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Disturbance Attenuation in Classes of Uncertain Linear Hybrid Systems

Hai Lin and Panos J. Antsaklis

Abstract—In this paper, we study the disturbance atten- controllers were discussed in [10] as well. These advantages
uation properties for some classes of discrete-time uncertain partially explain the increasing interest in switched systems
piecewise linear hybrid/switched systems, which are affected q,rjng the past decade. For robust stabilization of uncertain
by both time-variant parameter variations and persistent . - e s
exterior disturbances. The problem of determining non- swn_ched systems, a_quadratlc_stabl_llzmg switching law was
conservative bounds on thel™ induced gain from the dis- designed for polytopic uncertain switched systems based on
turbance to controlled output for the closed-loop uncertain LMI techniques in [21].
linear hybrid system is investigated. A procedure is given to|n this paper, we will focus on the induced gain anal-
determine such minimal I norm of the uncertain piecewise yqis for yncertain linear hybrid/switched systems. There

linear systems. However, the termination of the procedure lated ks in the literat vz h
developed for general uncertain piecewise linear systems is not are some related works in the literature on analyzing the

guaranteed. Therefore, it is important to specify a subclass of induced gain in switched systems. In [19], tife gain
piecewise linear systems whose norm can be determined in  of continuous-time switched linear systems was studied

finite number of steps. For such a purpose, we simplify the by an average dwell time approach incorporated with a
discrete event dynamics of the uncertain hybrid systems and piecewise quadratic Lyapunov function, and the results were

obtain its subclass called uncertain switched linear systems. It . : .
is shown that the uncertain switched linear systemsl* norm extended to discrete-time case in [20]. In [9], the root-mean-

can be determined in finite number of steps. square (RMS) gain of a continuous-time switched linear
system with slow switchings was computed in terms of
|. INTRODUCTION the solutions to a collection of Riccati equations. However,

The dynamic uncertainty and robust control of hythese robust performance problems considered are both in
brid/switched systems is a highly promising and challenginthe signal’s energy sense, and assume that the disturbances
field, which has been attracting more and more researchegge constrained to have finite energy, i.e. boundgdorm.
attention. However, the literature on this topic is relatively\n practice, there are disturbances that do not satisfy this
sparse. Some of the contributions include modelling uncegondition and act more or less continuously over time. Such
tain hybrid/switched systems, reachability analysis, stabilitgisturbances are called persistent [7], and can not be treated
analysis and so on. For example, impulse differential inclun the above framework. Therefore, in this paper we con-
sions were proposed as a modeling framework for uncertagider > induced gain to deal with the robust performance
hybrid/switched systems in [2], and some theoretic resulfgroblems in the signal’'s magnitude sense, i.e. time domain
for viability and invariance analysis in classical differen-specifications. Moreover, we explicitly consider dynamic
tial inclusions were extended to the impulse differentialincertainty in the hybrid system model here. Dynamics
inclusions. Some reachability analysis results for uncertaimncertainty in the plant model is one of the main challenges
hybrid/switched systems have appeared in [15], which was control theory, and being able to deal with dynamical
based on the backward reachability analysis technigquasgncertainties explicitly is of practical importance.

There are also a few related works on robust controller de- This paper is organized as follows. In Section Il, we first
sign. In [17], the authors gave an abstract algorithm, basetgfine the uncertain piecewise linear systems, and then for-
on modal logic formalism, to design the switching mechamulate the correspondiri¢® induced gain analysis problem.
nism among a finite number of continuous variable system3$he goal is to determine the optimal disturbance attenuation
It was shown that the closed-loop system formed a hybrigvel that can be achieved by the available control mecha-
automaton and satisfied certain specifications robustly. sm. In Section 1V, thé> induced gain analysis problem is
[16], a robust tracking and regulation controller was detransformed into checking the robust controlled invariance
signed for uncertain piecewise linear hybrid systems based the disturbance attenuation performance level set. Invari-
on linear programming techniques. In [10], the authorant set theory has been studied in the literature for decades,
proposed logically supervised switching multiple controllersee for example [6], [4], [3] and references therein. The
to control uncertain dynamical systems, and the closed-lodpvariance checking and calculation are based on backward
system formed a class of uncertain switched systems. Theachability analysis and symbolic model checking method,
advantages of switching controllers over classical adaptiwghich are studied in Section Ill. Based on the geometric
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linear systems. However, the termination of the proposed called the feasible mode for staig®. Then the next
procedure in finite number of steps is not guaranteed. Theontinuous variable state is given by the transition=

is mainly because of the fact that the reachability problem, (w)xo + By, (w)u + Ed for some possiblev € W,

is undecidable for general hybrid systems [1]. Hence, ash € D and specificu € U,,. Then the above procedure is
important question is to specify the decidable class for theepeated for state; to determine the next possible state
robust performance analysis problem. In Section V, we wilks, and so on.

focus on the decidability of th&* disturbance attenuation  Associated with the uncertain piecewise linear system (1),
problem, and specify a decidable subclass of the uncertancontrolled output(¢) is considered.

piecewise linear systems, called uncertain switched linear

systems. The determination of an nonconservative upper 2(t) = C(w(t))x() @)
bounds on thé> induced gain for uncertain switched linearyhereC(w) € RP*™ andz(t) € RP. It is also assumed that
systems can terminate in finite number of steps. It shoulfle entries ofC'(w) are continuous functions af.

be pointed out that the* disturbance attenuation problem  For this uncertain piecewise linear system (1)-(2), we are
for a class of switched linear systems without continuOUgterested in determining a non-conservative bound for the

inputs were previously studied in [13]. Section V is any~ jnduced norm fromi(t) to z(t), which is defined as
extension of [13] to a more general case, namely to the case

of continuous control law and switching signal co-design. tins = inf{p [ 3q(t) € Q, u(t) € Uy : [|2(H)][1 <
Notation: The letters&,P,S--- denote sets, 0P the Vlld(®) i~ <1}
boundary of setP, andint{P} its interior. A polytope  The first problem considered in this paper can be formu-
(bounded polyhedral setp will be presented either by |ated as follows.
a set of linear inequalitie® = {z : Fiz < g;, i = Problem: Given the uncertain piecewise linear system (1)-
1,---,s}, and compactly byP = {z : Fz < g}, or by (2), determine the minimal> induced gain fromd(t) to
the dual representation in terms of the convex hull of It§(t) that can be achieved by some admissible control law.
vertex set{z;}, denoted byConv{z;}. Forz € R", the The basic idea employed in this paper is to translate
I' and I norms are defined afz|, = >°i_, |z:| and the required level of performance into constraints on the
[zllc = max;[x;| respectively./> denotes the space of controlled system, which can be dealt with by the invariant
bounded vector sequencés = {h(k) € R"} equipped set theory. Therefore, we introduce the controlled robust
with the norm [|h[;= = sup; [|hi(k)[|« < oo, wWhere jnvariant set for the uncertain hybrid systems as follows.
[hi(k)lloo = supg>q |hi(k)|. Definition 1: The setQ < X is controlled robust in-
variant for the uncertain piecewise linear system (1)-(2) if
Vo € Q, there exists feasible modes and admissible control
inputs, such that(t) € Q, Vt > 0, despite disturbances and
. . . . T uncertainties.
We consider discrete-time uncertain piecewise linear sys- . . . . .
tems of the form In th|s paper, the invariance checklng.gnd calcglatlon
for Q is based on the backward reachability analysis and
2(t+1) = Ag(w(t))z(t) + By(w(t))u(t) + Ed(t), L robust predecessor opera_tor, _which_ wiII_ be introduceq and
tez*, ifzeP, (1) developeq for the uncertain piecewise linear system in the
next section.

Il. PROBLEM FORMULATION

vr\:herex(t)l eR"is tgehStzte vzzriablw(t)(i)uq cR™ iSd I1l. ROBUST BACKWARD REACHABILITY ANALYSIS
the control input, and the disturbance ing(t) is containe
in D ¢ R, the > unit ball, i.e.D = {d : ||~ < 1}. A. Robust One-Step Predecessor Set

The uncertain parametes(t) € W C R”. It is assumed  The basic building block to be used for backward reach-
thati/, and)V are polytopes assigned to each made ability analysis is thaobust one-step predecessor operator

Let the finite setQ stand for the collection of discrete Which is defined below.
modesq. The partition of the state space is given as a  Definition 2: The robust one-step predecessor ,set
finite set of polyhedrg P, : ¢ € Q}, whereP, C X and pre(Q), is the se_t of state_s it’, for which _adrmssmle
quQ P, = X. The continuous variable dynamics of modecontrol mpluts gmst and drive these stgtgs m_lom one
¢ is defined by the parametric uncertain matricggw), step, despite disturbances and uncertainties, i.e.
Bq(z_v) and constant matri¥, and it is assumet_j that the pre(Q) = {z(t) € X|3q € Q, ult) €U, : x(t) € Py,
entries of4,(w) and B,(w) are continuous functions af Ag(w)a(t) + By(w)u(t) + Ed(t) € Q,¥d(t) € D,w € W}
for every modey.

A possible evolution of the uncertain piecewise linear lin the definition here, it is not required that the partiti#h, have
systems from a given initial conditiom, € X can be mutually empty intersections. Therefore, for the initial stagethere may
described as follows. First. there exists at least one discrq xists more than one feasible discrete modes. For such case, it is assumed

current active modeyy here, is selected from these feasible modes
mode ¢o € @ such thatzg € P,, and the modeg, according to certain criteria or just randomly.
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We can also define the one-step predecessor set underc P,| Ju € U, : Afz + Biu+ Ed € Q, Vd € D}, for
the ¢-th mode, pre,(§2), as the set of all states € P,, 1<k <uw,.
for which an admissible control input € U, exists and Therefore, we derived the relationship between robust
guarantees that the system will be driven loby the one-step predecessor operator for the polytopic uncertain
transformation4,(w)x + B,(w)u + Ed for all allowable systemspre,(-), and the one-step predecessor set of the
disturbances and uncertainties. vertex dynamiCSpre’;(-) fork=1,---,v,. Itturns out that
Proposition 1: 2 The robust one-step predecessor sdhe robust one-step predecessor set for a piecewise linear set
pre(Q)) for an uncertain piecewise linear system can b& under polytopic uncertain linear dynamics can be boiled

computed as follows: down to the finite intersection of one-step predecessor sets
corresponding to the dynamic matrix polytope vertices,
pre(Q) = U preg(2) which have no parametric uncertainty. The predecessor set

gpder deterministic linear dynamicgyef(Q2), has been
studied extensively in the literature and can be computed by
Fourier-Motzkin elimination [18] and linear programming
B. Predecessor Sets for Subsystems techniques, see e.g. [4], [11].

Proposition 3: 2 The robust one-step predecessor set for
a (non-convex) piecewise linear s&, pre(Q2), can be
ritten as finite union of polyhedra.

9€Q
Therefore, we only need to calculate the one-step pred
cessor set for eaclrth subsystem.

The difficulty of the calculation opre, (€2) mainly comes
from the fact that the regiof) is usually non-convex.
Even if one starts with convex sets, it usually deduce¥ L
non-convex sets for piecewise linear systems after one-ste ithough the convexity is not preserved under the one-

predecessor operation. Because of the non-convexity someP predecessor operation, the piecewise linearity remains

of the linearity and convexity arguments do not hold anémchanged as Proposition 3_|mpI|es. 'I_'herefore;, one can
extra care should be taken. apply the predecessor operation recursively, which will be

In the sequel, we will focus on polytopic uncertainty inexplored in the next section.

A, (w) and By (w) for every modeg € Q. It is assumed IV. HYBRID ROBUST PERFORMANCEANALYSIS

that In this section, we will determine the minimat® in-
Y Y duced gain fromd(t) to z(t) that can be achieved by

Ag(w) = wkAk, By(w) =Y whBE, some admissible control laws for the closed-loop piecewise

k=1 k=1 linear systems. For such purpose, we first introduce the

where wk > 0 and Y,°,wf = 1. The pair Performance level set as

(A4(w), By(w)) represents the model uncertainty which be- Q. = {2:]Cw)zlls < p}

longs to the polytopic sefonv{(A}, BY), k=1,--- v} ' N -

for each modeg € Q. This is referred to as polytopic = {z: szlclme < u}

uncertainty and provides a classical description of model
uncertainty. Similarly, we assume polytopic uncertainty in
C(w) as well, in particular

=1

N
Nia: ¢ < 1)

wherew; > 0 and}_,_, w; = 1. Notice that the coefficients \yhere ; stands for a column vector with as its elements.
wy, andw; are unknown and possibly time varying. Q,, is finite intersection of polytopes containing the origin

_ Under the polytopic uncertainty assumption, the calculag their interior. Therefore(,, is a polytope containing the
tion of the predecessor set for piecewise linear sets can Bﬁgin in its interior.

simplified, as implied by the following proposition. A value 1 < +oc is said to be admissible i > ;.
Proposition 2:  For polytopic uncertain piecewise linear cjearly, a sufficient condition for to be admissible is that

systems, the robust one-step predecessor set for an aSSigf?'%jhybrid performance level sét, is controlled robust

piecewise linear sef? (may be non-convex) under theth  inyariant. Therefore, thé induced gain analysis problem

subsystem can be calculated as is transformed into checking the controlled robust invariance
vg of the disturbance attenuation performance level set. The
preq(Q) = ﬂ pre’;(Q), following is an important, well-known geometric condition
k=1 [6] for a set to be controlled invariant.

wherepre!(€2) stands for the one-step predecessoroperatorTheorem 1:The set(2, is a controlled robust invariant

of the k-th vertex state matriXAX, BY), i.e. prek(q) —  Setif and only if €, € pre(Q,). o
vertex XAg, By), 1€ preg(Q) In general, a given sé?,, is not controlled robust invari-

2Proof is omitted here for space limit, see [16] for details. ant. Howeverf2,, may contain controlled robust invariant
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subsets. In other words, the sufficient condition forto This procedure can then be used together with a bisection
be admissible maybe too conservative. In order to gehethod onu to approximate arbitrarily close to the opti-
necessary and sufficient condition for the admissibility ofmal value u;,, r, which solves the disturbance attenuation
1, we introduce the following definition. property analysis problem. In fact, if the procedure stops at
Definition 3: The setC..(£2,,) is themaximal controlled step 3, which comes from the fact thatCif, (©2,,) # 0 then
robust invariant setontained irf2,, for the uncertain piece- 0 € C;;,. we conclude thaf, < p;,y and we can increase
wise linear system (1)-(2) i€ (€2,.) is controlled robust the value of the output bound Else, if the procedure stops
invariant and contains all the controlled robust invariant setst step 4, we have determined an admissible bound for the
contained in<2,,. output, sayu > uiny, that can be decreased. The above
The existence and uniqueness of the maximal controlletiscussion can be formalized as a bisection algorithm as
robust invariant se€.(2,,) follow immediately from the follows:
fact that the union of two controlled robust invariant sets Algorithm 1: Algorithm for Calculating;, s
is still controlled robust invariant. In order to calculate the 1) |nitialization: Choose the initial interval, , /2] such

maximal controlled robust invariant setft),, we introduce that y11 < fiiny < p2. Choosee > 0, the tolerance
the one-step controllable set 0f, as level. If no knowledge of lower bounds gf;,; is
C1(Q,) = pre(Q) N Q.. available,;;; may be chosen ag; = e.

2) While (uo — p1) > €, setps = 152 and check
It follows from Proposition 3 that the one-step controllable whetherus > ;.5 by the above Procedure. jf; >
setC1(€2,) is a piecewise linear set 2, is given as a ting, then setus = us, else sefu; = ys.
piecewise linear set. Therefore, the one-step controllable set3) Outputy;,,; = £542,

operator can be used recessively to defisgep controllable However, the reachab|||ty problem for general hybrid

setC;(2,) as follows. systems is undecidable, see for example [1]. Therefore, the
bisection method on: to approximate the optimal value
C; =C1(Ci—1(Q)) = C; Ne; , i oo
(20) 1(Cima (S0)) = pre (2u)) N Cima(20) wins €an not be guaranteed to terminate in finite number of
for ¢ > 2. The sequence of finite-step controllable setsteps. Nevertheless, the possibility of an endless loop can
Ci(€2,,) has the following property. be averted by putting aa priori limit on the number of
Proposition 4: The sequence of finite step controllableiterations or by employing a grid based approximation as
setsC;(€2,,) is decreasing in the sense of a termination condition. We will focus on the decidability
issue in the next section.
Ci(Qu) € Cim1(Q)

for i > 1 and Co(Qu) — Q,. The maximal controlled V. DECIDABLE UNCERTAIN SWITCHED LINEAR

invariant set irf2,, for the uncertain piecewise linear system SYSTEMS
(1) is given by In the previous section, we studied the robust perfor-
o mance analysis problem of the polytopic uncertain piece-
_ m Ci(Q wise linear systems. However, the termination of the pro-

posed procedure in finite number of steps is not guaranteed.
The proof can be adopted | from the proof of Theorem 3.Hence, an important question is to specify the decidable
in [4], which is not difficult, so it is omitted here. class for the robust performance problems. Two kinds of
Based on the notation of the maximal controlled robusgimplification may be employed to make the procedures
invariant setC.(f2), we state now the basic result ofdecidable. One way to obtain such decidable class is to
this section which will be used to give a solution to thesimplify the continuous variable dynamics, see for example
disturbance attenuation property analysis problem. [1]. However, this approach may not be attractive to control
Proposition 5: A value u < +oo is admissible, i.ex. > applications, where simple continuous variable dynamics
ting, if and only ifthe maximal controlled robust invariant may not be adequate to capture the system’s dynamics.

subset of2,,, Coo (§2,,), is NON-empty. Alternatively, one may restrict the discrete event dynamics
This result suggests the following constructive procedurgf the uncertain linear hybrid systems. In this section,

for finding a robust performance bound. we will focus on the decidability of thé> disturbance

Procedure 1.Checking whethep > 1y, s attenuation problem, and specify a decidable subclass of
1) Initialization: Seti = 0 and setCy = €2,,. the uncertain piecewise linear systems, called uncertain

2) Compute the sef;11(2,) = pre(C;(2,)) NC;(2,). switched linear systems. The decidability comes from the
3) If 0 ¢ C,+1 then stop, the procedure has failed. thussimplicity of the discrete event dynamics. In particular, for
the output does not robustly meet the performancine switched linear systems, we do not consider partition of

level . the state spac®,. In other words, the transitions between
4) If the C;(2,) = C;—1(9,), then stop, and set modes may happen at any point in the state space. Notice

Coo(Q) = Ci(82,,). that previous work along this line appeared in [13], in
5) Seti =i+ 1 and go to step 1. which a class of switched autonomous linear systems was
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investigated. This section considers a more general modsijstem if for every initial condition:(0) € P, for every
and extends the results in [13]. admissible disturbancé(t) € D and parameter variation
w(t) € W, there exist admissible control signa(t) € U
and switching laws € S, such thatz(t) € P for t > 0.

In this section, we consider a family of discrete-time un- \We then formalize the definition of limit sef,(**), under
certain linear systems described by the following differencgiven admissible control signalt) € ¢/ and switching law
equations. sES,.

B n Definition 5: The limit set£(**) for the switched system
2t +1) = Ag(w)z(t) + By(wju(t) + Ed(t), te€ 27 (3) (4), under given admissible control signalt) € ¢ and
wherex(t) € R" is the state variabley(t) € U, C R™ is  switching sequence € S, is the set of states for which
the continuous control input, and the disturbance infftit  there exist admissible sequenegt) andd(t) and a non-
is contained inD C R", the[* unit ball. The continuous decreasing time sequencg (with limy_, 4ot = +00)
variable dynamics of mode is defined by the parametric such that
uncertain matricesd,(w), B,(w) and constant matrit
for every modeq. The finite setQ = {qi,q2,--- ,qn} iS kgffoo (0, tk, (), u(), w(-), d(-)) =z
called the set ofnodes

Combine the family of discrete-time uncertain lineawhere®(0, tx, s(-), u(-),w(-),d(-)) denotes the value at the
systems (3) with a class of piecewise constant functions afstant¢;, of the solution of (4) originating at, = 0 and
time s : ZT — Q. Then we can define the following time- corresponding t®, u, w andd.
varying system as a discrete-time switched linear system For the asymptotically stabilizing control signdls u) €
S, x Uy, we know that the limit set(*:*) has the following
property [5].

Lemma 1:For the asymptotically stabilizing control law
(s,u), the limit set£(**) is nonempty and the state evolu-
tion of the switched system (4), for every initial condition

A. Uncertain Switched Linear Systems

z(t+1) = Ay (w)x(t) + Bory(w)u(t) + Ed(t), t€Z*
(4)

The signals(t) is called aswitching signal Let us denote

the collection of all possible switching signals.&g which

is usually callechrbitrary switching signalsn the literature #(0) and admissible sequenae(t) € W and d(t) € D,

[12]1 [8] (s,u) (s,u) j i
Associated with the switched linear system (4), a Conconverges toL . Moreover, £ 's bounded and if

. . z(t) € L&Y thenz(t+1) = Ay (w)z(t)+ By (w)u(t)+
trolled outputz(#) is considered. Ed(t) € £ for all possibled(t) € D, andw € W.
z(t) = C(w)z(t) (5) Next, we define the limit set for the switched linear

_ system (4) as
where C(w) € RP*™ and z(t) € RP. It is also assumed

that the entries ofl,(w), B,(w) andC(w) are continuous £ = inf{ ﬂ £y,
function ofw € W, where)V C R" is an assigned compact (s.u)E€80 XU
set.

For this switched linear system (4)-(5), we are interested@here the intersection is with respect to any finite collection
in determining a non-conservative bound for tifeinduced of the admissible control lawss, ) that asymptotically
norm fromd(t) to z(t), which is defined as stabilize the switched system (4). It can be shown that
) has the property as follows. The proof of the following

ping = nf{p | Is € S, Ju(t) €U - [|l2(t) 1= < p, propositions can be adopted from the proofs in [13], so

vw(t) € W, Vd(t), |ld(t)lli~ <1} they are omitted here for space limit.
It is known that [13] the switched system (4)-(5) has finite Proposition 6: The setl is bounded and nonempty. For
[°° induced gain if and only if its autonomous systemevery initial conditionz(0), admissiblew(t) € W and
is asymptotically stable. Therefore, we restrict our searci(t) € D, there exists an admissible control las u)
only in the collection of asymptotically stabilizing control such that the state evolution of the switched system (4)
signals, (s(t),u(t)), which is denoted asS; x U,. It is converges tol. In addition, £ is controlled invariant for
assumed that there exist asymptotically stabilizing controéhe switched system (4).
signals, (s(t),u(t)), namely Sy x U, is nonempty. In the It should be pointed out that the introduction of the limit
sequel, we will develop a procedure to determingy for  set £(>*) and £ is for the purpose of proving the decid-
uncertain switched linear systems (4)-(5). ability of the procedures fot' analysis later, namely the
termination in finite number of steps. There is no necessary
to calculate these limit sef(>*) or £ to implement the
We first introduce the definition afontrolled invariant procedures for the determination of induced gains.

B. ' Norm for Switched Systems

setfor the switched system (4). Similarly, define the performance levelset as
Definition 4: Considering the switched system (4), a set
P C R™ is said to becontrolled invariantfor this switched Q, ={z:||C(w)z|w < p} (6)
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Recursively define the sets, k =0,1,--- as

Co =, Ck = Cr1 [ |pre(Ci) 7

control reconfiguration etc. For example, in [15], [14], a
class of networked control systems with uncertain delay
and package dropout effects was modeled as such switched

where the predecessor set for the switched system (&yStem.

pre(C), is the set of states from which, despite distur-
bances and dynamic uncertainties, there exist a subsyste
(switching signals) and continuous control signal € U
driving the states t@ in one step.

By construction,C., has the property that there exists
a switching signals(¢) and continuous control signal(t)
with respect to whichC., is positive controlled invariant
for the switched system (4). Also it can be shown that
is the maximal controlled invariant subset containeéjn
Then, givenu > 0, there exists a switching signa(t) and
continuous control signal(t) such that the response of the
switched system satisfigg:(¢)|;= < p for all w(t) € W
and ||d(¢)|li= < 1 if and only if the maximal controlled
invariant subset contained {n,,, C, is nonempty and €
Coo C Q.

We now give a proposition which guarantees tatcan
be finitely determined.

Proposition 7:1f £ C int{Q,} for somey > 0, then
there existsk such thatC,, = Cx and thisk can be selected
as the smallest integer such tltat; 1 = Cx.

The calculation ofu;, s for uncertain switched systems
(4)-(5) can now be solved by determining the maximall10]
controlled invariant se€,, in 2, for several values of:
and checking whether or not it contains the origin. Note that11]
in both cases we get an answer in a finite number of steps,
although there is na-priori bound for such a number. In |,
the first case this is due to the above theorem. In the second
case, this follows by the fact that the sequence of closed sets
Cx is ordered by inclusion and,, is their intersection. Thus
0 ¢ C if and only if 0 ¢ Cy for somek. These results
suggest that the bisection algorithm (Algorithm 1) can be
employed to approximate arbitrarily close to the optimal[14
value i .

ey

(2]

(3]

(4]

&l

]

VI. CONCLUDING REMARKS [15]

In this paper, we put the robust performance analysis
problems of uncertain linear hybrid/switched systems into
the framework of invariant set theory. The robust perfor-
mance problem was transformed into robustly controllecilG]
invariance problems for a specific region decided by the
performance level. Based on the geometric condition for
robust controlled invariance, a bisection based procedur%ﬂ
was proposed to determine the optimal disturbance atten-
uation level p;,y. The decidability issue of the robust
performance analysis problem was discussed, and switchélds]
linear systems were specified as a decidable subclass [@b]
the uncertain piecewise linear hybrid systems. The decid-
ability comes from the simplicity of the discrete event,q
dynamics. It is worth to point out that this specific simple
subclass of hybrid systems still can model a large clas
of practical systems, such as multi-controller supervisor
control systems, controller failures, fault diagnosis and

21]
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