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Abstract—In this paper, we develop an adaptive control for order of the polynomial. In this case, the adaptive control
a scalar system with nonlinear uncertainty. Specifically, we law was constructed using at most four adaptation gains.
consider scalar systems that are not stabilizable via a linear While this approach uses only a small number of adaptation
feedback and hence there does not exist a simple procedure 92iNS compared to the arbitrarily large number of uncertain
to design stabilizing adaptive controllers for these systems. Parameters, it is limited to second order systems given by

In this paper, we present an adaptive control framework for . . .
such scalar systems that guarantees convergence of the state |N this paper, we consider a scalar system given by

to the origin. The overall objective of this note is to emphasize i(t) = axP(t) + u(t) 2(0) = xo t>0, (5)
the inherent difficulties in designing adaptive controllers for ’ ’ =7
systems with nonlinear uncertainties. wherezg > 0, a > 0, and0 < p < 1 are unknown.

Note that ifp is known then it is a trivial exercise usin
the standard approach to find an adaptive control law that
stabilizes (5) (see Section II). Alternatively, #f > 1 and

|. INTRODUCTION unknown one may use the approach similar to that of 53]

In light of the highly complex nature of modem engi to derive globally stabilizing control laws (see Section ||

nagl- )
neering systems, accurate mathematical descriptio_n_oft% Chiasiaed kljf'lp b (0. 1) ar}d unk?ov(\grg, ”l‘(e S%alﬁ“ SySt&m
systems is seldom possible. Hence, it is not surprising thigy NOt Stabriizable via Ia meard ee acd an enc%.l_ ere
adaptive and robust control theory plays a fundament dest_not eX|s:{t Zlil S|m§e p_][_ocxlel Ur,?h to teS| n da Lsta lizing
role in modern control design. While robust controllers ar€daPtve controlier. Specificaly, he sSiandard Lyapunov

efficient in the case of bounded uncertainties and bound@@S€d methods given in the literature fail to provide any
disturbances, adaptive controllers have the ability to stgicPilizing adaptive controller. In this paper, we provide an

bilize systems over a large range of uncertainties withogdaptive control law that guarantees the convergence of the
sacrificing system performance [1], [2]. A key assumptior$ atex(t) to the origin. Finally, the result is then extended
in a ttypi%'il adaptivei Cont{ol tproblemtis thatd tt?]e gystenﬁo systems of the form

uncerfainties are real constant parameters and the dynamics .

of the system are described in t%rms of an affine func)t/ion of &) = f(x) +u(t), 2(0) = o, t=0. (8

the uncertain parameters. To illustrate this point, consider

the scalar dynamical system I

. MAIN RESULT

&(t) = f(z(t)) + u(?), (0) = o, t=0, (1) In this section we consider the scalar dynamical system
where f(l‘) = ZT: aifi(a:), a; € R,e=1,...,r, are v(t) = () — u(t 7
unknownand f; : 2, R,i=1,...,r, are known. In this £() = aa?(t) — u(t) ()

case, depending on the functigi(z) and the knowledge wherezy >0, a > 0, and0 < p < 1 are unknown. In this
of the sign of the corresponding uncertain parametehe case the closed-loop system is given by

control inputu(t) is chosen asu(t) = >._, ki(t)gi(z(t)) N Y _ >
whereg; () is strongly related tgf;(x) andlthe adaptation o(t) = azf(t) —cx(t), 2(0) =m0, 20 (8)
gain k;(t) is determined by an update law Note that for everyc > 0 the origin is an unstable

P N . equilibrium. However, withV' (z) = 122 it follows from
ki(t) = ¢(a(t),  ki(0) =kio,  i=1,....7, (2 Theorem 3.2 of [4] that (8) is ultimately bounded with
and wherep; () is typically derived based on an appropriatethe ultimate bounds = (g)h%p)_ Since,c — 0 as
Lyapunov function. Hence, we need one adaptation gain far _, ~, in the sequel we provide an adaptive control
every uncertain parameter (unless it can be estab 'Sheqqaw that guarantees the convergencer(f) to the origin.
priori thata, f;(x) for a particulari is not destabilizing).  gSpecifically, consider the adaptive feedback control law
A notable exception to this approach is given in [3] whereu(t) = —k(t)x(t), t > 0, wherek(t), ¢t > 0, satisfies
the authors consider a special class of dynamic systems,

namely, the second order systems. Specifically, the authors 1o _
in [3] gonsider a second order system (in the scalar case) k= pY (t), k(0)=0, t=0 ©)
given by and whereb > 0. In this case, the closed-loop system is
mi(t) + c(x(t)x(t) + k(z(t)) = u(t) (3) given by
z(0) =z, @(0)=ad0, t2=0, 4) i = axP(t) —k()z(t), x(0)=uxzo, t>0,(10)

wherem > 0 is unknown,c(z) and k(z) are polynomials A _
with unknown coefficients (ar)1d With( n)o restriction on the ko= 7 (t), k(0)=0 (11)

This research was supported in part by the National Science Foundatibfext, with the adaptive control lawi(t) = —k(t)z(t),
under Grant ECS-0133038. where k(t) satisfies (11), we show that for every > 0,
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z(t) — 0 ast — oo. First however, we need the following
lemma. For this result, letv, 3 : R — R be defined by

a(f) = aP~! and 3(0) = (6/a)'/*~P so thatB(a(0))
a(B(0)) = 0. Furthermore, let
XE2{(x,k) ERxR:2>0, k> ax)}. (12)

Lemma 2.1:Consider the closed-loop dynamical syste
(10),(11). Then the following statements hold:

i) If there existsi > 0 such thatk(f) < a(z(f)) then
there existsI" > ¢ such thatk(T) > a(z(T)).

Theorem 2.1:Consider the scalar system given by (7)
wherea > 0, andp € (0, 1) are unknown with the feedback
control law u(t) = —k(t)z(t), t > 0, wherek(-) is given
by the update law (9). Then for every > 0, z(t) — 0 as
t — oo

Finally, we extend Theorem 2.1 to scalar systems of the

njorm

i(t) = f(x(t)) + u(t), (14)
where f(-) : [0,00) — [0, 00), such thatf(0) = 0 and £}

ZL’(O):ZL’(), tZO

iy X is a positive invariant set with respect to (10),(11)iS & non-increasing function af € (0, )

iii) If there existsf > 0 such thata(z(f)) < k(f) then
lim;, o0 2(t) = 0.

Proof. i) Supposead absurdumk(t) < a(xz(t)), t > t.
Now note that

#(t) = z(t)(a(z(t) —k(t) >0 t=1 (13)
which implies thatz(t) > x(f) > 0, t > {. Next since
1,2 2

k(t) = 3= (t) > 0,t > t,z # 0, it follows
that k(t) — oo ast — oo. Next, sinced < a(z(t)) <
a(z(t)) it follows that a(x(t)) — ¢ ast — oo. Since
afx(t)) > k(t),t > tit follows thate = lim; . a(z(t)) >
lim;_,» k(t) = oo which is a contradiction.

i7) Let (z(0),k(0)) € X and supposead absurdum
there existsT > 0 such that(xz(T),k(T)) ¢ X; that
is, a(z(T)) > k(T). Now, it follows from the continuity
of z(-), k(-), and a(-) that there existd > 0 such that
alx(t)) > k(t), t € (t,T] anda(z(t)) = k(f). Next, note
that #(t) = x(t)(a(z(t)) — k(t)) > 0, t € (£, T] which
implies that

+(T) = 2(d) +/{ H(B)dt > (i),

Hence, k(T) < a(z(T)) < a(x(t)) = k(f) which is a
contradiction sincé:(-) is monotonically increasing.

iii) It follows from i4) that if there exists > 0 such
that a(z()) < k() thena(z(t)) < k(t), t > . Hence,
it follows that () = z(t)(a(z(t)) — k(t)) < 0, t > £,
which implies thatz(t), t > £ is monotonically decreasing
and hencéim;_. ., x(t) exists. Now supposed absurdum
lim; o0 2(t) = ¢ > 0 which implies thatz(t) > ¢ > 0 or
equivalently,a(z(t)) < a(c), t > t. Next note that

(t) > 3

k) = k() +/£ (s)ds = k(i) +/E %ﬁ(s)ds
> k() + A1), t>t,
and
z(t) = (i) +/£ z(s)ds
= ali)+ [ 2(s)(ale(s) — (s)ds
< x(t)+ / z(B)[ale) — k() — (s — 1)]ds
N t - A2 A2 A
= x(t)[1+9(t—t)+7—7], t>1t,

wheref £ o(c)—k(t)+ct. Now it can be shown that there

existst > ¢ such thatr(t) < ¢, which is a contradiction.
|

Theorem 2.2:Consider the scalar system given by (14)
with the adaptive feedback control law(t) = —k(t)x(¢),
t > 0, wherek(-) is given by the update law (9). Then for
everyzg > 0, z(t) — 0 ast — cc.

IIl. CONCLUSION

In this paper, we developed an adaptive control for a
scalar system with nonlinear uncertainty. Specifically, we
considered scalar systems that are not stabilizable via a lin-
ear feedback. Hence, there does not exist a simple procedure
to design stabilizing adaptive controllers for these systems.
In this paper, we presented an adaptive control framework
for such scalar systems that guarantees convergence of the
state to the origin. The overall objective of this note is
to emphasize the inherent difficulties in designing adaptive
controllers for systems with nonlinear uncertainties.
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