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Geometric Programming Relaxations
for Linear System Reachability

Hakan Yazarel and George J. Pappas

Abstract— One of the main obstacles in the safety analysis niques make these approaches very valuable and precise,
of continuous and hybrid systems has been the computation of put for small dimensional systems.

the reachable set for continuous systems in high dimensions In this paper, we are interested in the following safety

In this paper, we present a novel method that exploits the . . .
structure of linear dynamical systems, and the monotonicit (reachability) problems for linear dynamical systems @& th

of the exponential function in order to obtain safety certificates ~form & = Az where stater € R". _ _

of continuous linear systems. By over-approximating the ge Problem 1.1:(Safety verification) Given a linear system
of initial and final states, the safety verification problem 5 and two polyhedral set&, and X, determine if system
expressed as a series of geometric programs which can be trajectories starting i, can ever react .

further transformed into linear programs. This provides the :
ability to verify the safety properties of high dimensional Solutions to the above problem can be used to prove that a

linear systems with realistic computation times. In additon, ~Certain set can be reached or avoided. They can also be used
our optimization based formulation computes time intervas  to provide refutation for counter-example guided predicat

over which the system is safe and unsafe. abstraction techniques for hybrid systems [9]. The follayvi
problem also extracts some timing information regarding
I. INTRODUCTION reachability.

The safety (or reachability) problem asks whether a set of Problem 1.2:(Timing verification) Given a Imear_ s_ystem
unsafe (final) states is reachable from a set of initial statémd two polyhedral set&o arjde, compute the minimum
while satisfying the system dynamics. This is a problem th nd maximum amount of time it takes to rea&fy from
even for linear systems of the forin= Ax has clearly es-
caped analytic solution. Furthermore, exact or approxémat
computational approaches have been quite expensive, a
therefore, limited to systems of small dimension. This ha¥

constrained the verification of hybrid systems to system . . . e
that do not exceed three or four continuous variables. ynamics by timed automata [10], enabling the verification
of temporal properties of hybrid systems.

Computing the exact reachable set for linear systems In order to address the above problems for high dimen-

starting in a semi-algebraic set is possible under certain o e
X > : Sional systems, we use a combination of optimization tech-
eigen-structure conditions [1], [2], by relying on expen-

sive quantifier elimination techniques [3]. In [4], quanti-mques’ in particular linear, geometric, quadratic, arat-ir

. e ) . . ional programming which are known to be very scalable.
fier elimination techniques coupled with understanding o, LS L . :
y over-approximating polyhedral initial and final states i

linear system eigenstructure resulted in over-approximgat ) s
. . . modal or polar coordinates, the safety verification problem
the reachable set for linear systems with almost arbitrar : : : .
iS written as a series of geometric programs which can be

eigenstructure. ‘[ﬁ)rther transformed into linear programs. This provides th

b Methfdstf(:jr e).(tigt com_put?nont(;f :jeach;\_blﬁ sets shou ility to address the above problems for high-dimensional
€ contrasted witapproximatemetnods, Which over- or jinear systems with realistic computation times.

under-approximate reachable sets using a variety of set
representations such as polyhedra, level sets, or elipsoi [l. SAFETY ANALYSIS OF LINEAR SYSTEMS
Approximate reachability computations rely on numeri- We consider linear systems of the form,
cal methods for Hamilton-Jacobi equations [5], ellipsbida )

: N i = Az, 1)
calculus [6], flow-pipe approximations [7], and polygonal
computations [8]. As a result, approximate methods are, iwhere z(t) € R" is the state at tim¢, and A € R"*"
principle, applicable to larger classes of continuoussyst is the system matrix. Given an initial statg = x(0), the
However, the encoding complexity of set representatiod, arsolution to the differential equation (1) for> 0 is,
computational complexity of numerical reachability tech-

0-
Solutions to the above problem extract timing information
t would be critical in abstracting dynamical systems by
imple timing intervals. A solution to the above problem
ould also allow abstracting hybrid systems with linear

x(t) = eMay. (2)
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where Hy € R**", H; € R, hy € R¥ andh; € Rl.  wherea,; are the real and; are the imaginary parts of the
Given a set of initial stateX(y, the reach set of the linear eigenvalues)\;. Since the matrixA is diagonalizable, the

system (1) on the time intervidy, ¢ /] is defined as, linear system (1) can be decomposed as,
Reach[tojtf](A,Xo) = {Ij S R"™ | Et El.fC() . |: rfl :| _ |: Al 0 :| |: 1 :| (13)
to <t <ty A zg€ XoAxy=eAlyl}. (5) L2 0 A L2

. . i n—2m)x(n—2m
The set of all forward reachable states is simply© that eigenvalues of, € R x(nmzm) azrfng real
Reachyy ) (4, Xo). Given a set of final or unsafe statesSi9€nvalues in (12) and eigenvaluesof € R are

X, we define the safety predicate {9, ;] as, the complex conjugate pairs in (10) and (11).
Safe, +,)(A, Xo, Xf) = . .L INEAI.? SYSTEMS WI.TH RE.AL EIGENVALUES.
1 if Reachy, ,,1(4, Xo) N Xy =0 In this section, we consider linear systems with real
0 otherwise f (6) eigenvalues. We first transform the system in modal or

. _ _ _ eigen-coordinates. Note that, throughout the paper, we use
In this paper, we are interested in the following problemshe notationmin / max f(z) to express that the minimum
Problem 2.1:(Safety verification) Given a linear systemand maximum values of the functiof(z) are computed

(A, Xo, Xy), determine ifSafejy 4 .o)(A, Xo, Xy) = 1. subject to the same constraints.
Problem 2.2:(Timing verification) Given a linear system

(A, Xo, Xy), if Safes o0 (A4, Xo, Xf) = 0, then compute A. Transforming the system in eigen-coordinates
a time interval[Ti,in, Timax] SO that Assuming the matrix4 is diagonalizable, we havel =
T—'AT whereT € R™*" is an invertible transformation

Safe(o 1) (4 Xo, Xy) =1 matrix whose columns are left eigenvectors df and
Safe|r,,, Ta. (A X0, Xf) =0 A € R™*™ is a diagonal matrix whose diagonal entries are
Safer,,...+o0) (4, X0, Xy) =1 eigenvalues of matriX4. If we define a new state vector

z € R™, z = Tz, then we obtain the following equivalent

Computing such a time intervalyin, Timax] exactly is differential equation and its solution,

possible if the linear syste, X, X y) has a certain struc-
ture [1], [2]. Approximate answers rely on the following z= Az, zi(t) = eMitzgs, i=1,...,n, (14)
straightforward proposition.

Proposition 2.3:Given  linear system and sets
(A, X0, X;), consider (4, X, X;) where X, C X,
and X; C X;. Then,

where )\; are the eigenvalues of the system matrix
and zp = Tz is the initial state vector. Hence, by the
transformationz = Tz, we break the verification problem
of the linear system: = Ax into verification problems of
Safeir- 7. | (A,X(),Xf) =1 multiple 1-dimensional linear systems. o .

= Safeire 7 (A, X0, Xp) =1  (7) The transformed states and the sets in eigen-coordinates

min? " max are as follows,

Safe[07+oo) (A, Xo, Xf) =1

= Safejy o) (A4, Xo, X7) = 1 ®) 20 = Two, Zo = {20: 20 = Two, w0 € Xo}, (15)

. ) . ) ZfZT.I‘f, ZfZ{Zf T2f :Txf, Ty EXf}, (16)
where [Trtlin’TrtlaX] IS an over-approximate time interval

such thaﬂ-’:;lin < Thin < Tax < T3

max”*

wherez, andzy are the initial and final states in eigenspace,

N Zy and Z; are the sets of initial and final states in

A. System decomposition eigenspacez, and z; are the states in the sef§, and
Our solutions to the above problems rely on the wellX; defined in (3) and (4) respectively.

known decomposition of linear systems in modal coor- In order to compute time intervals for safety certificates,

dinates. Throughout the paper, it is assumed that systeme project the set&, andZ; on each eigendirection. This

matrix A is diagonalizable, thereford can be written as, is easily performed by the following linear programs,

A=T7AT, (9) min/max  zo; min/max  zy;,
h nxn i | i wh di | s.t. zo =Txo s.t. zg =Tuay a7)
where A € C is a diagonal matrix whose diagona Hozo < ho Hyxp < hg

entries are eigenvalues of matrik, and7 € C"*" is an ] o ) ) .
invertible transformation matrix. By the complex conjugat 1S Projection yields the over-approximated sets in
symmetry property of matrices with real entries, eigenealu ©'9€nspace as,

of the system matrixd can be written as, Zo = {z0|2k < 20 < 2V}, (18)
Ai = ai —jwi,  i=1,...,m, (11)  where 2L, z; are the lower bound vectors ang/, 27
Ai = a;, t=2m+1,...n, (12) are the upper bound vectors of initial state vectgrand
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w2 €2 We split the initial set of states into two subsets each of
' : ' which are defined in negative orthant of the eigenspace as
2t < z0; < 0 and positive orthant of the eigenspace as
0<zp < z(%. Since 1-dimensional final set of states is not
reachable from the states that belong to the subset in the
negative orthanrzoLi < zp; < 0, it's sufficient to verify the
subsystem; for the subsed < zp; < 2Y.. The rest of the
verification can be done as in case 1.

Remark: Note that, a safety certificate for any 1-
dimensional subsystetnis a sufficient safety certificate for
the overall system.

e .
! B. lllustrative Example
Consider the 2-dimensional system matrix,
-2 =2
X1 A= [ —-1 -3 ] (25)
Fig. 1. Over-approximation in state space with real eigenvaluea; = —1 and Ay = —4. Consider the

polyhedral sets of initial and final states defined in positiv
orthant defined as in (3) and (4) where

final state vectorzy in eigenspace respectively. For a 2- 1 1 -1 1
dimensional system, the over-approximation in state space 1 —1 9 9

is illustrated in Figure 1 where, andz, are the original o = -1 -1 1" hy = _16 | ho = 4
coordinates,e; and e are the eigenvectorsX, is the 1 1 18 6
original set andX), is the over-approximated set such thaPerforming the linear programs definied in (17) yields the
Xo C Xo. following bounds for the states in eigenspageand z,

Therefore, we have the over-approximation of the system
(A, Zo, Zy) as(A, Zy, Zy) which isn 1-dimensional linear
systems,

0.6667 < zo1 < 1.3334, 0.6667 < zy; < 1.3334
7.6667 < zp2 < 8.8333, 1.6667 < 259 < 2.8333

For the first 1-dimensional subsysterp = e~ !z, the

Ait C_
Zf =€ 20“ i=L...,m, (20) " time interval is calculated a®,0.6931]. For the second 1-
2y <20 <z, (21) dimensional subsystemy, = =%z, the time interval is
Zﬁ <z < ZfU (22) calculated a$0.2488,0.4169]. The intersection of two time

. ' . ) intervals |s[T;un,TI;aX] = [0.2488,0.4169]. Therefore,

We compute time intervals for each 1-dimensional subsys-

tem and intersect the results to obtain the general solution Safe[o.,T;“n](AaXoa Xp) =1

For the verification of each 1-dimensional subsystem, we Safer= 1= (A, X0, X¢) =0

have three c%ses in the analy5|s y Safeirs yoo)(A, X0, X5) =1

Case L Zolvzmvsz f > 0 or ZOZ’ZONZf’L’ ; < 0:We

| for the 1 dlmenS|onaI by Proposition 2.3. The required CPU time for the compu-

compute the time intervat’ fation iS0.13 Seconds.

subsystem as

min’ max

} sz 1 ZJE] C. High Dimensional Verification

tmin = min{=log(—), +=log(—7)}  (23)  we implemented our method presented in Section ||
) OlL ) % using MATLAB. The results, performed on a laptop which

o= max{_log(zfi ilog(ﬁ)} (24) has an Intel Pentium-4 2.4GHz processor and 512 MB

)
Ai ZoZ Ai ZOLi RAM, are given in the following table.

If t: .. < 0then we can conclude that the set of final states| System | System Compute | T;, | T

of subsystemi is not forward reachable from the set of | Dimension| Safe? | Time (sec)| (sec) | (sec)

initial states and thereforgafe;y 4 )(A4, Xo, X5) = 1. 5 No 0.35 0.6453| 1.4232
Case2: zf;,2(; < 0,25, 25, > 00r28;, 25, > 0,25, 2§, < 5 Yes 0.29

0 : Since, when the eigenvalue is real, a final state in 10 No 0.86 0.3278| 1.2924
negative (positive) orthant is not reachable from an ihitia 10 Yes 0.8

state in positive (negative) orthant, we can immediatefy-co 100 Yes 351.73

clude that 1-dimensional subsysteéns safe and therefore Table 1 - Safety computation results
Safefy o0y (A, Xo, Xy) = 1. Note that the majority of the computation is done in

Case 3: Otherwise:We explain this case by an example.computing over-approximations of the initial and final stat
Consider the case wherg; < 0 < 2§ and ZJ%'NZfU'L > 0. in modal coordinates using linear programs.
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IV. LINEAR SYSTEMS WITH COMPLEX EIGENVALUES where X, and X are the polyhedral sets defined in (3),

In this section, we consider linear systems with comple®Nd (4),7o andz; are the states iy and X. .
eigenvalues. In this case, we shall transform the systems in"Ve formulate the safety verification problem using the
polar coordinates. following optimization programs which searches for such

Twin and Ty SO that the equations (28), (29) and set
A. Transforming the optimization in polar coordinates  constraints (30), (31), (32), (33) are satisfied,
The matrixA € R*"*?™ can be decomposed into block yinmax ¢,
diagonal form by an invertible transformation matfix €

) s.t. pri = €%t po;, 1=1,...,m,
R2m>x2m _|f we define a new state vecterc R?", » = T'z, 05 — B _ .

. . . . fi 01 + wzt, (3 1, . ,m,
then we obtain the equivalent linear systérs= Az where Poi =220 422 i=1,...,m,
A =T-1AT, andA € RZ™*2m s g matrix of the form, - Tg@i-n L@y )

Pfi _Z'f’(%l_l,)z—i_zf’(%)’ 1=1,...,m,
— J— — 0,(21) . —
[ Z)l w1 } O fo; = tan 7@(2%1)’ z 1,...,m, (34)
1M 0 =tan—t L0 i=1,....m
2§, (2i—1) 9 9 ) )
. (26) z0 = T’;CO7
O Am —Wm Zf = T.CCf,
Wn G Hozo < ho,
. . <
where a; and w; are real and imaginary parts of the flﬁw(')f < hy,

eigenvalues\; defined in (10) and (11). Therefore, for any
complex conjugate eigenvalue pdik;, \;) there exists a  Optimization program (34) is, in general, a nonconvex
2-dimensional subspace of the state space. The diffefentinlinear optimization problem which is computationally
equations in each 2-dimensional subspace take the formgexpensive and hard to solve globally. By relaxing the
. set constraints, (34) can be over-approximated by linear
{ 21 } = { @i T ] { 2i-1 } , i=1,...,m,  programs. We over-approximate the s&s P;, ©, and

27) O+ by computing the lower and upper bounds of the states

00, pf, 60,6y SO that the over-approximations are expressed

224 w; a; 224

which can be transformed (and solved) in polar coord
nates, as,

pi =aipi  pi(t) = e poi, i=1,...,m, (28) Po=Apo o5 < po < pi b Pr =fps | pf < pr < P} (35)

0 = wi, 0,(t) = 0pi +wit, i=1,....m, (29) ©o={00]605 <00 <60}, 0;=1{0;]0F<0;<06]}(36)

3

where p; is the radial coordinate, ané; is the angular where Py C Py, Py C Py, ©9 C ©g and©®y C Oy. The
coordinate of polar space. Hence, by the transformatid@wer boundsf andpf of the stateg, andp; in each 2-

z = Tz and further transformation to polar coordinates, wé&limensional subspace can be computed by performing the
break the verification problem of the linear system= Az  following quadratic programs,

into verification problems of multiple 2-dimensional limea | . PR = Zg,(Zi—l) + Zg,(gi), i=1,...,m,
systems. _
.. . . zZ0 = T.%'Q,
Transformed sets of initial and final states in polar Hoze < h
coordinates are as follows, ) 20 0 o, 0 ) ,
min  p% = 2% 0. 1y T 2% 00, t=1,...,m,
fi T 2f(2i-1) T 7 f,(24)
2 2 .
Po= Apo|poi =2 @i-1) t 20,020 i =1---,m, st.  zp=Tuxy, (37)
zo =Txo, xo EX()}, (30) fof Shf
Pr= Aps|psi :Z,%,(ziq) +Zfr,(2i), i=1,...,m, Since maximization of a quadratic program is not a
zp=Txys, x5 € Xs}, (31) convex program, we compute the upper boup{gﬂsandp?
of the statesy andp; in each 2-dimensional subspace as,
—1 _~0,(29)
©o {00 | 00 = tan o2t 0 < fo; < 2, oY = \/(Z([){(Qifl))Q + (Z(I){(Qi))z’ i=1,....,m, (38)
i=1,...,m, z ij(FQ:ic)o, 7o € Xo}, (32) Pti = \/(z;{(%l))fz + (Y 0)%) i =1,...,m (39)
O = {9lf|9fi=tan*1’7, 0 <6 < 2m, )
Zf,(2i—1) wherez{ and szj can be computed by the linear programs

1=1,...,m, zf:Txf, iZ?fGXf}, (33) (17)
In order to find the lower and upper bounfsanddy’ of
_We exclude the origin point of the polar space in the comfarat  the statef), in each 2-dimensional subspace, we divide the
since if initial state vector is at the origin, then the stati# remain at . . . .
the origin for all time. Conversely, origin point is not réable from any setf) into four subsets so that each subset is defined in one

nonzero state in finite time. of the orthants of the 2-dimensional subspace. Then for each
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z
orthant we perform fractional programs to find the minimum ’

and maximumy, for the portion of the set defined in that
orthant. Note that splitting is performed in order to exgres
the over-approximation of the séX, as fractional programs
[11] which can be further transformed in linear programs.
In the first orthant wherey (3;_1) > 0, 20,25y > 0, the
following fractional programs are performed,

min/max —eG) i=1,...,m, .
20,(2i—1) Po
s.t. zZ0 = TZC(), (40) 7
HQSCQ S ho, /)6; 0
20,(2i-1) = 0, 20,20y = 0
_ . 20,(24
= ol =tan 1(m1n{7( o) o \e
20,(2i—1) 1% 2
_ 20,(2i
all = tan 1(max{#
20,(2i—1)

Fig. 2. Over-approximation of in polar coordinates
For the second orthant wherg 2;_1) < 0,202y > 0,

by the change of variables; 2;—1y = —zo,2i—1), the
following fractional programs are performed, Thendf and 6§ can be calculated by the following,
min/max 250(2%)1), 1=1,...,m, 951 :min(aileailévailévo‘iLAl)v (44)
s.t. zZo = T.%'o, (41) 9(% = max(o‘iUlv O‘iU25 o‘i%a O‘gl) (45)
Hozo < ho, The lower and upper boundg; and ¢} of the state
Zo,(2i-1) 2 0, z0,(20) 2 0 6y can be computed for each subspace by the method
=abh=r- tan—l(min{_zov& ) above where the computed values are in the intdfvalr].
<0,(2i—1) However, we need to identify angles whose difference is
oY, = 7 — tan~ ! (max{ _*0.20) 15 an integer multiple of2z. Therefore, in the optimization
Z0,(2i—1) programsﬁ]%i + 2k;m and Hj%i + 2k, for k; € Z should be
i used as the lower and upper boundd pf
For the third orth.ant Yvhereoy(%,l) < 0, 20,(20) § 0, by For a 2-dimensional subspace, the over-approximation in
the change of variable (»;—1) = —20,(2i-1) @dZ0,(2i) = polar space is illustrated in Figure 2 wheseandz, are the

—20,(2i) the following fractional programs are performed, siate5 7 is the original set and is the over-approximated
set such thatZ, C Z,.

. 20,(2i) P e ;
min/max Zo,(2i-1) i=1...,m, Subsituting the over-approximated sets (35) and (36)
s.t. zo = T'wo, (42) into (34) and writing the constraintp;; = e%’py; as
Hoxo < ho, prle®tpe; = 1 yield the following relaxed optimization
fi
Z0,2i—1) = 0, Zo,(25y = 0 programs,
= ak = 7+ tan"*(min{ 77Z0’(2i) min/max  t,
20,(2i~1) s.t. prietpoi = 1, i=1,...,m,
a%:ﬂ'_ptan*l(max{ﬂ ) 9]21':901'4—151'15, 1=1,...,m,
%0,(2i-1) Py < po = pg
L < < U
For the fourth orthant wherey ;1) > 0, 29,25 < 0, by g{ < gf <—9p[§
the change of variables, ;) = —zo,(2:), the following 0 =70="0

K3

X L < 0 < 0U i =1,...
fractional programs are performed, Ofi + 2kim < 0pi < Op; + 2w, 0= 1,...m,

k; € Z, t1=1,...,m,

min/max —220_ i=1,...,m, t>0
20,(2i—1)

s.t. zo = Txg, (43) (46)
Hozo < ho, _ There are infinite number of optimization programs (46)
Zo,(2i-1) 2 0, Zo,(20) 2 0 in the grid of the integer variable . However, the optimiza-

= ol =27 —tan! _*0,(23) tion programs (46) can be written equivalently as a series
20,(2i—1) of finite number of linear programs by finding lower and
U 1 20,(2i) upper boundg, andk; of the integer variablé;. For this

@iy = 2 —tan purpose, we split the optimization programs (46) into two:
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optimization inp space and optimization i space. Then where [T}, , Ty ..] is the time interval computed by the
the results of two cases can be intersected to obtain thirear programs (LPr).

general result. Since, we are only focusing on the critical time interval
[t5 .., t5 ..), we can find the lower and upper bourigsand

min’ “max

B. Verification inp coordinates %, of k; in each subspace by,

The optimization programs ip coordinates are,

wiTrtlin T wiTr?lax
min/max . k= LTL ki = [T]' (49)
s.t. Pf-l@‘“tpoz‘ :UL i=1...,m, In each subspace, for each integee [k,, k;], optimiza-
Py i po EP% (47)  tion programs (48) become the following linear programs,
tpj>_0.pf =P min/max ¢,
s.t. sz = 901' + wit,
Sincepf7 Po; p?a ij7 pé/v pOUat > 01 Optimization programs 9?1 + 2I€Z7T S sz S Glsz + 2]{3171'
(47) are geometric programs [11] consisting of only mono- 0L < 6 < 03] '
mial equality constraint, by the change of variablgs= Tr. <t<T:. (LPt)
eP’ po = efo they can be written equivalently as linear S )
programs, There_fore,_ the verification id coordinates can be done
by solving linear programs (LPt) for each integer €
min/max  t, [k;, k] in each 2-dimensional subspace and then intersect-
s.t. —Lﬁfi +ait +poi =0, 1=1,....m, ing the results obtained by each linear program to obtain
Py < po < Py the general solution i coordinates. The total number of
Py < by < 1Y, linear programs (LPt) required i&(k; — k; + 1) wherem
t>0, (LPr) is the number of 2-dimensional subspaces. Note that, finite

number of linear programs are required for the verification
in # coordinates.

where py = log(pg), pi = log(pf), py = log(pF)
and ﬁfU - 1Og(p?)' Her_lce, '.f the sets of mmal_and final Hence, if the sets of initial and final state’s, and
states X, and Xare given in state space as in (3), andX ' 0

(4), they can be transformed into polar space where the’ are given in state space as in (3), and (.4)' they
. . X : can be transformed into polar space whéreoordinate

p coordinate of the sets is defined in (30) and (31). Tth the sets is defined in (32) and (33). THecoordi-

p coordinate of the sets can be over-approximated by perqéte of the sets can be over-a roximatéd by performin

forming the quadratic programs (37) and (39). After over; hp yp g

. . the fractional programs (40),(42),(43),(44) and perform-
approximation, the predicat®afe;y o .)(4, Xo, X)) = 1 . O .
czr? be verified by sglving the Iin[g;r |f;r(ografns (J;_)Pr). If the"9 (44) and (45). After over-approximation, the predicate

; . . N N %afe[07+oo)(A,X0,Xf) = 1 can be verified by the method
linear programs (LPr) return a time intervly;,, Tra, proposed in this section. If the verification method returns
we can conclude,

a time interval[T*. ,T...], we can conclude,

min’ - max

Safe[o_’T;“n](A,Xo, Xf) =1
Safe[T;inyTéax] (A, Xo, Xf) =0
Safe[Tr’;]ax,+OO) (A7X07Xf) =1

Safe[o_,T:ﬂn] (A,Xo, Xf) =1
Saferr:, .. 1(A X0, Xf) =0
Safe[Trﬁax#OO)(AvXOva) =1
by Proposition 2.3. Note that, only two linear programs ar
required for the verification irp coordinates. If a more
precise time interval is required or safety analysispin D. Illustrative Example
coordinates failed to shoWafey (A4, Xo, Xf) = 1,
verification in # coordinates focusing only on the critical

%y Proposition 2.3.

Assume the two dimensional system with the system

. X matrix,
time interval[T:, , T, ] can be done. 3 1
A= [ 51 } , (50)
C. Verification in@ coordinates -
The optimization programs il coordinates are, with eigenvalues\; » = —1 =+ 1i.The set of initial and final
. (unsafe) states are given as in (3) and (4), where
min/max t, 1 0 10 420
s.t. 0 = Oo; + wit, 1=1,...,m, 0 1 10 420
9%4—2]@7‘{' SUefi§9%+2kiﬂ',i:17---;m, Hy, Hy = 1 0 hy = -1 ho = —410
0y <00 < b5, 0 -1 -1 —410
k; € Z, i=1,...,m, With the following transformation matrix,
Trtlin S 3 S T;laxv
T — 5.3284 —2.2071 (51)

(48) ~ | 03787  0.9142 |’
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the system matrix4 can be decomposed into, coordinates. Depending on the eigenstructure and sets, it
1 is possible to get quick results by only performing safety
A= { 1 1 } . (52) analysis inp coordinates. If more precise time intervals are
required, or safety analysis jncoordinates failed to show
The solution in polar coordinates to differential equatiorgafe[07+oo)(A7X0’Xf) = 1, then we can proceed to do
z= Az is given in (28) and (29). Performing the quadratiGurther analysis i) coordinates focusing only on the critical
programs (37) and (39) to overapproximate the set in time interval provided by the analysis ncoordinates.
coordinates yield,
V. CONCLUSIONS

2.3890 < py < 19.2604, In this paper, we have presented a novel method to obtain
1368.3938 < pg < 1435.9588 (53) safety certificates of continuous linear systems by explpit

. . e structure of linear systems and the monotonicity of the
Performing the linear programs (40), (42), (43), and (44g<ponential function. The safety verification problem was

and performing (44) and (45) to overapproximate the Sewritten as series of geometric programs and further trans-

in 6 coordinates vyield, . . . .
formed to equivalent linear programs which provides the
0.0918 < 6 < 2.6245, 0.3809 < 0y < 0.4050 (54) ability to verify the safety properties of (high dimensitina
linear systems in realistic computation times. Our method

Verification 'in p coordinates by solving (LPr) with provides time intervals over which the system is safe and

the computed over-approximations gncoordinates yields

T*. = 4.2633 and 77, = 6.3987. unsafe.
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