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Abstract— This paper deals with a stochastic optimal control
problem involving discrete-time jump Markov linear systems.
The jumps or changes between the system operation modes
evolve according to an underlying Markov chain. In the model
studied, the problem horizon is defined by a stopping time
τ which represents either, the occurrence of a fix number
N of failures or repairs (TN), or the occurrence of a crucial
failure event (τ∆), after which the system is brought to a halt
for maintenance. In addition, an intermediary mixed case for
which τ represents the minimum between TN and τ∆ is also
considered. These stopping times coincide with some of the
jump times of the Markov state and the information available
allows the reconfiguration of the control action at each jump
time, in the form of a linear feedback gain. The solution
for the linear quadratic problem with complete Markov state
observation is presented. The solution is given in terms of
recursions of a set of algebraic Riccati equations (ARE) or a
coupled set of algebraic Riccati equation (CARE).

I. INTRODUCTION

In order to increase the availability of the controlled
systems as well as to reduce the risk of safety hazards, the
study of systems subject to abrupt changes in their structure
becomes necessary. One stochastic model appropriate for
the analysis of these fault tolerant control systems, is known
in the literature as Markovian Jump Linear Systems (MJLS).
A MJLS is composed by a finite or countable infinite
number of linear systems, and each of them describes a
possible dynamic of the system operation. The transitions
among each admissible operation mode are determinate by
a jump parameter that is associated to a Markov chain.

Although, it has passed more than forty years since
the pioneer contribution of Krasovskii and Lidski [1], the
study of MJLS has continuously attracted the attention of
many researchers. Meaningful advances has been obtained
in this area of research with emphasis in many real world
applications. Regarding stability, optimal control problems
and applications, see [2], [3], [4], [5], [6], [7], [8], [11]
for a small sample. In particular, the performance index
associated with the Jump Linear Quadratic (JLQ) control
problem in these studies is related to finite horizon , see [2],
[5], [6] or to purely infinite horizon, see [3], [5], [8], [9]
for instance.
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J. B. R. do Val and Y. Cáceres are with UNICAMP, Univ. Est.
de Campinas, Fac. de Eng. Elétrica, Depto. de Telemática, C.P. 6101,
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A situation of interest arises when one studies the JLQ
control problem for MJLS until the occurrence of a stop-
ping time τ of the joint process {xk,θk, k ≥ 0} modelled
by (1) and (2) below. This stopping time can represent, for
instance, the accumulated nth failure or repair of the system.
In other situation, it can represents the occurrence of a cru-
cial failure event, which may occur after a random number
of failures. In both situations the system is paralyzed after
the event and the future behavior is of no concern.

The stochastic stability analysis for the case where τ
represents the occurrence of a fix number N of failures
or repairs of the system (τ = TN), has been developed
in [13]. In that work, it was introduced a new concept named
stochastic τ-stability (see Definition 1), tailored for prob-
lems in which the horizon of the problem coincides with
the occurrence of a stopping time. In addition, necessary
and sufficient conditions to ensure the stochastic τ-stability,
less restrictive than that pointed by [6], were established.
By means of a LMI characterization, in [15] the control
problem with incomplete Markov states observation has
been studied for this case. Using the stochastic τ-stability
concept, conditions for stability in the case τ represents
the occurrence of a crucial failure event (τ = τ∆) and in
the case τ represents the minimum between τ∆ and the
aforementioned N-failures occurrence, named here mixed
case, have been obtained in [14].

In this paper, under the assumption of perfect observation
of both, jump and linear state variables, we study the JLQ
problem for the three situations described above. Actually,
the mixed case is used as strategy for studying the other
cases. The paper is organized as follows. In Section II
some notations are presented and the control problem is
precisely stated. In Section III we present the stochastic τ-
stability concept adequate to the setting problems as well as
results concerning the quadratic cost. In Section IV the JLQ
problem is solved and finally the conclusions are presented
in the Section V.

II. NOTATION AND PROBLEM FORMULATION

Consider the discrete-time homogeneous Markov chain
{θk;k ≥ 0} with space state X = {1, . . . ,s} ∪ {∆} (T =
{1, . . . ,s} is the collection of transient states and ∆ is a
cemetery state), initial distribution µ = (µ1, . . . ,µi) where
µi = P(θ0 = i), for all i∈X and transition probability matrix
P = [pi j] where

pi j := P(θk+1 = j | θk = i), ∀i, j ∈ X, k = 0,1, . . . . (1)



Throughout this paper, the following notation is adopted.
R

n denotes the n-dimensional real space and M m×n (M m)
and the normed linear space of all m× n (m×m) real
matrices. The transpose of matrix U is indicated by U ′ and a
positive semidefinite matrix (positive definite) is represented
by U ≥ 0 (U > 0). Thus, the closed (opened) convex cone
of all the positive semidefinite (positive definite) matrices in
M m is denoted by M m0 = {U ∈M m :U =U ′≥ 0} (M m+).
The linear space of all sequences of r real matrices in
M m×n (M m) is represented by M

m×n = {U = (U1, · · · ,Ur) :
Ui ∈M m×n, i∈X} (Mm). For the sake of notational simpli-
fication, M

m0 is written when Ui ∈M m0, for all i ∈ X and
M

m+ is written when Ui ∈M m+. The standard vector norm
in R

n is indicated by ‖ · ‖ and the corresponding induced
norm of matrix U by ‖U‖. In addition, rσ (U) and N {U}
indicate the spectral radius and the null space of U ∈M m,
respectively, and a∧b denotes min{a,b} . Let 11{.} be the
Dirac measure. For U ∈M

m0, the following operators are
defined

E
∆

i (S) = ∑
j 6=i, j 6=∆

pi jS j and Ei(S) = ∑
j∈X

pi jS j.

Let the discrete-time Markovian Jump Linear Systems
(MJLS) defined on the fundamental probability space
(Ω,F,{Fk},P),

S :
{

xk+1 = Aθk xk +Bθk uk, x0 ∈ R
n, θ0 ∼ µ

yk = Cθk xk +Dθk uk k ≥ 0,
(2)

where {xk,θk;k ≥ 0} is the process state taking values in
R

n ×X; {uk;k ≥ 0} and {yk;k ≥ 0} are the control and
output process, respectively.

When θk = i, the MJLS evolves according to the “ith
mode”, namely, Aθk = Ai ∈ A ∈ M

n, Bθk = Bi ∈ B ∈
M

n×p, Cθk = Ci ∈ C ∈ M
q×n e Dθk = Di ∈ D ∈ M

q×p. In
addition, one considers A∆ = C∆ ≡ 0. The MJLS as defined
is trivially a strong Markov process, see [16, p. 72].

Consider the stopping time τ∆, defined as the hitting-time
of ∆, i. e., the visit first time to state ∆,

τ∆ = inf{n≥ 1 : θn = ∆}.

In addition, since the occurrence of any fault or repair is
associated with the jump of the Markov chain state, define
the sequence T N = {Tn; n = 0,1, . . . ,N} of {Fk}-stopping
times

T0 =0
Tn =min{k > Tn−1 : θk 6= θTn−1}, n = 1,2, . . . .

We assume that at each instant k, the linear state xk and
the Markov chain state θk are precisely known. Here, one
intends to deal with the optimal control problem involving
MJLS for which the horizon problem is given by a stopping
time τ of the joint process {xk,θk, k ≥ 0} modelled by (1)
and (2). Particularly we will consider the following cases:

case τ = TN : τ represents the time of occurrence of a
finite number N of failures or repairs. The control

law adopted is the linear feedback law

uk =

(N−1

∑
n=0

Kn
θk

11{Tn≤k<Tn+1}

)

xk, k ≥ 0. (3)

Here, the control gains are denoted by {KN , . . . ,K1}
where Kn = (Kn

1 , . . . ,Kn
s ) and Ki ∈M p×n.

case τ = τ∆: τ represents the time of the jump into the
state ∆, associated with a ’crucial failure’ occurrence.
The control law adopted in this case is

uk = Kθk xk, k ≥ 0. (4)

The control gains are denoted by K = (K1, . . . ,Ks)
and Ki ∈M q×n.

Finally, the operation cost associated to the problem is
defined by

J(x(0),u(·)) =: E
[τ−1

∑
k=0
‖yk‖

2 + x′τ Sθτ xτ

]

, (5)

where S ∈M
m0 is some terminal cost.

To conclude, the problem consist in obtaining a lin-
ear feedback gains sequence {KN , . . . ,K1} (a unique lin-
ear feedback gain K, respectively) which produce a τ-
stabilizable action in the form (3) ((4), respectively), that
minimizes the cost criteria in (5).

Remark 1: The intermediary case τ = τ∆ ∧ Tn for 0 <
n≤ N, named mixed case, is also studied. Despite of being
interesting in itself, it is also used here as strategy for
studying both cases τ = TN and τ = τ∆. The former case can
be considered a particular case of τ = τ∆∧TN , by adopting
TN ≡ τ∆∧TN . For the latter case we study limN→∞{τ∆∧TN}
in the mixed case.

III. BASIC CONCEPTS

Consider the autonomous discrete-time MJLS S0
(S with u≡ 0).

A. Stochastic Stability
We adopt the stochastic τ-stability concept introduced

in [13] that is tailored to the announced problems.
Definition 1: Consider an stopping time τ with respect

to {Fk}. Then, the MJLS S0 is Stochastically τ-Stable (τ-
SS) if for each initial condition x0 and initial distribution
µ

E
[

∑
k≥0
‖xk‖

211{τ≥k}

]

< ∞. (6)

The results below were proved in [13] and [14], and they
provide necessary and sufficient conditions to ensure the
stochastic τ-stability in the cases previously described.

Theorem 1: Let τ ∈ T N or τ = τ∆ ∧ Tn, n ≤ N. The
following assertions are equivalent:

i) The MJLS S0 is τ-SS.
ii) For any given set of matrices Q ∈M

n+, there exists
a unique set of matrices L ∈ M

n+, satisfying the
Lyapunov equations

piiA′iLiAi−Li +Qi = 0, ∀i ∈ X. (7)



iii) rσ (p1/2
ii Ai) < 1, ∀i ∈ X.

Theorem 2: Let τ = τ∆. The following conditions are
equivalent:

i) The MJLS S0 is τ-SS.
ii) For any given set of matrices Q ∈M

n+, there exists
a unique set of matrices L ∈ M

n+, satisfying the
Lyapunov equations

s

∑
j=1

pi jA′iL jAi−Li +Qi = 0, for i = 1, . . . ,s. (8)

Remark 2: Note that the conditions for τ-stability pre-
sented in Theorem 1 are given in terms of uncoupled Lya-
punov equations. On the other hand, although the conditions
for τ-stability provided in Theorem 2 are given in terms of
coupled Lyapunov equations, they differ from the criteria
for purely infinite horizon of comparative interest, proposed
in [5], since that ∑s

j=1 pi j ≤ 1.
Remark 3: Observe that τ∆ coincides with some of the

jump times Tn and, also the minimum τ = τ∆ ∧ Tn, n ≤
N, coincides with Tn for some n ≤ N. Hence, for future
reference, we will consider the two types of τ-stability
namely, the Tn-stability given in Theorem 1 and the τ∆-
stability given in Theorem 2.

B. Quadratic Cost

Here, the quadratic cost in (5) is evaluated when the
horizon corresponds to the stopping times TN , Tn∧ τ∆ with
0 < n ≤ N and τ∆. For notational convenience, we denote
J(x(0)= x,u(·)≡ 0) by J(x). Initially we suppose that θ0 = i
with probability one, i.e., µi = 1 for some state i ∈ X and
we write J(x, i) . When the initial distribution µ is general,
one has that J(x) = ∑i∈X J(x, i)µi. For the above two first
stopping times we write JN(x, i) and Jn(x, i), respectively,
in order to emphasize the indices N and n.

The next proposition follows straightforwardly from
Lemma 1 presented in [13], since that V n(x,θ0) defined
in that work coincides with the cost Jn(x,θ0) defined here,
replacing xk by yk.

Proposition 1: Let τ = Tn∧τ∆, 0 < n≤ N and S0 τ-SS.
An equivalent form of expressing Jn(x, i) is

Jn(x, i) = x′Ln
i x, with n = 1, . . . ,N (9)

where the matrices Ln
i ∈M n+ are obtained recursively as

Ln
i − piiA′iL

n
i Ai = C′iCi +A′iE

∆
i (Ln−1)Ai + pi∆A′iS∆Ai, (10)

with L0 = S.
Corollary 1: Let τ = TN and S0 τ-SS. The cost JN(x, i)

can be expressed as

JN(x, i) = x′LN
i x,

where the matrix LN
i ∈M n+ is obtained recursively as

Ln
i − piiA′iL

n
i Ai = C′iCi +A′iE

∆
i (Ln−1)Ai (11)

for n = 1, . . . ,N and L0 = S.
Proof: For recovering the case τ = TN , it is enough

to consider a Markov chain with space state X = {1, . . . ,s}.

Consequently, the term pi∆A′iS∆Ai is null and (11) is ob-
tained immediately from (10).
The proof of the next Corolary is in Appendix A.

Corollary 2: Let τ = τ∆ and S0 τ-SS. The cost J(x, i)
can be expressed as

J(x, i) = x′Lix,

where the matrix Li ∈M n+ is the solution of the equation

Li− piiA′iLiAi = C′iCi +A′iE
∆

i (L)Ai + pi∆A′iS∆Ai. (12)

Moreover, Li is the limit of Ln
i when n→ ∞, where Ln

i is
obtained recursively as in (10), with initial condition L0 =
S = 0.

IV. CONTROL PROBLEM

For some Y ∈M n and 0≤ ρ ≤ 1, consider the algebraic
Riccati equation (ARE) in the unknown Li,

Li = A′i(ρLi +Y )Ai)+C′iCi− [A′i(ρLi +Y )Bi +C′iDi]·

[B′i(ρLi +Y )Bi +D′iDi]
−1 · [B′i(ρLi +Y )Ai +D′iCi] (13)

and define

Ãi = [Ai−Bi(D′iDi)
−1D′i]Ci and C̃i = [I−Di(D′iDi)

−1D′i]Ci.

A. Case τ = TN

The objective of this section is to determine the linear
feedback gain sequence {KN , . . . ,K1} that produces a τ-
stabilizable action in the form (3) and minimize the cost
criteria in (5) when τ = TN .

The following result was proved in [12] and it presents
the solution of equations of type (13). The proof idea
consists of writing these equations in standard ARE form.

Proposition 2: Suppose that the pair (p1/2
ii Ai, p1/2

ii Bi) is
stabilizable and the pair (C̃i, p1/2

ii Ãi) is detectable.
i) There exists a unique Li ∈M m0 solution to (13).

ii) Let X̂ and X̃ ∈M m0 be the corresponding solutions
to (13) when Y = Ŷ and Y = Ỹ , respectively, then if
Ŷ ≥ Ỹ it implies that X̂ ≥ X̃ .

The next Theorem allow us to obtain the optimal gain
sequence for the problem with τ = TN .

Theorem 3: Assume that (p1/2
ii Ai, p1/2

ii Bi) is stabilizable
and (C̃i, p1/2

ii Ãi) is detectable, for each i ∈ {1, . . . ,s}. The
optimal gain sequence {KN , . . . ,K1} is stabilizing and it is
obtained recursively as

Ki
n = [B′i(piiLi

n +Y n−1
i )Bi +D′iDi]

−1

·[B′i(piiLi
n +Y n−1

i )Ai +D′iCi], (14)

for n = 1, . . . ,N, and i = 1, . . . ,s, where Ln
i is solution of

recursive ARE

Ln
i = A′i(piiLi

n +Y n−1
i )Ai +C′iCi

− [A′i(piiLi
n +Y n−1

i )Bi +C′iDi]

· [B′i(piiLi
n +Y n−1

i )Bi +D′iDi]
−1

· [B′i(piiLi
n +Y n−1

i )Ai +D′iCi], (15)



with Y n−1
i := E ∆

i (Ln−1) and L0 = S. Furthermore, the
optimal cost is given by

JN(x, i) = x′LN
i x.

Proof: For simplicity, we write ETk [·] and E0[·] to
represent E[· | xTk ,θTk ] and E[· | x0,θ0], respectively. The
result is based on the principle of optimality together with
the fact that the MJLS is a strong Markov process, from
which we can write

Jn(xTk ,θTk)≤ ETk

[Tk+1−1

∑
l=Tk

‖yl‖
2 + Jn−1(xTk+1 ,θTk+1)

]

. (16)

Besides, using the homogeneity property we can write

Jn(x,θ0)≤ E0

[T1−1

∑
l=0
‖yl‖

2 + Jn−1(xT1 ,θT1)

]

, (17)

whenever XTk = x and θTk = θ0.
Let n = 1. Using the Corolary 1 applied to controlled

system S , the control problem can be summarized as
follows

inf
L1

i ∈M n+
x′L1

i x

s.t: L1
i − piiÂ′iL

1
i Âi = Ĉ′iĈi + Â′iE

∆
i (S)Âi,

with Âi := Ai + BiKi and Ĉi := Ci + DiKi. The solution for
this problem involves the solution of (13) with Y := E ∆

i (S)
and ρ := pii. Hence, according to Proposition 2 we get
Ki

1 as in (14) with Yi = E ∆
i (S). Considering (16) and (17),

and proceeding similarly as above, for n = 2, . . . ,N, with
Y n−1

i := E ∆
i (Ln−1), we obtain {KN , . . . ,K1} as required.

Applying Theorem 1(ii), notice that the Tn-stabilizability
problem is equivalent to determine the stabilizability of the
pair (p1/2

ii Ai, p1/2
ii Bi) for each i ∈ X, in the deterministic

sense. Hence, the gains Kn
i above obtained are Tn-stabilizing

for each n = 1,2, · · · ,N.

B. Case τ = τ∆

This subsection presents the JLQ optimal control problem
associated with the case τ = τ∆. Here, we wish to determine
a unique linear feedback gain K which produce a τ∆-
stabilizable action of form (4), in order to minimize the
cost criteria in (5). The strategy to deal with this problem
consists in seeking the limiting situation involving τ = τ∆∧
TN , with N → ∞. In this sense, according the Proposition 1
for the closed-loop system, for n = 1,2, · · · , we need to
consider the problem

inf
Ln

i ∈M n+
x′Ln

i x

s.t: Ln
i − piiÂ′iL

n
i Âi = Ĉ′iĈi + Â′i(E

∆
i (Ln−1)+ pi∆S∆)Âi,

with Âi := (Ai +BiKi) and Ĉi := Ci +DiKi.
For each n this control problem involves the solution of

ARE in Ln
i of the type (13) with Y defined as E ∆

i (Ln−1)+
(1−κ)piiLn−1

i + pi∆S∆ and ρ := κ pii.

In view of Theorem 2, we can announce that τ∆-
stabilizability of the pair (A,B) is equivalent to the exis-
tence of a set of matrices M ∈M

m+ for some Q ∈M
m+

such that

(Ai +BiKi)
′
Ei(M)(Ai +BiKi)−Mi +Qi = 0, (18)

holds for each i = 1, . . . ,s, and for some K = (K1, · · · ,Ks).
Remark 4: Note that if K τ∆-stabilizes the closed-loop

system, then Ki stabilizes (p1/2
ii Ai, p1/2

ii Bi) for each i =
1, · · · ,s.
In the sequel, we consider the Weak-detectability concept
for discrete-time MJLS as introduced in [10]. Firstly, con-
sider the set of observability matrices O∈M

n(n2s)×n, where
each of the matrices Oi ∈M m is defined as

Oi := [Wi(0)
... Wi(1)

... · · ·
... Wi(n2s−1)]′

for i ∈ {1, . . . ,s}, where Wi(k) is defined recursively as
Wi(k) := A′iEi(W(k−1))Ai, with Wi(0) := C̃′iC̃i.

Definition 2: The pair (A,C) is Weak-detectable iff
limk→∞ E{‖xk‖}

2 = 0 whenever x0 ∈N (Oθ0).
Regarding the role of the Weak-detectability in the char-
acterization of the solutions for CARE, we can state that
it assures mean square stability and indirectly uniqueness.
Hence, in this sense, it represents the less conservative
concept found in literature. The next proposition, borrowed
from [10], provides a test for Weak-detectability.

Proposition 3: The pair (C̃, Ã) is Weak-detectable iff
there exist a set of matrices M ∈M

m+ for some Q ∈M
m+

such that

(Ãi +HiOi)
′
Ei(M)(Ãi +HiOi)−Mi +Qi = 0, (19)

holds for each i = 1, . . . ,s, and some H = (H1, · · · ,Hs).
Remark 5: Note that the Weak-detectability of the pair

(C̃, Ã) does not imply the detectability of (C̃i, p1/2
ii Ãi) for

each i = 1, . . . ,s, but the converse implication is true.
The following proposition is a straightforward modification
of a result proved in [10].

Proposition 4: Assume that (C̃, Ã) is Weak-detectable.
There exists a unique solution P ∈M

m0 for

Xi = C′iCi +A′iEi(X)Ai− (A′iEi(X)Bi +C′iDi)

· (B′iEi(X)Bi +D′iDi)
−1 · (B′iEi(X)Ai +D′iCi) (20)

with i = 1, . . . ,s iff (A,B) is τ∆-stabilizable
Now, we can announce the Theorem 4 which allow us to
find K as desired. This theorem is a modification of a result
proved in [10].

Theorem 4: Suppose that (A,B) is τ∆-stabilizable and
(C̃, Ã) is Weak-detectable for each i = 1, · · · ,s. For n =
1,2, · · · , consider the solutions Ln

i ∈M m0 of the ARE’s, for
i = 1, · · · ,s

Ln
i = A′i(piiLi

n +E
∆

i (Ln−1)+ pi∆S∆)Ai +C′iCi

− [A′i(piiLi
n +E

∆
i (Ln−1)+ pi∆S∆)Bi +C′iDi]

· [B′i(piiLi
n +E

∆
i (Ln−1)+ pi∆S∆)Bi +D′iDi]

−1

· [B′i(piiLi
n +E

∆
i (Ln−1)+ pi∆S∆)Ai +D′iCi].



Then Ln
i → Li as n → ∞, for i = 1, · · · ,s, where L =

(L1, · · · ,Ls) is the unique positive semidefinite solution
to (20).

Proof: From the Proposition 4, there exists a unique
positive semidefinite solution L to (20). The existence of
the Ln

i for each n and each i = 1, · · · ,s is assured by τ-
stabilizability of (p1/2

ii Ai, p1/2
ii Bi), cf. Remark 4. Besides,

using Theorem 2, proposed in the Section 4 of [10], we
have that Ln

i converges to some L̃i as n→∞, for i = 1, · · · ,s.
Finally, from the uniqueness of L it follows that L̃ = L.

V. CONCLUSION

The Jump Linear Quadratic control problem involving
the discrete-time Markovian jump linear systems for which
the horizon consists of a class of stopping times τ is treated
here. In particular, we study the cases in which the stopping
time corresponds to a jump to the cemetery state (τ = τ∆) or
the N-free jump of the underlying Markov chain (τ = TN). In
addition, a mixed problem, where the time τ corresponds to
one of the two aforementioned times, whichever occurs first,
is also studied. The results concerning the quadratic cost and
the control problem that is appropriate for this intermediary
case are used as strategy for studying the former cases.
More specifically, the case τ = τ∆ can be studied by seeking
the limiting situation involving TN with N→∞ in the mixed
case, and the case τ = Tn can be considered a particular case
where TN coincides with the minimum with probability one.

The analysis of stability of the three cases described
above have been studied, cf. [13] and [14]. Here, the control
problem is solved by means of algebraic Riccati equations,
assuming complete state observation.

APPENDIX

The next Lemma, which proof is omitted, will be used
here as support.

Lemma 1: Consider τ = τ∆∧Tn and S0 τ−SS. Let V1 ∈
M

n+ and V2 ∈M
n+ be the correspondent solutions of (7)

when Q = Q1 and Q = Q2, respectively. If Q1 > Q2 then
V1 > V2.

Proof: First of all, notice that from the hypothesis
of τ-SS (Theorem 2) there exists a unique positive definite
solution P to the equation (12). Let us show by induction
on n that

Ln
i ≤ Ln+1

i ≤ Pi, n = 0,1, . . . . (21)

For n = 1, and each i = 1, . . . ,s, we have that L0
i = S0

i = 0
and then E ∆

i (L0) ≤ E ∆
i (P). Consequently, from (10), (12)

and Lemma 1, since Q1
i := C′iCi +A′iE

∆
i (L0)Ai + pi∆A′iS∆Ai

and Q2
i :=C′iCi +A′iE

∆
i (P)Ai + pi∆A′iS∆Ai are such that Q1

i ≤
Q2

i , it follows that

0 = L0
i ≤ L1

i ≤ Pi, i = 1, . . . ,s.

Suppose now that,

Ln−1
i ≤ Ln

i ≤ Pi, i = 1, . . . ,s

which implies E ∆
i (Ln−1) ≤ E ∆

i (Ln) ≤ E ∆
i (P). Thus, pro-

ceeding as above, from (10), (12) and Lemma 1 we ob-
tain (21). All in all, we showed that the sequence Ln

is limited monotone and thus converges to some P̃ ≥ 0.
However, taking the limit as n → ∞ in (10) we have that
P̃ will be a positive definite solution of (12), but from the
uniqueness of P it follows that P̃ = P
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