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Abstract— We pose and solve an extremum seeking control
problem for a class of state-constrained nonlinear systems
with unknown parameters. The approach is based on previous
work for unconstrained systems, where controllers are derived
to drive system states to the set-points which maximize the
value of an objective function with unknown parameters. State
constraints are handled using an interior-point method. Sim-
ulation results demonstrate the effectiveness of the approach.

I. INTRODUCTION

Historically, most adaptive control design has been fo-
cussed on regulation (tracking) of known set-points (trajec-
tories). In some applications, however, the control objective
may be to steer the system states to the location which
minimizes an objective function. If such an objective func-
tion has unknown structure or unknown parameters, then
the optimal set-point cannot be determined a-priori.

Recently, Krstic et al. [1], [2] presented several schemes
for extremum-seeking control of nonlinear systems. Their
approach allows for “black box” objective functions, assum-
ing that the objective value is an available output for online
measurement. Applications of this and related approaches
have been reported for a variety of applications.

In contrast, the extremum-seeking framework proposed
in [3] assumes the objective function is a known function
of the states, parameterized by unknown parameters. It
is therefore not necessary for the objective value to be
available for online feedback. In this paper, we extend
this approach to systems whose states must satisfy a set
of known convex constraints. The paper is organized as
follows. Section II presents the problem formulation, while
Section III gives the detailed design approach. Section IV
shows application to a chemical engineering system.

II. PROBLEM FORMULATION

Consider the constrained minimization problem

min
xp

y = p(xp, θp) (1)

s.t. gj(xp) ≤ 0 j = 1 . . . mg

where θp ∈ Ωθ ⊂ R
p is an unknown parameter vector, and

Ωθ is a known convex set satisfying

Ωθ ⊆
{

θp ∈ R
p

∣

∣

∣

∣

∂2p(xp, θp)

∂x2
p

≥ c0I, xp ∈ Ωµ
xp

}

(2)

for some µ, c0 > 0, where Ωµ
xp

denotes the feasible set

Ωµ
xp

=

{

xp ∈ R
m

∣

∣

∣

∣

max
j∈{1...mg}

gj(xp) ≤ µ

}

(3)

The dynamics of the state vector x = [xT
p xT

q ]T ∈ R
n are

taken to be of the form

ẋp = f(x) + Fp(x)θp + Fq(x)θq + G(x)u

ẋq = φ(x) (4)

where u ∈ R
m is the control input, θq ∈ R

q is an unknown
parameter vector, and f(x) : R

n → R
m, Fp : R

n → R
m×p,

Fq : R
n → R

m×q , G(x) : R
n → R

m×m are smooth
functions. As in [3], it is assumed that the states xq ∈ R

n−m

which do not appear in (1) remain in a compact subset of
R

n−m.
The function to be minimized, p(x, θp), is not available

for feedback; however it is assumed to be a known, smooth
function of xp and θp. The objective is to design an adaptive
state-feedback control for u which stabilizes the states xp to
the (θ-dependent) point x∗

p which (feasibly) minimizes (1).
The constraints gj(xp) must be observed along the entire
state trajectory.

Assumption 1: The constraint functions gj(·), i =
1 . . . mg are convex, and sufficiently smooth. Furthermore,
limµ→0 Ωµ

xp
has a non-empty interior.

Assumption 2: ∃ g0, µ > 0 such that G(x)GT (x) ≥
g0I, ∀xp ∈ Ωµ

xp
.

By well-known results on convex programming, Assump-
tion 1 guarantees that for any specific θp ∈ Ωθ, there exists
a unique point x∗

p ∈ Ω0
xp

such that p(x∗
p, θ) solves (1).

III. EXTREMUM SEEKING CONTROL DESIGN

A. Interior Point Method

By assumption 1, we have that the set Ω0
xp

has a
nonempty interior. This implies that the constrained opti-
mization can be carried out using standard interior-point
methods (see, for example, [4]). To this end, we define the
following augmented cost function

pa(xp, θp) , p(xp, θp) − η

mg
∑

j=1

ln(µ − gj(xp)) (5)



where µ, η > 0, and µ satisfies assumption 2. By standard
arguments [4, Proposition 4.1.1], the solution point of the
unconstrained convex optimization

min
xp

ya = pa(xp, θp)

converges to that of (1) in the limit as η, µ ↓ 0.

B. Adaptive Control Design

We will use the following state estimator x̂p based upon
estimates θ̂p, θ̂q of the parameters θp and θq

˙̂xp = f(x) + Fp(x)θ̂p + Fq(x)θ̂q + G(x)u + Ke (6)

x̂p(0) = x(0) = x0

where e = xp − x̂p is the state estimation error, and K =
KT > 0. It follows from (4) and (6) that

ė = Fp(x)θ̃p + Fq(x)θ̃q − Ke (7)

e(0) = e0 = 0

where θ̃p = θp − θ̂p and θ̃q = θq − θ̂q.
Let the following be a Lyapunov function candidate for

the extremum seeking problem.

V =
1

2

∥

∥

∥

∥

∥

∂pa(xd
p, θ̂p)

∂xd
p

∥

∥

∥

∥

∥

2

+
1

2
θ̃T

p Γ−1
p θ̃p

+
1

2
θ̃T

q Γ−1
q θ̃q +

1

2
‖e‖2 (8)

where Γp = ΓT
p > 0, Γq = ΓT

q > 0, and xd
p , xp + d(t),

with d(t) an external dither signal to be assigned later.
Remark 3.1: Although the dither signal could be injected

into the gradient space (i.e. into ∂pa

∂xp
as in [3]) rather than

into the state variable xp, it is felt that a-priori dither signal
selection is more practical in the xp space since the gain
of the diffeomorphism between these spaces is θ-dependent
and hence unknown.

The time derivative of (8) becomes

V̇ =zT
[

H(xd
p, θ̂p)

(

a(x, θ̂) + G(x)u
)

+ b(xd
p, θ̂p)

˙̂
θp

]

+
[

ΨFp(x)Γp − ˙̂
θp

]

Γ−1
p θ̃p

+
[

ΨFq(x)Γq − ˙̂
θq

]

Γ−1
q θ̃q − eT Ke (9)

where

z =
∂pa(xd

p, θ̂p)

∂xd
p

H(xd
p, θ̂p) =

∂2pa(xd
p, θ̂p)

∂xd
p∂xd

p

b(xd
p, θ̂p) =

∂2pa(xd
p, θ̂p)

∂xd
p∂θ̂

Ψ = zT H(xd
p, θ̂p) + eT

a(x, θ̂) = f(x) + Fp(x)θ̂p + Fq(x)θ̂q + ḋ(t)

The parameter update laws are selected as

˙̂
θq = ΨFq(x)Γq θ̂q(0) = θ̂q0 (10)
˙̂
θp = proj{ΨFp(x)Γp} θ̂p(0) = θ̂p0 (11)

where proj{·} denotes a “soft” (i.e. Lipschitz) projection
operator designed to ensure θ̂p remains within some closed
set Ωεθ

θ ⊃ Ωθ of specified size, while simultaneously
ensuring [τ − proj{τ}] Γ−1

p θ̃p ≤ 0. The reader is referred to
[5], [6] or [7] and references therein for details on design
of such a projection operator.

Remark 3.2: The smoothness of p(x, θ) ensures that for
εθ sufficiently small, Ωεθ

θ satisfies the convexity condition
in (2) for some c1 ∈ (0, c0)

In order to render (9) nonpositive, the state-feedback
control law u = α(x, θ̂, d) is selected as

α(x, θ̂, d) = −G−1(x)
[

a(x, θ̂) + H−1(xd
p, θ̂p)

×
(

ρb(xd
p, θ̂p)

˙̂
θp + kcz

)]

, kc > 0 (12)

where, denoting b = b(xd
p, θ̂p),

ρ =

{

1 zT b
˙̂
θp ≥ 0

max(0, 1 − (zT b
˙̂
θp)

2) zT b
˙̂
θp < 0

Substituting (10), (11), (12) into (9) yields

V̇ ≤ −kc ‖z‖2
+ (1 − ρ)zT b

˙̂
θp − eT Ke

≤ −kc ‖z‖2 − eT Ke (13)

from which it can be concluded that limt→∞ z = 0 and
limt→∞ e = 0. Furthermore, (8) and (13) imply uniform
boundedness of θ̃p, θ̃q , e, and z for all t ≥ 0.

Proposition 3.1: For any θp0 ∈ Ωθ, θq0 ∈ R
q , and µ > 0,

∃µ1 < µ such that (10) - (12) render the interior of the
following set invariant

Ωµ1

xd
p

=

{

xd
p ∈ Ωµ

xd
p

∣

∣

∣

∣

max
j∈{1...mg}

gj

(

xd
p

)

≤ µ1 < µ

}

Proof. By definition,

z =
∂pa(xd

p, θ̂p)

∂xd
p

=
∂p(xd

p, θ̂p)

∂xd
p

+ η

mg
∑

j=1

(

∂gj(x
d
p)

∂xd
p

)

µ − gj(xd
p)

Since both p(·, ·) and g(·) are smooth functions of their
arguments, we have that ‖z‖ → ∞ as gj → µ, for any
j ∈ {1 . . . mg}. Thus, for any given µ1 < µ, V is uniformly
bounded on Ωµ1

xd
p
, while V → ∞ as xd

p approaches the

boundary of Ωµ

xd
p
.

For any initial conditions x0 ∈ int{Ωµ

xd
p
}, θ̂p0 ∈ Ωθ,

θ̂q0 ∈ R
q , we have that ‖z0‖, ‖θ̃p0‖, ‖θ̃q0‖, and ‖e0‖ are

all bounded for fixed (unknown) values of θp, θq. Defining
V0 = V (z0, θ̃p0, θ̃q0, e0), the result of (13), together with
the invariance of Ωεθ

θ under parameter projection, guarantees
(xp

d(t), θ̂p(t), θ̂q(t), e(t)) ∈ Bxd
p
×B

θ̂p
×B

θ̂q
×Be ∀t ≥ 0,



where

Bxd
p

=

{

xd
p ∈ R

m

∣

∣

∣

∣

∣

inf
θ̂p∈B

θ̂p

‖z‖ ≤
√

2V0

}

B
θ̂p

=

{

θ̂p ∈ R
p

∣

∣

∣

∣

∣

∥

∥

∥
θ̃p

∥

∥

∥
≤
√

2V0

λmin

(

Γ−1
p

)

}

∩ Ωεθ

θ

B
θ̂q

=

{

θ̂q ∈ R
q

∣

∣

∣

∣

∣

∥

∥

∥
θ̃q

∥

∥

∥
≤
√

2V0

λmin

(

Γ−1
q

)

}

Be =
{

e ∈ R
m
∣

∣

∣
‖e‖ ≤

√

2V0

}

The strict convexity condition of (2), together with As-
sumption 1, guarantees that Bxd

p
is a compact connected

set, strictly contained in Ωµ

xd
p
. Thus, ∃µ1 < µ such that

Bxd
p
⊆ Ωµ1

xd
p
⊂ Ωµ

xd
p
. �

Proposition 3.1 ensures that the system trajectory satisfies
constraints of the form gj(x

d
p) < µ. Designing the dither

signal such that gj(xp) < µ will be the topic of the next
section.

C. Dither Signal Projection

In principle, Proposition 3.1 is sufficient to guarantee the
constraints gj(xp) ≤ µ are met, if the design constraints in
(1) are replaced by

g̃j(xp) = gj(xp) + δd

where δd is chosen to satisfy δd ≤ supt≥0 ‖d(t)‖. A less
conservative alternative lies in designing a state-feedback to
prevent d(t) from “pushing” the state xp out of a prescribed
feasible region. The dither signal is therefore assigned the
dynamics

ḋ = −kdd + d2(t) + ν(t, xp, d) (14)

d(0) = 0, kd > 0

where d2(t) is a bounded, vector-valued signal. The feed-
back ν(t, xp, d) is designed as follows,

ν(t, xp, d) = (ν1 + ν2)v (15)

ν1 = min

(

ḡ(xp)

maµ2
, 1

)

× max
(

vT (kdd − d2(t)) , 0
)

(16)

ν2 = −ηd ln

(

maµ2 − ḡ(xp)

maµ2

)

(17)

v =











∂ḡ
∂xp

T

∥

∥

∥

∂ḡ
∂xp

∥

∥

∥

=

∑

j∈J
gj

∂gj
∂xp

∥

∥

∥

∑

j∈J
gj

∂gj
∂xp

∥

∥

∥

ḡ > 0

0 ḡ = 0

(18)

ḡ(xp) =

mg
∑

j=1

(max(0, gj))
2

=
∑

j∈J
g2

j (19)

J = {j ∈ 1, . . . mg | gj(xp) > 0}

where gj denotes gj(xp),
∂gj

∂xp
denotes ∂gj(xp)

∂xp
, and ma ≤

mg is the maximum number of constraints which can be
simultaneously active (i.e. such that gj(·) > 0).

Furthermore, define the set

Υε
xp

, {xp ∈ R
m |ḡ(xp) ≤ ε}

Note that for ε ∈ (0, maµ2), (19) implies the following

Ω0
xp

= Υ0
xp

⊂ Υε
xp

⊂ Υmaµ2

xp
⊆ Ω

√
maµ

xp

Recalling that ẋp = ẋd
p − ḋ, it can be seen that the

feedback ν is designed to gradually remove the outward
normal component of ẋp relative to the boundary of Υε

xp
;

the ν1 term projects ḋ much like a parameter projection
operator. However, since ẋd

p may also have an outward
normal component (of uncertain magnitude, due to θ̃), ν2

is required to ensure that xp remains in Υmaµ2

xp
. (While ν2

by itself is actually sufficient for this, the linear-growth ν1

term results in smoother control).
Before proceeding, we define the following sets

ΞU = BU

θ̂q
⊕ BU

θ̂p
⊕ BU

e ⊕ ΛU
xq

⊕ Ωµ

xd
p
⊕ Υmaµ2

xp

ΞL = B
θ̂q

⊕ B
θ̂p

⊕ Be ⊕ Λxq
⊕ Bxd

p
⊕ Υε

xp

where Λxq
⊂ ΛU

xq
are sufficiently large, compact subsets of

R
m−n known to contain xq(t). Similarly, the BU sets are

compact and satisfy B ⊂ BU , while as per Remark 3.2,
θp ∈ BU

θ̂p
satisfies the convexity condition of (2) for some

c2 ∈ (0, c1). It thus follows that ΞL ⊂ int{ΞU}.
Proposition 3.2: Let ε ∈ (0, maµ2) be an arbitrary

constant. Define ω = [θ̂T
q , θ̂T

p , eT , xT
q , (xd

p)
T , xT

p ]T , with
closed-loop dynamics ω̇ = fω(t, ω) specified by the given
control laws. Then fω : R

+ × Ξ → R
q+p+2m+n is locally

Lipschitz w.r.t. all elements of ω on Ξ , int{ΞU}.
Proof. By definition of Ξ, the limit set xd

p ∈ Ωµ

xd
p
/int{Ωµ

xd
p
}

is excluded, which implies that the restriction of pa(xd
p, θ̂)

to Ξ is smooth. For brevity, the locally Lipschitz property

will be presumed obvious for ė, ˙̂
θq, and ˙̂

θp. Substitution of
(12) into (4) yield the following closed-loop dynamics for
ẋd

p = ẋp + ḋ.

fωxd
p
(ω) =

(

Fp(x)θ̃p + Fq(x)θ̃q

)

+ H(xd
p, θ̂p)

−1

×
[

ρ
∂2pa(xd

p, θ̂p)

∂xd
p∂θ̂p

f
ωθ̂p

(ω) + kc

∂pa(xd
p, θ̂p)

∂xd
p

]

(20)

By the smoothness of pa (and hence H−1) on int{Ωµ

xd
p
}, as

well as the local Lipschitz property of ρ and f
ωθ̂p

(ω), we
conclude that fωxd

p
(ω) is locally Lipschitz in the elements

of ω. From (14) we get

fωxp
(t, ω) = fωxd

p
(ω) + kd(x

d
p − xp) − d2(t) − ν(t, ω)

(21)

and hence the Lipschitz property of fωxp
depends on that of

the feedback ν(t, ω). To briefly prove the Lipschitz property
of ν(t, ω), we examine three cases.

Case 1: ω0 ∈ S1 ,

{

ω ∈ Ξ
∣

∣

∣
xp ∈ int{Ω0

xp
}
}

On this domain we see from (15)-(III-C) that ḡ = v =



ν1 = ν2 = 0, and hence ν(t, ω) ≡ 0 on some open
neighbourhood of ω0; it is therefore trivially Lipschitz.

Case 2: ω0 ∈ S2 ,

{

ω ∈ Ξ
∣

∣

∣
xp ∈ int{Υmaµ2

xp
}/Ω0

xp

}

Since ω0 ∈ S2 ⇒ 0 < ḡ(xp) < maµ2, on this domain
ν2, ḡ and v in (17) - (18) are all C1 with respect to ω,
and hence locally Lipschitz. Furthermore, the arguments of
the min(·, ·) and max(·, ·) terms in (16) are all C1 with
respect to ω on S2, which implies v1, and hence ν, is
locally Lipschitz. By the openness of S2, ν(t, ω) is locally
Lipschitz over some neighbourhood of ω0 ∈ S2.

Case 3: ω0 ∈ S3 ,

{

ω ∈ Ξ
∣

∣

∣
xp ∈ Ω0

xp
/int{Ω0

xp
}
}

Since ω0 ∈ S3 implies ḡ(xp) = 0, it follows from (15)-(17)
that ν(t, ω0) = 0. Define the compact set

Ξc
ω0 =

{

ω1 ∈ Ξ
∣

∣

∥

∥ω1 − ω0
∥

∥ ≤ r
}

where r > 0 is sufficiently small to give ḡ(x1
p) < maµ2.

Case 3a: ω1 ∈ Ξc
ω0 ∩ (S1 ∪ S3)

Clearly ω1 ∈ S1 ∪ S3 implies ν(t, ω1) = 0, and hence
∥

∥ν(t, ω1) − ν(t, ω0)
∥

∥ = 0 ⇒ trivially Lipschitz.
Case 3b: ω1 ∈ Ξc

ω0 ∩ S2

As above, ν(t, ω0) = 0. Then
∥

∥ν(t, ω1) − ν(t, ω0)
∥

∥ =
∥

∥(ν1(t, ω
1) + ν2(ω

1))v(ω1)
∥

∥

≤
∣

∣ν1(t, ω
1)
∣

∣+
∣

∣ν2(ω
1)
∣

∣

≤ M3bḡ(x1
p) − ηd ln

(

maµ2 − ḡ(x1
p)

maµ2

)

, π(ω1)

where M3b is a constant satisfying

M3b ≥
1

maµ2

(

max
ω1∈Ξc

ω0

∥

∥

∥
kd

(

xd
p − xp

)1
∥

∥

∥
+ Md2

)

Md2
= sup

t≥0
‖d2(t)‖

Since ḡ(ω) is continuously differentiable, nonnegative, and
ḡ(ω) < maµ2 over ω ∈ Ξc

ω0 , the function π(ω) is
thus also continuously differentiable on ω ∈ Ξc

ω0 . By the
compactness of Ξc

ω0 ,

Mπ , max
ω∈Ξc

ω0

∥

∥

∥

∥

∂π(ω)

∂ω

∥

∥

∥

∥

< ∞

is well defined. Applying the mean value theorem, and using
the fact that π(ω0) = 0 yields

∥

∥ν(t, ω1) − ν(t, ω0)
∥

∥ ≤ Mπ

∥

∥ω1 − ω0
∥

∥

�

We are now ready to prove that the feedback ν(t, ω)
ensures that constraints of the form gj(xp) are observed.

Proposition 3.3: Let d2(t) ∈ L∞ be a continuous sig-
nal, and assume xp0 ∈ Ω0

xp
. Then i) there exists an

arbitrary constant ε < maµ2 such that ω(t), the solu-
tion to the closed loop dynamics fω(t, ω) of Proposition
3.2, is continuously defined on t ∈ [0, ∞) and satisfies

ω(t) ∈ ΞL
c , ∀t ≥ 0, for some compact set ΞL

c ⊆ ΞL.
ii) ‖ω(t)‖ , ‖ω̇(t)‖ ∈ L∞

Proof. i) Define the compact set

ΞL
c =

{

ω ∈ ΞL
∣

∣

∥

∥xd
p − xp

∥

∥ ≤ R
}

⊂ Ξ

with R > 0 and ε < maµ2 arbitrary constants, and
note that ω(0) ∈ ΞL

c . By Proposition 3.2 the closed loop
dynamics are locally Lipschitz on Ξ, and hence standard
results on existence and uniqueness [8, Theorem 3.1] ensure
a continuous solution ω(t) defined on t ∈ [0, δt] for some
δt > 0. This solution can be extended for all t ≥ 0 if the
solution ω(t) lies entirely in ΞL

c [8, Theorem 3.3].
We begin with the contradictory assumption that t ∈

[0, te], te < ∞ is the maximal interval over which ω(t) ∈
ΞL

c . Since ΞL
c ⊂ Ξ, it follows that ∃δt > 0 such that ω(t) is

defined on t ∈ [0, te + δt]. By the proof of Proposition 3.1
we conclude that none of θ̂p, θ̂q , or e can exit ΞL

c at te. By
assumption, Λxq

is sufficiently large such that xq remains
in ΞL

c . Since xd
p ∈ Bxd

p
, one (or both) of the following cases

must hold at time te.
Case 1: ‖d‖ = R, ḡ(xp) ≤ ε, and 〈 ḋ, d 〉 > 0

However, it can be seen that for any ε ∈ [maµ2
1,maµ2), it

follows that dT v ≤ 0, and hence

dT ḋ = dT [−kdd + d2(te) + (ν1 + ν2)v]

≤ −kdR
2 + Md2

R

≤ 0 for R ≥ M2d

kd

Case 2: ḡ(xp) = ε, ‖d‖ ≤ R, and 〈ẋp, v〉 > 0
Let R be a constant satisfying (III-D). Then

vT ẋp = vT
[

ẋd
p + kdd − d2(t) − (ν1 + ν2)v

]

≤ MR ‖v‖ − (ν1 + ν2) ‖v‖2

≤ MR − ν2

MR = kdR + Md2
+ lim

ε→maµ2

(

sup
ω∈ΞL

c

∥

∥ẋd
p

∥

∥

)

< ∞

where ẋd
p is given by (20). Since ν2 → ∞ as ε → maµ2, it

follows ∃ ε sufficiently large such that vT ẋp ≤ 0. Thus no
finite te exists, and hence ω(t) ∈ ΞL

c , ∀t ≥ 0.
ii) The boundedness of ‖ω(t)‖ was shown in i), while the

boundedness of ‖ω̇(t)‖ follows from the fact that fω(t, ω)
is locally Lipschitz and ΞL

c compact. �

D. Persistency of Excitation

The above results proves stability of the xp dynamics.
However, unlike typical adaptive applications, parameter
estimate convergence is necessary for xp to converge to
a meaningful minimizer of (1).

Equation (13) guaranteed that limt→∞ e(t) = 0, from
which

∫∞
0

ė dt = e(∞) − e(0) = 0 implies that ė is
integrable. From (7), ė is a smooth function of ω (which is
bounded by Proposition 3.3), and hence ë ∈ L∞. By Bar-
balat’s Lemma [8, Lemma 8.2], it follows that limt→∞ ė =



0. Defining F (x) = [Fp(x)Fq(x)] and θ = [θT
p θT

q ]T , this
implies

lim
t→∞

θ̃T FT (x)F (x)θ̃ = 0

From the arguments presented in [3] (or alternate proof in
[9]), we conclude that if d2(t) is such that x(t) satisfies the
persistency of excitation (PE) condition

lim
t→∞

1

T0

∫ t+T0

t

FT (x)F (x) dτ ≥ cdI (22)

then Lasalle’s invariance principle guarantees V → 0
asymptotically, and hence limt→∞ θ̃(t) = 0.

E. Main Result

Theorem 3.4: Consider problem (1), subject to dynamics
(4), and satisfying Assumptions 1 - 3. If d2(t) satisfies the
PE condition (22), then the controller (12), with adaptive
laws (10), (11) and dither feedback (15), i) solves the
adaptive extremum seeking problem to arbitrary precision,
ii) guarantees gj(xp) ≤ √

maµ ≤ √
mgµ, ∀j = 1 . . . mg

for any selected µ > 0.
Proof. i) Re-express z as

z =
∂pa(xd

p, θ̂)

∂xd
p

∣

∣

∣

∣

∣

x∗
p

+
(

xd
p − x∗

p

)T
∫ 1

0

∂2pa(xλ, θ̂)

∂x2
λ

dλ

where xλ = λxd
p + (1 − λ)x∗

p. By limt→∞(z, θ̃) = (0, 0)
and the definition of pa in (5), we get

lim
t→∞

(

xd
p − x∗

p

)T
∫ 1

0

∂2pa(xλ, θ̂)

∂x2
λ

dλ = −η

mg
∑

j=1

∂gj

∂xp

µ − gj

∣

∣

∣

∣

∣

∣

x∗
p

Using Remark 3.2, it follows that

lim
t→∞

∥

∥xd
p − x∗

p

∥

∥ ≤ η

c1

mg
∑

j=1

∥

∥

∥

∂gj

∂xp

∥

∥

∥

µ − gj

∣

∣

∣

∣

∣

∣

x∗
p

Furthermore, from the proof of Proposition 3.3 it is known
that

∥

∥xd
p − xp

∥

∥ ≤ R, and hence

lim
t→∞

∥

∥xp − x∗
p

∥

∥ ≤ η

c1

mg
∑

j=1

∥

∥

∥

∂gj

∂xp

∥

∥

∥

µ − gj

∣

∣

∣

∣

∣

∣

x∗
p

+
supt≥0 ‖d2(t)‖

kd

Since x∗
p is a solution to (1) it follows gj(x

∗
p) ≤ 0,

and hence the above summation is uniformly bounded.
Therefore xp converges to a neighbourhood of x∗

p, whose
size is controllable via kd, η, µ, and d2(t).

ii) This follows by Proposition 3.3. Note that the param-
eter ma is the maximum number of active constraints, and
can be determined a-priori. �

IV. SIMULATION EXAMPLE

Consider the following system of chemical reactions
taking place in a continuous stirred-tank reactor producing
product P1 and by-products W1 and W2.

A + B → P1

A + P1 → W1

B + P1 → W2

Denoting xp = [A, B]T (i.e. concentrations), xq = P1,
u = [Ain, Bin]T , and D as the constant dilution rate, the
dynamics are given by

ẋp = −Dxp −
[

xp1xp2 xp1xq 0
xp1xp2 0 xp2xq

]





k1

k2

k3



+ Du

ẋq = −Dxq + k1xp1xp2 − k2xp1xq − k3xp2xq

Each reaction has an associated (known) net cost ci, and the
objective is to minimize the overall steady-state operating
cost. Expressing steady-state mass balances of P1, W1, and
W2 in terms of xp1 and xp2, the objective function can be
derived as

p(xp, θp) =
D2k1xp1xp2(c1 + c2k2xp1 + c3k3xp2)

D + k2x2
p1 + k3x2

p2

where θp = [k1, k2, k3]
T are only nominally known. The

following process constraints are imposed.

g1(xp) = xp1 − 4 ≤ 0

g2(xp) = xp2 − 4 ≤ 0

g3(xp) = xp1 + xp2 − 7.5 ≤ 0

Because p(xp, θp) is only locally convex in xp, an addi-
tional constraint defines the region of convexity

g4(xp) =
√

(xp1 − 4.5)2 + (xp2 − 4.5)2

+
√

(xp1 − 1)2 + (xp2 − 1)2 − 5.34 ≤ 0

The following parameters are used in the simulation

c = [−6, 1, 1] D = 0.1 θp = [0.038, 0.036, 0.025]T

d2(t) = 0.25(0.025 + 0.975e−0.03t)

[

− cos(0.975t)
cos(0.585t)

]

For these values, the optimal steady state is xp = (3.5, 4),
the intersection of g2 and g3. The parameter region Ωθ is
taken as {θ ∈ R

3| 0.2 ≤ θi ≤ 0.4}, with the projection
operator in (11) implemented as the hypercube variation
given in [10].

Figure 1 (a),(b) show that the states converge to their
optimal values, while the parameter estimates converge
to actual values. The controls depicted in (c) are clearly
implementable, and the cost function in (d) achieves its
minimum. The phase diagram in figure 2 shows that xp(t)
generally travels down the objective surface until it hits g2,
along which it travels to the (optimal) intersection with g3.
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Fig. 1. Closed loop trajectories
(a) states, xp(t); (b) parameters θi [··] and estimates θ̂i(t) [-];
(c) control inputs u(t); (d) cost function p(xp, θ̂)

The effects of the dither control ν can be seen in figure 1
(a), where the dithering oscillations in xp2 are modified to
avoid violating g2.

V. CONCLUSIONS

We have shown that the developed control laws solve
the given constrained extremum seeking control problem. If
the dither signal provides persistency of excitation, then the
system states converge within a controllable neighbourhood
of the optimal solution for a given objective function.
Furthermore, they remain within a specified neighbourhood
of the feasible region at all times. Simulation results confirm
that the resulting control and state trajectories are physically
realizable.
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