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Abstract—Our approach for near time-optimal control is  system provided that the control gain is sufficiently high.
based on Takagi-Sugeno fuzzy model of the maximum slope  Bartoszewicz [2] and Furutet al [4] propose time-varying
SMC sliding surface as an adaptive technique for tuning the  gjiging hyperplanes for uncertain second-order systemst Ha

current slope of the sliding surface to the maximum feasible - - . .
sope depending on the current state of system. The stability al [5] introduces fuzzy moving SMC to improve the tracking

conditions of this method are proved and respective measures ~ Performance of robot manipulators.
about the feasible maximum slope are presented. Experimental In Section 2 we present briefly the concept of maximum

results demonstrate the system behaviour. slope sliding lines (see [6]) applied to the double integrator,
| INTRODUCTION Which is used as the most simple second Qrder sy;tem that we
consider as a reference system. As the time-optimal control
Sliding mode control (SMC) has proved to be a successfitr it is developed in well known explicit form, any other con-
method for control of second-order nonlinear systems itrol algorithm aimed to obtain near TOC behavior is named
the presence of uncertainty. In theory, while the systemminimum-time control. The conditions for global stability of
is in sliding mode it is completely insensitive toatched the minimum-time SMC for the double integrator are proved,
uncertainties and its dynamics is completely determineflom which the maximum slope sliding line can be obtained.
by the sliding surface. Therefore, it has been widely useurther in Section 3 we expand the approach used for the
for control of the motion of various mechanical systemsgouble integrator for a general type of smooth nonlinear
motor drives and robots (see [11], [8], [5]). However, thissystem of second order. The conditions for getting the
perfect performance comes at a price. As known from thsliding line slope that keeps the system stability are proved.
literature [3], systems in sliding mode suffer from the sdfwo basic control algorithms are presented and discussed.
called chattering effect. Number of methods are proposed toThe first is based on a global maximum slope sliding line
deal with the problem boundary layer [11], fuzzy SMC [9] obtained by using the maximum bounds of the system state,
and approximations of the relay function. nonlinearity and disturbance. Takagi-Sugeno fuzzy model of
The control of mechanical systems often requires nahe sliding line established on a family of maximum slope
only robustness with respect to disturbances and uncertaingjiding lines corresponding to a set of operating regimes is the
but also fast transient response. For that reason, many t®re of the second algorithm. Conditions for global stability
searchers have contributed with methods for improvemefdr this model are proved. Section 4 represents experimental
of the transient performance of SMC. The SMC desigtests of the proposed methodology on real one-link robot
includes two stages: choice of a sliding surface and desigmm. The results show clearly the advantage of the second
of an appropriate control law. The most common slidingontrol algorithm.
surface is thehyperplane. It's main advantage is that the
original (possibly nonlinear) plant behaves as a linear syste
while in sliding mode. Consequently, the control design and
analysis becomes much easier. This choice also has somén this section we briefly outline the most common design
drawbacks. For highly nonlinear plants the design procedupases of sliding mode controllers. We take as a basic example
based on Lyapunov’s direct method tends to produce rathére control of the simplest second order system - the double
conservative results, which results in poor transient perfortegrator.
mance. One way to deal with this problem is to find mor«;A
accurate estimates of the upper bounds of uncertainties and
nonlinearities in system’s dynamics. In this way the stability The dynamical equations of double integrator are
conditions can be relaxed. Such approaches are reported in .
[12] and [10]. o= (1)
Alternatively, the form of the sliding surface can be &y = u(t)
nonlinear or adaptive. Newman [8] shows that for a Clas\ﬁlhere|u(t)| < Upas, Umay = 1. The SMC law is
of mechanical systems, sliding mode can be achieved along -
the time-optimal switching curve of a second order-linear u(t) = =K sgn(s), K >0 (2)

M. SLIDING MODE CONTROL OF SECOND ORDER LINEAR
SYSTEMS

Maximum slope dliding lines
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where the sliding surface is linear B. Minimum-time SMC of the double integrator

The time-optimal control for the double integrator (see for

s(x,t) = Azy(t) 4+ 22(t). ©) example [1]) is

Since t_he dynamics of the syste_m_ in slit_jing mode_is fully Uopt (1) = —sgnseo(x, 1), lu(t)] < 1.
determined by the equation= 0, it is obvious that higher

value of\ implies faster response of the system. However, thEhe respective switching line is

choice of A is not arbitrary. For global asympthotic stability 1

the Lyapunov functionV/(s) = 3s* has to have minimum st0 = 71(t) + §|l‘2(t)|902(t)- (8)

under the condition _ )
. Now we rewrite (7) in the form
Vis) <0

3106, 6) = a(t) + 5 oo () o (1) ©

V(s) = s(Aws + 2i2) < 0 Here we use index1” to distinguish betweer = 0 from (3),
2 and s;(x,t) in (9). Comparing (9) with (8), the similarities
s(Ar2 — Ksgn(s)) < and the differences become obvious. Equation (8) represents
|s|(Az2sgn(s) — K) <0 a nonlinear curve, which is fixed in system’s phase domain,
) ) ) while (9) is a straight line through the origin with variable
which means that the system will be asymptotically stable glope depending ofx;|. However, the behavior of the system
K driven by (9) is close to the time-optimal. Wher| is small,
0<A< Tzl (4)  the slope of (9) can be large, but becomes smallét.if is
2 large. Therefore, our next step is to investigate the influence
Then the highest feasible slope,., of the sliding surface of the parameteh on the transient time and the possibilities

Further we get

within the entire range of for K = w4, IS to adjust it in such way that the SMC performance will get
- as close as possible to the TOC.
Amaz = o (5) Theorem 1: Consider the double integrator system (2)

with the control law

This means also that the entire control amplitude is used to

drive the system to the origin. The switching line, which u(t) = —Ksgn(s1(x,1)), K >0,

has t.h.e highest sIopﬂ. that does nqt _viola_lte the reac.hing\,vhere the switching line is given by (9). Assume that) <

condition, is calledmaximum slope diding line [6]. In this Umaw ANA K = ey = 1.

case The closed-loop systems is asymptoticaly stablg i§
Sms(x7 t) = )‘maxxl(t) + xQ(t)~ (6) A <2 (10)

However, the estimate given by (5) is rather conservativ&roof. Consider the Lyapunov function
because the highest value ©f is assumed. Therefore, for )

statesz, much smaller thanes,,,, the value of)\,,., is Vi(s1) = 3= s1(x,t)
underestimated. Contrarily, we modify the expression of the L .

sliding surface such thahe sope of the surface increases  The conditionV(s1) < 0 is developed as follows
when -, decreases and vice versa. This new sliding surface ’ el —

. . . V(S1) = 85181 =
is a function of the system state and the time . ) )
= s1(Ax1 + Zo|we| + zasgn(xe)ts) = (11)
(t) + 22(t) = 0. @) = s51(Az2 + 2|z2|d2).

ANV
X
2] Subsitutingzs () = u(t) from (2) in (11) yields
Using a SMC law (2) withK = wu,,4., We expect that .

s(x,t) =

the new sliding surface will give faster response preserving V(s1) = s1(Awz + 2[wz|d2)
system’s global asymptotical stability. The question that = s51(Aze — 2K |x2|sgn(s1))
arises naturally is if this is the true maximum slope or we can = |s1|(Azasgn(s1) — 2K|zs|) (12)

make further improvements? To answer, we have to compare
with the time-optimal control (TOC) behavior of the double
integrator. As TOC is the best control, any other control = [s1|[z2|(Asgn(z2)sgn(s1) — 2K).
will give worse performance. Nevertheless, we will focus O”g show thatV(
SMC solutions giving as close as possible to the time-optimal

peformance which we cathinimum-time SMC. Asgn(xa)sgn(sy) — 2K < 0.

= |s1](Alz2|sgn(za)sgn(s1) — 2K |z2)

s1) < 0 for all z # 0 it is sufficient that
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This inequality holds sincél = 1, that is form, it is not possible to make a comparison with the current
SMC law.
A<2 Let us for a while setf(x,t) = 0 in (13). The system
O (13) becomes a double integrator, subject to a disturbance.

. . . The respective maximum slope f&f = u,,,, iS given b
This result shows that if we increase the value ¢dwards P P maz 15 ¢ y

its limit A\ — 2, we achieve a faster transient response Amaz
without violation of the stability condition. When = 2, T2max
the SMC and TOC control laws become identicalAlf> 2, This means a part of the available control resoutgg, ..
the reaching condition no longer holds, which results in ais reduced to compensate the disturbance. Therefore, the
overshoot in the transient response. maximum slope sliding line provides worse performance if
the slope (17) is used for the entire rangeref

In the genarl case of (13) the maximum feasible slope is

Umaz — Nmax ) (17)

1. MINIMUM -TIME CONTROL OF SECOND ORDER

NONLINEAR SYSTEMS
In this section we expand the method to a more general Ay < Smaz — maz{f(x,t)} — lhmaz (18)

class of systems showing its limitations and possible reme- T2mag
dies. Consider the following second-order nonlinear systerwhich is even worse than (17).

Having this in mind, we suggest two approaches to find
minimum-time SMC control laws for the nonlinear system
iy = f(x,t) +u(t) +n(x1) (13)  (13). The first one is a direct extention of the approach in

where 7(x,) represents uncertainty and external distyrSection 11-B used for the double integrator. The second is to

bances,f is a smooth, (possibly) nonlinear function of theapply a method for co.nstructing the sliding surface by means
state and the time. We assume that < wmae, 21| < of a fuzzy model, as introduced in [6].

Timazs |T2| < Tomar @nd || < Nmae. The sliding mode A. Fixed dliding lines
control law and surface are

jil = X2

The design of the sliding surface is based on the property

u(t) = —K sgn(s), s(x,t) = Azy + 22 =0.  (14) of the systems in sl?ding mode 'to reject matched Qistur—
bances. Certain (nonlinear) terms in the system dynamics can

Similarly, we find the maximum slope of this surface thag|so betreated as a bounded disturbance. Hence, we simply

minimizes the Lyapunov function for the system. In othepdd the upper bounds of these termsyte) and calculate

words, the system motion in Slldlng mode should be as faﬂﬁe respective s|ope of the S||d|ng surface.

as pOSSible without loss Of Stablllty To prove that, we take Genera”y, this approach is conservative and m|ght not

again the Lyapunov function give a result if the control resources are not sufficient.

(2) Sliding surface similar to the time-optimal switching

1, However, for plants with linear overall dynamics it can be a
Vi(s) = 9% (x,1) very good option. Below we describe two typical cases:
Its derivative is _ - .
] (1) Linear sliding surface = 0 together with the control
V(s) = 58 = s(\iy + i) law given by (14) with the maximum slope (18). Such choice
= s(\xa(t) + f(x, 1) + n(x,t) 4 u(t)) (15) is conservative, but can be relaxed exploiting the properties
(

= [s|{sgn(s)[Aw2 + f(x,t) +n(x,t)] — K}. line given by (9)
To show thatV’ < 0, it is sufficient that s(x,t) = iy + Ta|za| = 0. (19)
sgn(s)[Azz + f(x,1) +n(x,8)] < K. To obtain a,,q., We search for the highest slope that
Then the slope\ can be determined by preserves the stability of the system using a Lyapunov
function. The respective sufficient condition is
A< K — f(XJI) B 77(X>t) (16)
‘CCQ‘ ' Qmaz < 2(K - max{f(x,t)} - nmaz)- (20)

Comparing (16) with (4), it is clear that the slope (16)The stability proof of this control law is very similar to
cannot be higher than (4) as its value dependsf@x,¢) Theorem 1, but it will not be presented here due to the
andn(x,t). Therefore, the maximum slope given by (16) idack of space. It is difficult to say which of the two cases
always smaller than (4). gives better performance because it depends on the particular
Since the solution of the time-optimal control problem forsystem dynamics. Therefore, the best option is to evaluate
the general nonlinear system (13) is not available in closdubth designs in order to choose the right one. If both solutions

628



are too conservative, the method given in the next section canThe control law is
relax the stability condition at the expense of more complex
design procedure and a higher computational load. u(t) = —Kmazsgn(ss(x,1))-

B. Takagi-Sugeno fuzzy model of the sliding surface To justify the stability of the system we state the following

The conservatism of the methods with fixed sliding surfac{aheorem
results from the fact that the slopes in (18) and (20) are Theorem 2: Consider the dynamical system (13) with the
calculated for thevorst-case values of the nonlinear function control law (26). Let the sliding surface be given by the
f(x,t). The main idea of thduzzy minimum-time sliding Takagi-Sugeno fuzzy system
mode control, introduced in [6], is to overcome this drawback Rulei: IF z; IS LX]; AND z, IS LX, THEN
by means of constructing the sliding surface as a convex i i o
combination of maximum slope sliding lines obtained for 1061 = Anagn (8) +81(1), 0= 1"'Z27)
different operating points. In this way, the slope of the line
can be increased in points where the respective value uheres’ '(x,t) = 0 is @ maximum slope sliding line far; =
higher than the worst case value given in (18). xi andzy = .

Assume that the state variables vary in certain ranges: The sliding mode on the surface given by(x,t) = 0 is
asymptotically stable.
Proof. Consider the following Lyapunov functiori’ (e) =
T S T2 S Toh 353(x,t). Itis sufficient to show that” = sy < 0. From
We choose a set of values of andz?, to cover the whole (25) we obtain
operating range

(26)

zy <x1 <219

ot ={xy, 23, 23 .2}, di=1...r Z Amaa®1(t) + E1(6)+
wh = {z3, 25, x5 ... 2}, di=1...r (28)
. t
and for all these values, we obtain the maximum feasible +Zw Atnas 1 (¢)
slopes
, X Furthermore we assume
Am{lT - {/\max’ )‘marv /\maa:’ ] /\:naac}' (21)
Then we define a number of fuzzy sets over the state Zw 21522) - Apaz®1(t)| < Mimax (29)
variablesz? and z4 and denote them by X! and LX}
cqrresppndingly. I{f the plant is operating in a certain ranggubstituting (13) in (28) and further infg yields
x) € [x'—A;, x?4+A;]the switching line with a maximum .
feasible slope\’,,, in this range is Vo= stf
$1(1) = X1 (1) + 21 (8) (22) = Zw Maz1 (1) + #1(t) + Zw Mo 1
In this way, we build Takagi-Sugeno model
Rulei: IF 2, ISLX{ AND z, IS LX) THEN (23) = Zw%m )+ f(xt) +m — Kaxzsgn(sy)
sU(t) = ALy () + 2o(t) i=1...r
A combination of all active rules leads to the final output of + Z mazT
the fuzzy model
wi(x,t) - st = i
Sf(X, t) = Zz:lrw (X7 ) s'(t) (24) ‘8f| Z maz1(t) + f(x,1) +m
Do wi(x,t)
w'(x,t) is the iith rule strength, wher®,_, w(x,t) > 0 +Zw Al (D)]sgn(s) — Kmazsgn(ss)]
and w'(x,t) > 0 for i = 1,...r. Sliding line (24) can be
rewritten in the form:
The expression fol is negative if
Zw Xt mazx 1(t)+l‘2(t>, (25)
mam>|ZU7)\mam +f(X t)
where @' (x,t) = % wi(x,t) = pi(zi(t)) - (30)

wh(z2(t)), and uj(:c]) is the degree of membership of the P (x, ) + Zwl)‘lmmr
x;(t) to the fuzzy sefl X' for the i*" rule.
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As st(x,t) represents the maximum slope sliding line for théThe gaussian type input fuzzy Se&H’ cover the entire

point z; =z} andzy = x%, from (18) it follows that
Kmaw > )\:namemaw + max{f(x, t)} + Mmaz + Mlmaa;
Then inequality (30) remains valid, since

Kooz > )\inathnaw + mai{f(x t)} + Mmaz + Mimaz =

Zw m(uxl —I—maa:{f(x t)} +771 X, t + Zw /\maa

=1 =1

velocity range fromD to 300 deg/s with 9 supporting points
at{ 0, 37.5, 75, 112.5, 150, 187.5, 225, 262.5, 300
The slopes)i,, .. in the antecedent part of the rules are
obtained by evaluation of expression (32) at each supporting
point are:{ oo, 162.3, 70.4, 39.8, 24.5, 15.4, 9.3, 4.9, 1.6
}. From practical viewpoint, values ov@b does not make
sense because the mechanical time constant of the DC motor
is about0.045s. Moreover, the fuzzy set¥H3 and THY
correspond to velocities that are not reached during normal
operation. Therefore, we modify the original values and the
slopes used in the experiments afe25, 25, 25, 20, 20, 15,

Obviously, >/, WAL e < Amaz 1S true as\? . < Anax
andw® < 1.
This concludes the proof. 9,6,6}
O

IV. REAL EXPERIMENTS- ONE DEGREEOF-FREEDOM
ROBOT ARM

The control law is in the form given in Theorem 2, the gain
iS Kimaz = 0.6, which is the normalized maximum value
allowed in real experiments. To limit the chattering effect we
implemented doundary layer, i.e. the functionsgn(s) in the

In this section we demonstrate the design of a fuzzgontrol law is replaced byat(s/¢), where the thickness of
minimum-time sliding mode of a one degree-of-freedonthe layer¢ = 12.5. The positioning error was less that 0.01
robot arm. The robot link is driven by a Maxon DC deg, which lies within the backlash of the gearbox.

servomotor with a gearbox. The motor is controlled via

voltage amplifier. The control system is implemented on
dSpace 1103 6-axis control card, while the control design
performed using MATLAB and Real-Time Workshop.

60

SMC:\ =8; TSFSMCA [0 6-15

50

40

—T

— - SMC
— TSFSMC

The equation of motion is:

0, deg
w
2
|

JO+Fé+gsing = Bu(t) (31) 20 1

the parameters aref - load and rotor inertiaf' - viscous
friction coefficient; g - gravity force coefficient,B - input
gain. The joint angle is denoted By deg , the joint angular
velocity is 0, deg/s, while u is the normalized control
voltage applied to the input of the power amplifier. The
identified parameters ard: = 0.0514, F = 1.097, g = 9.09,
B =414.

The upper bounds of the state variables #ex 180 deg,
0] < 250deg/s.

The maximum slope is obtained from (16)

_|Bg'|_

lg sin 6|
J16]

In our casen,.. stands for the upper bound of the system _
uncertainty and unmodelled dynamics. To find an estimate of T0 evaluate the performance of the new algorithm we
it, we performed an experiment with a linear sliding surfac€ompared it with a SMC with a linear sliding surface with
where the slope is obtained from (32) fgf,.. = 0. The = 8. The testrun was a move from zero initial conditions to a
value we got isAn.. = 10.09. After few experimental New positionf; = 60 deg. Fig. 1 shows the time history of the

runs we found out that the highestthat guarantees global joint positions and angular velocities. It can be clearly seen
stability is A 8. This suggests that is bounded by thatthe TSFSMC controller reaches the desired position for

Nimaz ~ 60. about 0.4 s, while the SMC - for about 0.7 s. The motion in
We simplified the Takagi-Sugeno fuzzy model as théeaching phase is identical for both cases while the difference

variation of A with respect tod is more significant than the comes in the sliding phase where the fuzzy surface guides
variation with respect td. the state towards the origin much faster. The same result can

be verified if we look at the phase plane plot (Fig. 2). The
joint velocity achieved by TSFSMC is higher for almost all
positions while in sliding mode. The only exception is in

— Nhmax

/\maw -

(32)

Fig. 1.

Joint position and velocity for SMC and TSFSMC

~
~

Rulei : IF 0 IS TH;, THEN

fnaze(t) +€@), i=1...r (33)

s'(0,1) =

630



50

[1]

|
AN
S
S

3]

d e(t), deg/s

-150,

-200

-250,

[5]

-300 L 1 1 1 I
0 10 20 30 40 50 60

e(t), deg

[6]

Fig. 2. Phase plane trajectories for SMC and TSFSMC

_ N [7]
the end of the reaching of the sliding phase where TSFSMC
starts sliding slightly earlier at ~ 6 (Rule 8 is most active),
while the SMC continues to reach the line with= 8. For all

other velocities the slope used by TSFSMC is higher sind8] W. S. Newman.

it only increases as the state moves towards the origin.

V. CONCLUSION

[9]
We presented an approach for near time-optimal control
of second order smooth (possibly) nonlinear systems using

[2] A. Bartoszewicz.
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