spindle synchronized trajectory, the repetitive
controller needs to be plugged into the loop. 10µm peak-
to-valley sine wave trajectory tracking at 1kHz is tested.
When no repetitive controller is plugged in, the tracking
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Fig. 10. Step response of the closed loop system.

error is 1.048µm RMS. When a resonator with frequency
at 1kHz is applied, the error is 0.0214µm RMS. The
tracking error reduces to 0.0148µm RMS when a second
resonator at 2kHz is further applied and to 0.0073µm
RMS when a third resonator at 3kHz is also added. This
shows that the nonlinearity of the actuator and the power
amplifier will introduce disturbance forces of second and
higher order harmonics, and the repetitive controller with
poles at multiple harmonic frequencies can significantly
improve the tracking error.

D. Diamond Turning of Aluminum

A cutting experiment is conducted on a Moore diamond
turning machine. The same DSPACE 1103 board controls
both the X-Z slides of the machine and the FTS. Because
the computation ability constraint of the board, a multiple
sampling rate system is implemented. The sampling rate
for the spindle and X-Z slides controller is 4kHz to ensure
that the X-Z slides controls achieve 100Hz bandwidth. As
a result, the sampling rate for the FTS controller has to be
reduced to 83kHz and the associated cross over frequency
is 4kHz for the FTS control loop. As shown in fig. 11, the
sinusoidal surface of 30 harmonics per revolution is faced
on a piece of aluminum material.

VII. C ONCLUSION

A dynamic nonlinear compensation is introduced to com-
pensate the nonlinearities and frequency dependent char-
acteristics of the electromagnetic actuators. Based on the
integrator gain, the plug-in type repetitive controller can
be easily designed and implemented. Using these meth-
ods, the electromagnetically driven fast tool servo achieves
10kHz bandwidth (-3db) and 7nm error (RMS) for tracking
10µm(peak-to-valley) sine wave at 1kHz.
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