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Abstract

In this paper, we propose a new Polynomial Adaptive Es-
timator(PAE) algorithm to estimate parameters that oc-
cur nonlinearly. The estimator is based on a polyno-
mial nonlinearity in the Lyapunov function which is cho-
sen so as to guarantee stability and parameter conver-
gence in systems with polynomial nonlinearity in the un-
known parameters. We further extend the PAE algo-
rithm to Discretized-parameter Polynomial Adaptive Es-
timator(DPAE) to achieve stability in general Lipschitz-
continuous nonlinear functions. We establish the Nonlinear
Persistent Excitation (NLPE) condition for parameter con-
vergence using both the PAE and the DPAE.

1 Introduction

The problem of parameter estimation in a nonlinearly pa-
rameterized system can be stated as follows:

ẏ = f(y, u, θ0) (1)

where f is nonlinear in the unknown parameter θ0. The
goal is to develop an estimator

˙̂y = f(y, u, θ̂) − αỹ, ỹ = ŷ − y (2)

with θ̂ adjusted so that θ̂ → θ0.

A stability framework has been established for studying es-
timation and control of nonlinearly parameterized systems
in [1]-[7]. In [1, 2], for example, stability and parameter
convergence with suitable NLPE conditions have been es-
tablished. The problem however is that the NLPE condition
is quite restrictive, and requires a certain property to be sat-
isfied by all possible subsets in the parameter space and is
rather difficult to check. One of the reasons for this is that
the unknown parameter is estimated using a quadratic non-
linearity in the Lyapunov function which essentially gener-
ates a linear function in the parameter error. For example,
for the system in (1), and the estimator in (2), suppose the

parameter estimation is chosen as ˙̃
θ = −ỹφ∗, a Lyapunov

function of the form V = ỹ2/2 + θ̃2/2 leads to a time-
derivative

V̇ = −αỹ2 + ỹ
(
f(y, u, θ̂) − φ∗θ̃ − f(y, u, θ0)

)
.

The term f(y, u, θ̂)−φ∗θ̃ is clearly linear in θ̃ and therefore
in θ0. Since f is not linear in θ0, it is clear that there are not
enough degrees of freedom in the estimator. This is the
motivation for choosing a polynomial Lyapunov function

V = ỹ2/2 +
N∑

i=1

pi(θ̃i)

where ˙̃θi = −ỹφ∗
i , i = 1, .., N. By choosing a p(·) in

V and multiple parameter estimates θ̂i, we will generate a
Lyapunov derivative which gives us more degrees of free-
dom.

The paper is organized as follows. Section 2 includes the
statement of the problem. In Section 3, the PAE and its sta-
bility properties are discussed in the simple case when the
parametric nonlinearity is polynomial in nature. In section
4, a DPAE algorithm is introduced to address general non-
linearities. In Section 5, the NLPE condition and parameter
convergence are presented.

2 Statement of the Problem

We start with the simplest problem of a first order plant
with a scalar unknown parameter while the extension to un-
known parameters and systems in higher dimension is dis-
cussed later in this paper. This plant can be described as

ẏ = −αy + f(y, u, θ0) (3)

where θ0 ∈ Ω ⊂ IR is unknown parameter, Ω is the known
compact set where the unknown parameter θ0 belongs to,
y ∈ IR is state variable, u ∈ IRm includes inputs, measur-
able system variables and even system time t. We note that
problem formulation in (3) also include plants of the form

ẏ = f̄(y, u, θ0)



since they can be transformed into (3) with f(y, u, θ0) =
αy+f̄(y, u, θ0). Secondly, we note that there exist multiple
unknown parameters for nonlinear dyanamic systems for
the same input-output relationship, which is different from
linear systems. We denote Θ as the set of the unknown
parameters where

Θ = {θ | f(y, u, θ) = f(y, u, θ0), ∀ y, u, θ ∈ Ω}.

Remark 1: We note that there is no parameter estimation
algorithm can distinguish the points in Θ. Therefore, a
globally convergent nonlinear parameter estimation algo-
rithm must have the ability to identify all the points in Θ.

In this paper, for all the situations where just the value of
f(y, u, θ) matters, we use θ0 to represent any point in Ω
and we note that any result achieved for θ0 holds for any
point in Θ. We make the following assumptions regarding
function f .

Assumption 1: The function f(y, u, θ) is Lipschitz with its
arguments x = [y, u, θ]T , i.e. there exists positive constant
B such that

|f(x + ∆x) − f(x)| ≤ B‖∆x‖. (4)

Assumption 2: Input signal u(t) is Lipschitz with respect
to t, i.e. there exists constant U such that

‖u(t1) − u(t2)‖ ≤ U |t1 − t2|.

Assumption 3: f is bounded, i.e. |f(y, u, θ0)| ≤ F1.

Assumption 4: |y| ≤ F2, ∀ t.

Assumption 3 and 4 mean that ẏ, the derivative of state vari-
able, is also bounded by

F = F1 + αF2. (5)

We define the Lipschitz continuity of dynamic system as
follows.

Definition 1 The system in (3) is a Lipschitz continuous
system if it satisfies Assumptions 1-4.

3 The Polynomial Adaptive Estimator

The Polynomial Adaptive Estimator(PAE) that we propose
include several new features. PAE expands the commonly
used quadratic form Lyapunov functions and adopts a new
approach of auxiliary estimates, which uses θ̂1, .., θ̂N for
one unknown parameter θ0. The PAE is of the form

˙̂y = −α(ŷ − εsat(
ỹ

ε
)) + φ∗

0 − a∗sat(
ỹ

ε
)

˙̂
θi = −ỹεφ

∗
i , i = 1, ..., N (6)

where ỹ = ŷ − y, ỹε = ỹ − εsat
(

ỹ
ε

)
, ε is an arbitrary

positive number, sat(.) denote the saturation function and
is given by sat(x) = sign(x) if |x| ≥ 1 and sat(x) = x if
|x| < 1, and the calculation of a∗ and φ∗ will be discussed
later. Combining (3) and (6), we rewrite the dynamics of
the entire system as

˙̃y = −αỹε + φ∗
0 − f(y, u, θ0) − a∗sat(

ỹ

ε
)

˙̃
θi = −ỹεφ

∗
i , i = 1, .., N.

where θ̃i = θ̂i − θ0. To consider stability, we introduce a
Lyapunov function V as

V = ỹ2
ε +

N∑
i=1

pi(θ̃i) (7)

where pi(.) is a polynomial function. Therefore, the deriva-
tive of pi(.) is also a polynomial function and denoted as g i

where

gi(x) =
dpi(x)

dx
, ∀ i = 1, ..., N.

For V to become a Lyapunov function, the choices of p i

needs to satisfies the following conditions

(1) gi(θ̃i) < 0 if θ̃i < 0
(2) gi(θ̃i) > 0 if θ̃i > 0
(3) pi(0) = 0
(4) gi(0) = 0 (8)

for any i = 1, .., N and all possible values of θ̃i. If pi(θ̃i)
satisfies (8), it can be shown easily that pi(θ̃i) is nonnega-
tive with pi(θ̃i) = 0 iff θ̃i = 0 and pi(θ̃i) increases as |θ̃i|
increases.

To make V a Lyapunov function, we need to make sure that
V̇ is nonpositive. Because

V̇ =−αỹ2
ε+ỹε

(
φ∗

0−f(y,u,θ0)−
∑N

i=1
gi(θ̃i)φ

∗
i −a∗sat( ỹ

ε )
)
, (9)

if we choose φ∗
i , i = 1, ..., N and a∗ to make

ỹε

(
φ∗

0−f(y,u,θ0)−
∑N

i=1
gi(θ̃i)φ

∗
i −a∗sat( ỹ

ε )
)
≤0, (10)

it follows that
V̇ = −αỹ2

ε ≤ 0 (11)

and V serve as a Lyapunov function.

We notice that if ỹε = 0, inequality (10) holds always. If
ỹε �= 0, we have sat( ỹ

ε ) = sign(ỹε). In this case, we just
need to choose φ∗ and a∗ to satisfy

sign(ỹε)(e(y, u, θ0) − f(y, u, θ0)) − a∗ ≤ 0 (12)



where

e(y, u, θ0, φ
∗) = φ∗

0 −
N∑

i=1

gi(θ̃i)φ∗
i

φ∗ = [φ∗
0, ..., φ

∗
N ]T .

Now we establish the definition of a Polynomial Adaptive
Estimator. First, we need to determine the order N of PAE
and choose appropriate Lyapunov function components p i.
Secondly, in the running of the algorithm, design a method-
ology to find φ∗ and a∗ which satisfies (12). The definition
of a PAE is as follows.

Definition 2 The Polynomial Adaptive Estimator(PAE) is
an adaptive estimation algorithm in (6) which satisfies con-
ditions (8) and (12).

This definition gives us freedom to construct different PAE
algorithms with the requirements (8) and (12) met. In sec-
tion 3.1, we will propose a method to construct such a Lya-
punov function which is used through this paper. In section
3.2, we will discuss the calculation of φ∗ and a∗.

3.1 Construction of A Polynomial Lyapunov function
We choose p(.) in the Lyapunov function in (7) as

pi(θ̃i) =
1

i + 1
θ̃i+1

i if i is odd;

pi(θ̃i) =
1
i
θ̃i

i +
ki

i + 1
θ̃i+1

i if i is even (13)

for i = 1, .., N , where ki is to be chosen appropriately. The
corresponding gi is therefore given by

gi(θ̃i) = θ̃i
i if i is odd;

gi(θ̃i) = θ̃i−1
i + kiθ̃

i
i if i is even. (14)

In what follows we will show that (8) is satisfied with these
choice of pi. Conditions 3 and 4 follow immediately. Con-
ditions 1 and 2 in (8) follow as well when i is odd, as does
condition 2 in (8) when i is even. Hence, what remains to
be shown is condition 1 when i is even, which is not true for
any θ̃i. However, the feature we can exploit is that the range
of θ̃i is constrained by Lyapunov function V defined as in
(7) and we just need to choose ki which makes condition 1
in (8) holds for any possible θ̂i. For any choice of initial θ̂i

and ŷ at t = 0, the Lyapunov function is V (0). From (11),
it follows that

V (t) < V (0) (15)

for any t ≥ 0. Equation (15) implies that θ̃i is bounded and
the bounds can be calculated easily. Assume that the lower
bound of θ̃i is some negative θ̃b

i . Then, to make condition 1
in (8) satisfied, we just need to choose ki which satisfies

0 < ki < − 1
θ̃b

i

. (16)

Choosing Lyapunov function V as in (13) and an appropri-
ate ki that satisfies (16), we establish stability of the PAE
algorithm if (12) can be satisfied. Throughout the rest of
the paper, we will choose Lyapunov function as in (13).

3.2 Choice of φ∗ and a∗

One choice of φ∗ and a∗ that satisfy (12) so that V is non-
increasing is as follows:

φ∗ = arg min
φ∈IRN

max
θ∈Ω0

h(y, θ, u) (17)

a∗ = min
φ∈IRN

max
θ∈Ω0

h(y, θ, u)

h(y, θ, u) = sign(ỹε)(φ0 − f(y, u, θ0) −
N∑

i=1

gi(θ̃i)φi)

When conditions (17) and (8) are satisfied, it follows that
the PAE is stable. However, similar to the min-max algo-
rithm in [1], this implies that a nonlinear optimization prob-
lem has to be solved to obtain φ∗ at every time step, which
is difficult to solve. We therefore use an alternative proce-
dure below.

Suppose f is approximated by a N th order polynomial, it
follows that

f(y, u, θ0) =
N∑

i=0

ciθ
i
0 + r(y, u, θ0) (18)

where r(y, u, θ0) is the residual error between objective
function f and the N th order polynomial approximation
with

|r(y, u, θ0)| ≤ a∗
max. (19)

We will choose φ∗ and a∗ in a way that

φ∗
0 −

N∑
i=1

φ∗
i gi(θ̃i) =

N∑
i=0

ciθ
i
0 (20)

a∗ = a∗
max

and it can be checked easily that such choice of a∗ and φ∗

satisfies (12). We note that the solution of (20) in general
will lead to a much smaller a∗ than in (17). This in turn
enables us to relax the persistent excitation requirements
for parameter convergence. We note that θ̃i = θ̂i − θ0 and
gi is a ith order polynomial function of θ0 and it can be
expressed as

gi =
i∑

j=0

dij(θ̂i)θ
j
0. (21)

With known θ̂i and ki, the calculation of coefficients of dij

follows easily, with especially

d00 = 1
dii = −1 if i is odd

dii = ki if i is even. (22)



The PAE algorithm is stated as

˙̂y = −α(ŷ − εsat(
ỹ

ε
)) + φ∗

0 − a∗sat(
ỹ

ε
)

˙̂
θi = −ỹεφ

∗
i , i = 1, ..., N

ỹ = ŷ − y

ỹε = ỹ − εsat

(
ỹ

ε

)
a∗ = a∗

max

φ∗ = A−1C (23)

where φ∗ = [φ∗
0, φ∗

1, ..., φ
∗
N ]T , sat(.) denote the saturation

function, a∗
max is defined in (19),

A =




d00 * * .. *
0 d11 * .. *
0 0 d22 .. *
: : : :: :
0 0 0 .. dNN


 (24)

and
C = [c0 c1 ...cN ]T . (25)

The element of ith row and jth column of matrix A in (24)
is

Aij =
{

0 i > j;
d(j−1)(i−1) i ≤ j

where dji is defined as in (21) and (22). We notice that A
is a upper-triangular matrix and it must be full rank. It can
be shown that equation (20) is equivalent to

Aφ∗ = C.

3.3 Properties of the PAE
In this section, we will establish some properties of the PAE
algorithm in (23). All the proofs of the properties and lem-
mas can be found in [8]. First, we will show that φ∗ is
bounded and Lipschitz w.r.t. time t.

Property 1 φ∗ is bounded.

Property 2 |φ∗
0(t2) − φ∗

0(t1)| ≤ Q1|t2 − t1|.

In PAE, φ∗
0 is a known variable in the algorithm and the

maximum change rate Q1 can be measured and kept on line.
Unlike φ∗ which is calculated by solve a group of linear
equations, a∗ in PAE will be at a constant nonnegative value
a∗

max. About a∗
max, we have the following property.

Property 3 −a∗
max ≤ a∗sat( ỹ

ε ) ≤ a∗
max.

The proof of this property is obvious now that |sat( ỹ
ε )| ≤ 1.

If we define

m(t) = φ∗
0 − f(y, u, θ0) − a∗sat(

ỹ

ε
), (26)

Property 4 shows that m(t) is bounded.

Property 4 There exists a finite positive M such that

|m(t)| ≤ M (27)

where m(t) is defined as in (26).

Define
n(t) = φ∗

0 − f(y, u, θ0), (28)

we conclude that n(t) is Lipschitz w.r.t. t in the Property 5.

Property 5

|n(t + τ) − n(t)| ≤ Q|τ | (29)

where
Q = B(U + F ) + Q1, (30)

with B, U , F , Q1 defined as in Assumptions 1, 2, Eq. (5)
and Property 2 respectively.

Remark 2: In fact, the estimator variables φ∗, a∗ and θ̂ are
associated by a non-singular matrix. From Assumptions 1-
3, all the system variables u, y are Lipschitz w.r.t. time
t, therefore, all the variables in the algorithm are Lipschitz
w.r.t. time t, i.e. change rate bounded.

Next, we will show several lemmas related with the PAE.
In the following lemma, it is shown that when the output er-
ror is large, the Lyapunov function will decrease by a finite
amount.

Lemma 1 For the system in (3) and PAE as in (23), if

|ỹε(t1)| ≥ γ,

then

V (t1 + T ′) ≤ V (t1) − αγ3

3(M + αγ)

where T ′ = γ/(M + αγ) and M is defined as in (27).

The proof of lemma 1 is shown in [2]. In the following
Lemma, we show the relationship between n(t) in (28) and
output error ỹε.

Lemma 2 For the system in (3) and PAE as in (23), if

n(t1) > αγ + 2
√

Q(γ + ε) + 2a∗
max or

n(t1) < −αγ − 2
√

Q(γ + ε) − 2a∗
max

for any positive constant γ at some time instant t1, then
there exists some t2 ∈ [t1, t1 + T1] and |ỹε(t2)| ≥ γ,
where

T1 = 2
√

(γ + ε)/Q (31)

and Q is defined as in (30).

The following lemma shows that for any time interval T and
output error criteria γ, the output convergence over interval
T will happen.



Lemma 3 For any T , there exists positive interger s such
that

|ỹε| ≤ γ (32)

for any t ∈ [sT, (s + 1)T ].

4 Discretized-parameter Polynomial Adaptive
Estimator

In PAE discussed in section 3, the function f is approxi-
mated by a polynomial function and we assume the coeffi-
cients in (18) which includes ci, i = 0, .., N and a∗

max are
known. To extend the PAE to arbitrary f , and when θ 0 is a
vector, we will introduce a Discretized-parameter Polyno-
mial Adaptive Estimator(DPAE) in this section.

For a compact unknown parameter region Ω =
[θmin, θmax], we discretize the unknown parameter region
and represent them as a discrete set D of evenly distributed
N points as

D = [x1, .., xi, .., xN ] (33)

xi = θmin+
θmax−θmin

2N +
θmax−θmin

N (i−1) i=1,..,N.

The minimum distance l of point θ ∈ Ω towards the set D
follows

l(θ) = min
x∈D

‖θ − x‖
d(θ) = arg min

x∈D
‖θ − x‖

where d(θ) is the projection of θ on D and

l(θ) ≤ θmax − θmin

2N
. (34)

From the Lipschitz property of function f and therefore
f(y, u, θ0), it follows from (4) and (34) that

|f(y, u, θ) − f(y, u, d(θ))| ≤ B(θmax − θmin)
2N

. (35)

Choosing Lyapunov function same as discussed in section
2, we replace the unknownparameter regionΩ with discrete
set D and it follows from (35) that the new system is

ẏ = −αy + f(y, u, θ̄0) + r

r ≤ a∗
max

a∗
max =

B(θmax − θmin)
2N

θ̄0 ∈ Θ̄ ⊂ D (36)

where D is defined as in (33), B is defined as in Assump-
tion 1, and Θ̄ is the new unknown parameter set where new
defined unknown parameter θ̄0 belongs to, and is defined as

Θ̄ = {θ | |f(y, u, θ0)− f(y, u, θ)| ≤ a∗
max, ∀ y, u, θ ∈ D}

(37)

Our goal is to construct an estimation set Θ̂ which can esti-
mate Θ̄ ⊂ D. Combining (35) and (37), it follows that

d(θ0) ∈ Θ̄, ∀ θ0 ∈ Θ

even Θ̄ may also include other points.

For this new system in (36), we choose a N − 1 order PAE
which satisfies

φ∗
0 −

N−1∑
i=1

φ∗
i gi(θ̂i − θ) = f(y, u, θ) ∀θ ∈ D(38)

a∗ = a∗
max

and construct the DPAE algorithm exactly same with PAE
as in section 3 except the determination of φ∗, which needs
to satisfy (38). To satisfy (38), we choose

φ∗ = A−1C

where A is an N by N matrix given by

A =




1 .. .. ::
: :: : ::
1 .. aij ..
: :: : ::


 (39)

with the ith row and jth column element a ij as

ai1 = 1 1 ≤ i ≤ N

aij = −gj−1(θ̂j−1 − xi) 1 ≤ i ≤ N, 2 ≤ j ≤ N

where gi is defined as in (14) and C is an N by 1 vector
given by

C = [f(y, u, x1) .. f(y, u, xi) ..f(y, u, xN)]T . (40)

with the ith element bi as bi = f(y, u, xi).

It is straightforward to show that such choice of A and B
satisfies equation (38). We could check easily that the cal-
culation of φ∗ and a∗ in DPAE algorithm satisfies (12) from
(38). To guarantee that the above DPAE has the same prop-
erties and lemmas as PAE in section 3, one requirement is
that A is full rank, which is stated in the following lemma.

Lemma 4 The matrix A as defined in (39) is full rank with
D chosen as in (33) and gi as defined in (14).

The proof of Lemma 4 can be found in [8]. Because A
is full rank, all the conditions in DPAE is the same as those
with PAE as in section 3 and therefore all the properties and
lemmas in section 3.3 can be proved in a similar manner
with θ̄0 ∈ Θ̄ instead of θ0 ∈ Θ. Therefore, bounds in
DPAE like Q in (30) and T1 in (31) follow in a similar way
as in PAE. We state the complete DPAE algorithm below:



For any positive number γ, ε and T ,

˙̂y = −α(ŷ − εsat(
ỹ

ε
)) + φ∗

0 − a∗sat(
ỹ

ε
)

˙̂
θi = −ỹεφ

∗
i , i = 1, ..., N − 1

ỹ = ŷ − y

ỹε = ỹ − εsat

(
ỹ

ε

)
a∗ = a∗

max

φ∗ = A−1C

Θ̂ = {θ|θ∈D,φ∗
0(τ1)−β≤f(y(τ1),u(τ1),θ)≤φ∗

0(τ1)+β,

∀ τ1∈[t1,t1+T ], |ỹε(τ2)|≤γ,∀ τ2∈[t1,t1+T+T1]}(41)

where

β = αγ + 2
√

Q(γ + ε) + 2a∗
max,

φ∗ = [φ∗
0, φ∗

1, ..., φ
∗
N−1]

T ,

sat(.) denote the saturation function, A, C and a∗
max are

defined in (39), (40), and (36) respectively.

Assume that θ̂ ∈ Θ̂, first we need to find a time interval
[t1, t1 + T + T1] where the output error convergence hap-
pens, i.e.

|ỹε| ≤ γ (42)

over this interval. Then, Θ̂ includes the set of all points in
Ω which satisfies

φ∗
0(τ1)−β≤f(y(τ1),u(τ1),θ)≤φ∗

0(t)+β,∀ τ1∈[t1,t1+T ].

Lemma 3 implies that the output convergence will always
happen, which means there will always exist time interval
[t1, t1 + T + T1] where (42) holds. From Lemma 2, it
follows that

φ∗
0(τ1)−β≤f(y(τ1),u(τ1),θ̄0)≤φ∗

0(t)+β,∀ τ1∈[t1,t1+T ]. (43)

Combining (43) and the definition of Θ̂ in (41), we have
that θ̄0 ∈ Θ̂ and hence Θ̄⊂Θ̂.

5 Nonlinear Persistent Excitation Condition

Now we introduce the NLPE conditionwhich can guarantee
the parameter convergence of PAE and DPAE.

Definition 3 NLPE: For problem formulation as in (3) un-
der assumptions 1-4, y, u is said to have nonlinearly per-
sistent excitation if for any t, there exists time constant T ,
ε0 and a time instant t1 ∈ [t, t + T ] such that

|f(y(t1),u(t1),θ)−f(y(t1),u(t1),θ0)|≥ε0 minθ0∈Θ ‖θ−θ0‖∀θ∈Ω.

We note that the NLPE defintion is no more restrictive than
the linear persistent excitation definition in [9]. In the fol-
lowing, we will prove that under NLPE, DPAE can lead to
global convergence. The following definition is useful.

Definition 4: ‖Θ̂ − Θ‖d = max
θ̂∈Θ̂

minθ∈Θ ‖θ̂ − θ‖.
Using this definition, global convergence of PAE and DPAE
is said to follow if ‖Θ̂ − Θ‖d → 0.

Theorem 1 For problem formulation as in (3) under as-
sumptions 1-4, under NLPE condition as in definition 3, for
any ε1, there exists a DPAE as in (41) which leads to

‖Θ̂ − Θ‖d ≤ ε1. (44)

The proof of Theorem 1 can be found in [8].
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