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Abstract— The extremum seeking control has been proposed
to find a set point and/or track a time-varying set point so
that a performance index of the system reaches its extremum
point. In this paper, the extremum seeking control with sliding
mode is extended to solve the Nash equilibrium solution for an
n-person linear quadratic dynamic game. For each player, a
sliding mode extremum seeking controller is designed to let the
player’s linear quadratic performance index track a decreasing
signal so that the Nash equilibrium point is reached.
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I. I NTRODUCTION

Extremum seeking control approaches have been studied

since 50’s [1] and have been successfully implemented in

the control of a axial-flow compressor [2], the optimization

of the operation of biological reactors [3], and the opti-

mization of spark ignition automotive engines [4]. With the

extremum seeking control, a setpoint and/or a time-variable

setpoint is tracked to minimize or maximize a performance

index of the system [5][6][7][8].

As one of the extremum seeking control approaches, the

sliding mode extremum seeking controller shown in Figure

1 ensures ([9][10]) that the system converges to a pre-

designed sliding mode in a finite time, enters a vicinity of

the extremum point on the sliding mode, and stays there

with oscillation [11]. Although it is a tradeoff problem

to determine the control accuracy and convergence speed

by choosing controller parameters, it is possible to obtain

both high control accuracy and fast convergence speed after

Fig. 1. Extremum Seeking Control Using Sliding Mode

introducing time-variable parameters [11].

Recently, it is found that the sliding mode extremum

seeking control can also be implemented to solve the Nash

Solution [12]. For ann-person noncooperative dynamic

game, each player defines a performance index and adjusts

some of the control parameters to minimize his own perfor-

mance index [13][14] to find a Nash equilibrium solution.

In [12], it is assumed that the performance index for each

player is a function on the state, the input and the output

variables of the system, which may be in an unknown form

but is measurable or can be calculated from the measurable

variables.

In this paper, we will consider then-person noncoop-

erative linear quadratic dynamic game, where the control

inputs to be adjusted by each player are the feedback control

gains Ki (i = 1, 2, ..., n) and the performance indexJi

(i = 1, 2, ..., n) is the integration of a linear quadratic

function on the system state and input. In this case, the

calculation of the performance indices needs the future

information of the system state and input. The performance



indices can not be calculated on-line and thus can not be

directly used in the extremum seeking controller. As the

first step to design an extremum seeking controller for the

n-person noncooperative linear quadratic dynamic game,

the linear quadratic index is transferred to an equivalent

performance index, which can be calculated on-line based

on the system parameters and the feedback gain.

The arrangement of the paper is as follows. Section 2

describes the problem formulation and the transformation

of the linear quadratic index; Section 3 proposes the sliding

mode extremum seeking approach to find the Nash equi-

librium solution for a linear quadratic dynamic game; and

Section 4 gives simulation results.

II. PROBLEM FORMULATION

Consider ann-person noncooperative linear quadratic

dynamic game described by a linear dynamic system

d

dt
x(t) = Ax(t) +

n∑

i=1

Biui(t) (1)

with a linear quadratic performance index fori-th player

Ji =
∫ ∞

t0

(xT (t)Qix(t) + uT (t)Riu(t))dt, (i ∈ N ) (2)

whereA and Bi (i ∈ N ) are known constant matrices of

appropriate dimensions, (A, Bi) (i ∈ N ) are controllable

pairs,N is the index set of player defined as

N = {1, 2, · · · , n},

x(t) ∈ Rm is the system state variable,ui(t) ∈ R (i ∈ N )

is the control variable for each player,t0 is the system initial

time, Qi ∈ Rm×m and Ri ∈ R (i ∈ N ) are semi-positive

and positive definite symmetric matrices, respectively, and

(Qi, A) (i ∈ N ) are observable pairs.

To simply the notation and the discussion, the2-player

case is considered from now on. Extension to then-player

case is straightforward. The optimal control of the above

system is a game problem. The Nash Solution with the Nash

feedback strategy is given by [13]

u∗i (t) = −R−1
i BT

i Pix(t), (i = 1, 2)

which ensures for any system initial statex(t0) (x(t0) ∈
Rm) that

J∗1 |u1(t)=u∗1(t),u2(t)=u∗2(t) ≤ J1|u1(t)∈U1,u2(t)=u∗2(t)

J∗1 |u1(t)=u∗1(t),u2(t)=u∗2(t) ≤ J2|u1(t)=u∗1(t),u2(t)∈U2

where U1 and U2 are sets of possible control input for

player 1 and 2, respectively,P1 and P2 are the positive

definite solutions of the following coupled algebraic Riccati

equations:

P1A + AT P1 − P1B1R
−1
1 BT

1 P1−
P1B2R

−1
2 BT

2 P2 − P2B2R
−1
2 BT

2 P1 = −Q1

P2A + AT P2 − P2B2R
−1
2 BT

2 P2−
P2B1R

−1
1 BT

1 P1 − P1B1R
−1
1 BT

1 P2 = −Q2.

Instead of solving the above Riccati equations, in this paper

the optimal feedback gainsK∗
i (K∗

i = −R−1
1 BT

1 P1, i =
1, 2) as the Nash solution to minimize the performance

index Ji (i = 1, 2) are calculated by the sliding mode

extremum seeking control approach.

Denote the linear feedback control input for each player

as

ui(t) = Kix(t), (i = 1, 2). (3)

Then the closed-loop system of (1) with the control input

(3) is determined by

d

dt
x(t) = Āx(t), (4)

and the linear quadratic performance index given in (2) can

be rewritten as

Ji =
∫ ∞

t0

xT (t)Q̄ix(t)dt, (i = 1, 2), (5)

where

Ā = A−B1K1 −B2K2

Q̄i = ĀT (Qi + KT
i RiKi)Ā. (i = 1, 2)

As (A, Bi) and (Qi, A) (i = 1, 2) are controllable and

observable pairs, respectively, there exist two parameter sets

K1 andK2 so that for any feedback gainKi (Ki ∈ Ki, i =
1, 2), the Lyapunov functions

MiĀ + ĀT Mi = −Q̄i (i = 1, 2) (6)

have positive definite symmetric solutionsMi (i = 1, 2). It

is clear thatMi (i = 1, 2) is a function onK1 andK2 and

thus may be denoted as

Mi = Mi(K1,K2). (i = 1, 2) (7)

Then the linear quadratic performance index (2) can be

rewritten as

Ji = −xT (t)Mix(t)|∞t0 = xT (t0)Mix(t0)

= tr(x(t0)xT (t0)Mi) ∀Ki ∈ Ki, (i = 1, 2)

wheretr(.) is the trace operation.



According to the linear quadratic optimal control theory,

the optimal solution of the above performance index is

independent to the initial timet0 and the system initial

statex(t0), i.e. the optimal feedback gainK∗
i (i = 1, 2)

is unique no matter the system initial statex(t0) is. Denote

the column vector of the identity matrixIm as ej (j =
1, 2, ..., m), i.e.

Im = diag{1, 1, ..., 1} =
[

e1 e2 · · · em

]
.

Then the optimal feedback gainK∗
i (i = 1, 2) can be

described as

{K∗
1 , K∗

2} = Arg min
Ki∈Ki,i=1,2

tr(x(t0)xT (t0)Mi)

= Arg min
Ki∈Ki,i=1,2

tr(eje
T
j Mi), (j = 1, 2, ...,m)

= Arg min
Ki∈Ki,i=1,2

m∑

j=1

tr(eje
T
j Mi)

= Arg min
Ki∈Ki,i=1,2

tr(
m∑

j=1

eje
T
j Mi)

= Arg min
Ki∈Ki,i=1,2

tr(ImMi)

= Arg min
Ki∈Ki,i=1,2

tr(Mi). (8)

Thus the control objective to solve the Nash equilibrium

solution is turned to minimize the performance index

Ji(K1,K2) = tr(Mi) = tr(Mi(K1,K2)) (i = 1, 2) (9)

by adjusting the feedback gainKi by each player (i = 1, 2)

independently.

It follows from the linear quadratic optimal control theory

[13] that a unique Nash equilibrium solution (K∗
1 , K∗

2 )

exists such that

J∗1 (K∗
1 ,K∗

2 ) ≤ Ji(K1,K
∗
2 ), ∀K1 ∈ K1

J∗2 (K∗
1 ,K∗

2 ) ≤ Ji(K∗
1 ,K2), ∀K2 ∈ K2.

During searching the Nash solution, the feedback gainKi

(i = 1, 2) is adjusted on-line by the extremum seeking

controller. ThereforeKi (i = 1, 2) is a function on time.

The performance index given in (9) thus can be described

as a function on time, too, i.e.

Ji(t) = Ji(K1(t),K2(t)) = tr(Mi(K1(t),K2(t))) (i = 1, 2)

(10)

To simplify the notation, the same symbolJi is used to

denote the performance indices in (2), (9), and (10).

III. E XTREMUM SEEKING WITH SLIDING MODE

To design an extremum seeking controller with sliding

mode for thei-th player (i = 1, 2), a switching function is

defined as

si(t) = Ji(t)− gi(t) (11)

where the reference signalgi(t) ∈ R is determined by

ġi(t) = −ρi, (12)

whereρi (i = 1, 2) are positive constants.

Let the variable structure control law be

vi(t) = −ki




sgn(sin(πsi(t)/αi))
sgn(sin(2πsi(t)/αi))
. . .

sgn(sin(2m−1πsi(t)/αi))


 , (i = 1, 2)

(13)

and the feedback gainKi (i = 1, 2) satisfy

K̇i(t) = vi(t), (i = 1, 2) (14)

whereαi andki (i = 1, 2) are positive constants.

Assumption 1:The partial derivative of the performance

index Ji(t) (i = 1, 2) satisfies

| ∂

∂Ki
Ji(K1,K2)| >> | ∂

∂Kj
Ji(K1,K2)|, ∀j 6= i(i, j = 1, 2)

which means that each player can adjust his performance

index most effectively

Assumption 2:The Nash equilibrium point (K∗
1 , K∗

2 ) is

in the vicinity of the initial 2-tuple of Ki(0) (i = 1, 2).

Thus the partial derivative of the performance indexJi(t)
on Ki is bounded by a positive constantγi, i.e.,

| ∂

∂Ki
Ji(K1, K2)| ≤ γi. (i = 1, 2) (15)

Theorem 1:Consider the dynamic noncooperative game

described by the state equation in (1) with the linear

quadratic performance index (2), the extremum seeking

controller with sliding mode for thei-th player (i = 1, 2)

designed by Equations (11), (12), (13), and (14) ensures

that the performance indexJi(t) (i = 1, 2) are minimized

to get the Nash equilibrium solutionJ∗1 (K∗
1 ,K∗

2 ) and

J∗(K∗
1 ,K∗

2 ) if positive constantsρi, ki, andαi (i = 1, 2)

as the controller parameters are chosen suitable.

Proof: The completed proof of this theorem needs

much space [11]. In this paper, only the steps of the proof

are described as follows, which are similar to the results in

[12] and [11].



Based on the above assumptions, the derivative of the

switching functionsi(t) is given by

d

dt
si(t) =

2∑

j=1

∂

∂Kj
Ji(K1,K2)K̇j(t)− ġi(t)

≈ ∂

∂Ki
Ji(K1,K2)K̇i(t)− ġi(t). (16)

From which, it can be shown that

• For each player there exists a vicinity of the minimum

point, which is determined byρi

ki
(i = 1, 2). Outside

this vicinity, a sliding mode

si(t) = lαi or si(t) = −lαi

will happen for some numberl determined by the

initial condition of the system.

• On the sliding mode, the system converges to the

vicinity.

• After entering the vicinity, it is possible that either

the system stays inside the vicinity or go through the

vicinity. In the later case, another sliding mode will

happen and the system will enter the vicinity again on

the sliding mode.

• In both cases, i.e. the case staying inside the vicinity

and the case moving out of the vicinity, the perfor-

mance indexJ1(t) oscillates and decreases in each

oscillation period as shown in Figures 2, 3 and 4.
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Fig. 2. Convergence with Sliding Mode Extremum Seeking Controller

• Finally the system oscillates around the Nash equilib-

rium point.

In this way, the Nash solution can be found by the proposed

extremum seeking controller with sliding mode. And it
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has been shown in [11] that fast convergent speed and

high control accuracy may be obtained if the controller

parametersρi, ki, andαi are chosen suitably and adjusted

online.

IV. EXAMPLES

Consider a two-person noncooperative linear quadratic

dynamic game described by a second-order linear system.

ẋ(t) =

[
−0.7 0.2
0.1 −0.9

]
x(t) +

[
1
0

]
u1(t) +

[
0
1

]
u2(t).

The parameter matrices of the performance index (2) are

respectively given by

Q1 =

[
1 0
0 0

]
, R1 =

[
0.2

]



Q2 =

[
0 0
0 2

]
, R2 =

[
0.1

]
.

The proposed extremum seeking control algorithm is im-

plemented to the above system with sampling interval as

T = 0.01 second and other controller parameters as

ki = 0.5, ρi = 0.05. (i = 1, 2)

The simulation results withα1 = α2 = 0.05 are given

in Figures 5 and 6, which shows that the system reaches

a sliding mode in a finite time, converges to the vicinity

of the Nash equilibrium point and then oscillates while

the performance index keeps decreasing in each oscillation

period until the Nash equilibrium point is reached.
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Fig. 5. Switching Functions with Sliding Mode Extremum Seeking
Control

The amplitude of the oscillation can be reduced by

increasing the positive constantρi (i = 1, 2) as shown in

Figure 7 withρ1 = ρ2 = 0.2 but in this case, the convergent

speed is slow.

In this paper, a kind of on-line adjusting method is

proposed. The parameterρ is determined by a time-variable

function as

ρi =

{
0.05 + 0.0075 ∗ t t ≤ 20
0.2 t > 20

. (i = 1, 2)

The simulation results in Figure 8 with the above time-

variable parameterρi (i = 1, 2) show that the Nash solution

is obtained quickly with higher control accuracy.

To confirm the results obtained by the proposed sliding

mode extremum seeking control approach, the optimal

feedback gains for the Nash solution are obtained as

K1 =
[

1.643 0.0265
]

(17)

K2 =
[

0.095 3.6658
]

(18)

by the ε-coupling approach [14], which are the same to

those results shown in Figures 6, 7, and 8.

V. CONCLUSION

The sliding mode extremum seeking control approach

is successfully extended to the Nash equilibrium solution

for an n-person noncooperative linear quadratic dynamic

game. With the designed extremum seeking controller for

each player in the game, the system reaches a sliding mode,

enters a vicinity of the Nash equilibrium point, and stays

there with oscillating behavior. The simulation results show

the effectiveness.
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Fig. 6. Nash Solution by Extremum Seeking Control(α1 = α2 = 0.05)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

J 1(t
),

 K
1 1(t

),
 K

1 2(t
)

Extremum Seeking with Sliding Mode (Player 1)

J
1
(t)

K1
1
(t)

K1
2
(t)

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

t

J 2(t
),

 K
2 1(t

),
 K

2 2(t
)

Extremum Seeking with Sliding Mode (Player 2)

J
2
(t)

K2
1
(t)

K2
2
(t)

Fig. 7. Nash Solution by Extremum Seeking Control(α1 = α2 = 0.2)
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Fig. 8. Nash Solution by Extremum Seeking Control(α1 = α2 = 0.05 → 0.2)
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