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Abstract— The extremum seeking control has been proposed @
to find a set point and/or track a time-varying set point so ’—>
that a performance index of the system reaches its extremum

u=B(x,0) - k= f(x,u) P y=F(x) >

point. In this paper, the extremum seeking control with sliding 1 g
mode is extended to solve the Nash equilibrium solution for an — | ksgnsin(rs/a) |« (ﬁ
n-person linear quadratic dynamic game. For each player, a s t-
sliding mode extremum seeking controller is designed to let the ol &
player’s linear quadratic performance index track a decreasing — —
signal so that the Nash equilibrium point is reached. al

Keyword: Noncooperative Dynamic Game, Linear Fig. 1. Extremum Seeking Control Using Sliding Mode

Quadratic Performance Index, Nash Equilibrium Solution,

Extremum Seeking, Sliding Model. introducing time-variable parameters [11].

Recently, it is found that the sliding mode extremum
seeking control can also be implemented to solve the Nash
Extremum seeking control approaches have been studi8dlution [12]. For ann-person noncooperative dynamic
since 50’s [1] and have been successfully implemented game, each player defines a performance index and adjusts
the control of a axial-flow compressor [2], the optimizationsome of the control parameters to minimize his own perfor-
of the operation of biological reactors [3], and the opti-mance index [13][14] to find a Nash equilibrium solution.
mization of spark ignition automotive engines [4]. With theln [12], it is assumed that the performance index for each
extremum seeking control, a setpoint and/or a time-variabjglayer is a function on the state, the input and the output
setpoint is tracked to minimize or maximize a performanceariables of the system, which may be in an unknown form
index of the system [5][6][7][8]. but is measurable or can be calculated from the measurable
As one of the extremum seeking control approaches, thariables.
sliding mode extremum seeking controller shown in Figure In this paper, we will consider the-person noncoop-
1 ensures ([9][10]) that the system converges to a prerative linear quadratic dynamic game, where the control
designed sliding mode in a finite time, enters a vicinity ofnputs to be adjusted by each player are the feedback control
the extremum point on the sliding mode, and stays thegains K; (i = 1,2,...,n) and the performance indeX;
with oscillation [11]. Although it is a tradeoff problem (i = 1,2,...,n) is the integration of a linear quadratic
to determine the control accuracy and convergence spefhction on the system state and input. In this case, the
by choosing controller parameters, it is possible to obtaioalculation of the performance indices needs the future
both high control accuracy and fast convergence speed aftaformation of the system state and input. The performance
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indices can not be calculated on-line and thus can not fefinite solutions of the following coupled algebraic Riccati
directly used in the extremum seeking controller. As thequations:
first step to design an extremum seeking controller for the
n-person noncooperative linear quadratic dynamic game,
the linear quadratic index is transferred to an equivalent
performance index, which can be calculated on-line based P>A+ AP, — P,ByR; ' B P —
on the system parameters and the feedback gain. P,B\R{'BTP, — PLBiRT'BTP, = —Qo.

The arrangement of the paper is as follows. Section 2
describes the problem formulation and the transformatioftstead of solving the above Riccati equations, in this paper
of the linear quadratic index; Section 3 proposes the slidin’® ©Ptimal feedback gain&;" (K7 = —Ry "B Pyi =
mode extremum seeking approach to find the Nash eqL}ilQ) as the Nash solution to minimize the performance

librium solution for a linear quadratic dynamic game; and"dex Ji (i = }’2) are calculated by the sliding mode
Section 4 gives simulation results. extremum seeking control approach.
Denote the linear feedback control input for each player

PiA+ATP, — PB,R;'B{ P —
PiByR;'BIP, — P,ByR;'BI P,

—@

Il. PROBLEM FORMULATION as
Consider ann-person noncooperative linear quadratic ui(t) = Kiz(t), (i=1,2). ()
dynamic game described by a linear dynamic system
" Then the closed-loop system of (1) with the control input
d . .
—_ = A 3) is determined b
(t) = Aa(t) +;Bzul(t) @ O dy
with a linear quadratic performance index fieth player @m(t) = Ax(t), (4)
J; = / (@ (O)Qix(t) + uT (1) Ruu(t))dt, (i € N) () and the.linear quadratic performance index given in (2) can
to be rewritten as
where A and B; (i € N) are known constant matrices of < J 1o 5
appropriate dimensionsA( B;) (¢ € N) are controllable i /to v (OQ(t)dt,  (=1,2), ()
pairs, N is the index set of player defined as where
N={12,--,n}, A = A-BK, - Bk,

x(t) € R™ is the system state variable;(t) € R (i € N) Qi = AT(Qi+KI'RK)A. (i=1,2)
is the control variable for each playe,is the system initial _
time, Q; € R™*™ andR; € R (i € N) are semi-positive As (A, By) and @:, 4) (i = 1,2) are controllable and

and positive definite symmetric matrices, respectively, an%bservable pairs, respectively, there eX_'St two param.eter sets
(Qi, A) (i € N) are observable pairs. K1 andC, so that for any feedback gaild; (K; € IC;,i =

To simply the notation and the discussion, thelayer 1,2), the Lyapunov functions
case is considered from now on. Extension to ithelayer MA+ATM; = -Q; (i=1,2) (6)
case is straightforward. The optimal control of the above

system is a game problem. The Nash Solution with the Nadlve Positive definite symmetric solutions; (i = 1,2). It
feedback strategy is given by [13] is clear thatM; (i = 1,2) is a function onk; and K, and

thus may be denoted as
u:(t) = 7R:1B1TP11'(1€)7 (Z = 132)
M; = M;(Ky, K3). (i=1,2) (7)
which ensures for any system initial statéty) (z(to) €

R™) that Then the linear quadratic performance index (2) can be

) rewritten as
Tl =u;i@ue®=us ) < il @ et ua=uz0)
Ji o= =2t OMa )5 = o (to) Miz(to)

= t?“(.l?(to)l‘T(to)Mi) VK; € ICi, (’L =1, 2)

Ty () =ur (D un)=uz () S T2luy (8=t (6) ua (8) Ut

where U/; and U, are sets of possible control input for
player 1 and 2, respectively?, and P, are the positive wheretr(.) is the trace operation.
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According to the linear quadratic optimal control theory, 1ll. EXTREMUM SEEKING WITH SLIDING MODE
the optimal solution of the above performance index is
independent to the initial timeé, and the system initial
statexz(ty), i.e. the optimal feedback gaik} (i = 1,2)

To design an extremum seeking controller with sliding
mode for thei-th player ¢ = 1, 2), a switching function is

_ _ o ) defined as
is unigue no matter the system initial statg,) is. Denote
the column vector of the identity matriX,, ase; (j = si(t) = Ji(t) — g:i(t) (11)
1,2,...,m), i.e. . . .
where the reference signal(t) € R is determined by

I, =diag{l,1,...,1} = | e; e -+ em Gi() = —p; (12)
Then the optimal feedback gaik’; (i = 1,2) can be wherep; (i = 1,2) are positive constants.
described as Let the variable structure control law be
(K K5} = Arg _min tr(a(to)a” (o) M;) sgn(sin(rsi(t)/ o))

Ki€K;,i=1,2 sgn(sin(2mws;(t) /o)) )
= Arg min tr(e]e M),(j=1,2,....m) vi(t) = —ki , (1=1,2)

KiekK;,i=
sgn(sin(2m s (t)/ay))
_ : T
= A?”g Kie%l,?:mztr(ejej Mz) (13)
and the feedback gaiff; (i = 1, 2) satisfy

= A9 R, Zeﬂ Ki(t) =vi(t), (=12 (14)

= Arg Kl_e,cl_l?zl’g (L"Mf) whereq; andk; (i = 1,2) are positive constants.

= Arg min tr(M;). ssumption 1:The partial derivative of the performance
Arg  min tr(M @) A ion 1:Th ial derivative of the perf

index J;(t) (: = 1, 2) satisfies
Thus the control objective to solve the Nash equilibrium
solution is turned to minimize the performance index |8K i(K1, Ka)| >> | Ji(Kv, K2)|, Y # (0,5 = 1,2)

Ji(K1, Ka) = tr(M;) = tr(Mi (K1, K2)) (i =1,2) (9) which means that each player can adjust his performance
index most effectively
by adjusting the feedback gaiki; by each playeri(= 1, 2) Assumption 2:The Nash equilibrium pointK7y, K3) is
independently. in the vicinity of the initial 2-tuple of K;(0) (: = 1,2).
It follows from the linear quadratic optimal control theory Thus the partial derivative of the performance indgxt)
[13] that a unique Nash equilibrium solutiok{, K3) ©On K; is bounded by a positive constamnt, i.e.,

exists such that 0 )
JH(KE KE) < Ji(K., K3, VK€K, Theorem 1:Consider the dynamic noncooperative game

described by the state equation in (1) with the linear
guadratic performance index (2), the extremum seeking

During searching the Nash solution, the feedback gejn controller with sliding mode for the-th player ¢ = 1,2)
(i = 1,2) is adjusted on-line by the extremum seekinglesigned by Equations (11), (12), (13), and (14) ensures
controller. Thereforek; (i = 1,2) is a function on time. that the performance index;(¢) (i = 1,2) are minimized
The performance index given in (9) thus can be describd@ 9et the Nash equilibrium solution’; (K7, K3) and
as a function on time, too, i.e. J*(K7, K3) if positive constantg;, k;, anda; (i = 1,2)
as the controller parameters are chosen suitable.

Ji(t) = Ji(K1(t), Ka(t)) = tr(M; (K1 (t), K2(t))) (i=1,2) Proof: The completed proof of this theorem needs

(10) much space [11]. In this paper, only the steps of the proof
To simplify the notation, the same symbd] is used to are described as follows, which are similar to the results in
denote the performance indices in (2), (9), and (10). [12] and [11].

J3(K7,K3) < Ji(Kj,Kz), VKs € K.
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Performance Index J‘(l), Switching Function sy(l) and Reference Signal g‘(l) (Player i)

Based on the above assumptions, the derivative of tt ,

—30

switching functions;(t) is given by 0
d 2 8 ) 151 -
i) = jzlainJi(Kviz)Kj(t)*gi(t) B B S

= AT T ]
0 : .
~ T&Ji(Kth)Ki(t) —gi(t).  (16)

3050, 90
o
&
‘

From which, it can be shown that
« For each player there exists a vicinity of the minimurr ~ op===20
point, which is determined b)% (: = 1,2). Outside T
this vicinity, a sliding mode

Sl(t) =lo; oOr Sl(t) = —lo; 1 i | | i |

[ 10 20 30 40 50 60

will happen for some numbet determined by the Fig. 3.  Switching Function with Sliding Mode Extremum Seeking
initial condition of the system. Controller

« On the sliding mode, the system converges to th- Perormance Index () (Player )
vicinity. e ! ! ! ! I —

« After entering the vicinity, it is possible that either
the system stays inside the vicinity or go through the
vicinity. In the later case, another sliding mode will o
happen and the system will enter the vicinity again ol
the sliding mode. s

« In both cases, i.e. the case staying inside the vicinit
and the case moving out of the vicinity, the perfor-
mance indexJ;(¢) oscillates and decreases in eact
oscillation period as shown in Figures 2, 3 and 4.

1.02

(®

J

0.98

0.96 -

Convergence with Sliding Mode Extremum Seeking Control (Player i)
T T T T T 0.94 L L

8 N — 30 0 10 20 30 40 50 60
NN Kiy®) t
T (\\ K | - 0] Fig. 4. Performance Index with Sliding Mode Extremum Seeking
oL ; v | : | Controller
( \\
5L I \\ /\\ “ : “ o
s | | Y /o S F E has been shown in [11] that fast convergent speed and
Z 4r \ / 7 ‘\ / \ / v ) . i
g, “ Vo S high control accuracy may be obtained if the controller
e \ / N ) o | . .
SR ” ‘ < parameterg;, k;, anda; are chosen suitably and adjusted
| .
2f 1 online. |
!
,! -
T ‘ ‘ , IV. EXAMPLES
or” . . . .
Consider a two-person noncooperative linear quadratic
o 0 20 P 20 50 % dynamic game described by a second-order linear system.
t
Fig. 2. Convergence with Sliding Mode Extremum Seeking Controller ; —0.7 02 (t) 1 (t) N 0 (t)
x = x (75} U2
0.1 —-09 0 1

« Finally the system oscillates around the Nash equilibThe parameter matrices of the performance index (2) are
respectively given by

rium point.
In this way, the Nash solution can be found by the proposed 0, - 1 0 R [ 0.2 }
extremum seeking controller with sliding mode. And it ! 0 0|’ ! '
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0 0 by the e-coupling approach [14], which are the same to
0 2 those results shown in Figures 6, 7, and 8.
The proposed extremum seeking control algorithm is im-
plemented to the above system with sampling interval as
T = 0.01 second and other controller parameters as

ks

Q2 : RQ:[OJ].

V. CONCLUSION

The sliding mode extremum seeking control approach
is successfully extended to the Nash equilibrium solution
for an n-person noncooperative linear quadratic dynamic
The simulation results withh; = ay = 0.05 are given game. With the designed extremum seeking controller for
in Figures 5 and 6, which shows that the system reachesch player in the game, the system reaches a sliding mode,
a sliding mode in a finite time, converges to the vicinityenters a vicinity of the Nash equilibrium point, and stays
of the Nash equilibrium point and then oscillates whilghere with oscillating behavior. The simulation results show

05, p; =005 (i=1,2)

the performance index keeps decreasing in each oscillatitime effectiveness.

period until the Nash equilibrium point is reached.

Switching Functions
3 T T T

(1]

(2]

(3]

(4]

(5]

(6]

0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

t

Fig. 5.
Control

Switching Functions with Sliding Mode Extremum Seeking [7]

The amplitude of the oscillation can be reduced byis8]
increasing the positive constapt (i = 1,2) as shown in
Figure 7 withp; = po = 0.2 but in this case, the convergent (9]
speed is slow.

In this paper, a kind of on-line adjusting method is
proposed. The parameteiis determined by a time-variable [10]
function as

0.054+0.0075xt t <20

0.2 t>20
The simulation results in Figure 8 with the above time-
variable parametes; (i = 1, 2) show that the Nash solution (2
is obtained quickly with higher control accuracy.

To confirm the results obtained by the proposed sliding3l
mode extremum seeking control approach, the optim?ﬁ]
feedback gains for the Nash solution are obtained as

[ 1.643  0.0265 } 17)

pi = (=12 [11]

K,

K, (18)

[ 0.095 3.6658 }
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Extremum Seeking with Sliding Mode (Player 1) Extremum Seeking with Sliding Mode (Player 2)
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