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Abstract— One of the main obstacles in the safety analysis
of continuous and hybrid systems has been the computation of
the reachable set for continuous systems in high dimensions.
In this paper, we present a novel method that exploits the
structure of linear dynamical systems, and the monotonicity
of the exponential function in order to obtain safety certificates
of continuous linear systems. By over-approximating the sets
of initial and final states, the safety verification problem is
expressed as a series of geometric programs which can be
further transformed into linear programs. This provides th e
ability to verify the safety properties of high dimensional
linear systems with realistic computation times. In addition,
our optimization based formulation computes time intervals
over which the system is safe and unsafe.

I. I NTRODUCTION

The safety (or reachability) problem asks whether a set of
unsafe (final) states is reachable from a set of initial states
while satisfying the system dynamics. This is a problem that
even for linear systems of the forṁx = Ax has clearly es-
caped analytic solution. Furthermore, exact or approximate
computational approaches have been quite expensive, and,
therefore, limited to systems of small dimension. This has
constrained the verification of hybrid systems to systems
that do not exceed three or four continuous variables.

Computing the exact reachable set for linear systems
starting in a semi-algebraic set is possible under certain
eigen-structure conditions [1], [2], by relying on expen-
sive quantifier elimination techniques [3]. In [4], quanti-
fier elimination techniques coupled with understanding of
linear system eigenstructure resulted in over-approximating
the reachable set for linear systems with almost arbitrary
eigenstructure.

Methods for exact computation of reachable sets should
be contrasted withapproximatemethods, which over- or
under-approximate reachable sets using a variety of set
representations such as polyhedra, level sets, or ellipsoids.
Approximate reachability computations rely on numeri-
cal methods for Hamilton-Jacobi equations [5], ellipsoidal
calculus [6], flow-pipe approximations [7], and polygonal
computations [8]. As a result, approximate methods are, in
principle, applicable to larger classes of continuous systems.
However, the encoding complexity of set representation, and
computational complexity of numerical reachability tech-
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niques make these approaches very valuable and precise,
but for small dimensional systems.

In this paper, we are interested in the following safety
(reachability) problems for linear dynamical systems of the
form ẋ = Ax where statex ∈ R

n.
Problem 1.1: (Safety verification) Given a linear system

and two polyhedral setsX0 and Xf , determine if system
trajectories starting inX0 can ever reachXf .

Solutions to the above problem can be used to prove that a
certain set can be reached or avoided. They can also be used
to provide refutation for counter-example guided predicate
abstraction techniques for hybrid systems [9]. The following
problem also extracts some timing information regarding
reachability.

Problem 1.2: (Timing verification) Given a linear system
and two polyhedral setsX0 andXf , compute the minimum
and maximum amount of time it takes to reachXf from
X0.

Solutions to the above problem extract timing information
that would be critical in abstracting dynamical systems by
simple timing intervals. A solution to the above problem
would also allow abstracting hybrid systems with linear
dynamics by timed automata [10], enabling the verification
of temporal properties of hybrid systems.

In order to address the above problems for high dimen-
sional systems, we use a combination of optimization tech-
niques, in particular linear, geometric, quadratic, and frac-
tional programming which are known to be very scalable.
By over-approximating polyhedral initial and final states in
modal or polar coordinates, the safety verification problem
is written as a series of geometric programs which can be
further transformed into linear programs. This provides the
ability to address the above problems for high-dimensional
linear systems with realistic computation times.

II. SAFETY ANALYSIS OF L INEAR SYSTEMS

We consider linear systems of the form,

ẋ = Ax, (1)

where x(t) ∈ Rn is the state at timet, and A ∈ Rn×n

is the system matrix. Given an initial statex0 = x(0), the
solution to the differential equation (1) fort ≥ 0 is,

x(t) = eAtx0. (2)

In this paper, we are consideringpolyhedralsets of initial
and final statesX0 andXf , defined as,

X0 = {x0 ∈ R
n | H0x0 ≤ h0}, (3)

Xf = {xf ∈ R
n | Hfxf ≤ hf}, (4)



whereH0 ∈ R
k×n, Hf ∈ R

l×n, h0 ∈ R
k and hf ∈ R

l.
Given a set of initial statesX0, the reach set of the linear
system (1) on the time interval[t0, tf ] is defined as,

Reach[t0,tf ](A, X0) = {xf ∈ Rn | ∃t ∃x0 :

t0 ≤ t ≤ tf ∧ x0 ∈ X0 ∧ xf = eAtx0}. (5)

The set of all forward reachable states is simply
Reach[0,+∞)(A, X0). Given a set of final or unsafe states
Xf , we define the safety predicate on[t0, tf ] as,

Safe[t0,tf ](A, X0, Xf ) =
{

1 if Reach[t0,tf ](A, X0) ∩ Xf = ∅
0 otherwise

(6)

In this paper, we are interested in the following problems,
Problem 2.1: (Safety verification) Given a linear system

(A, X0, Xf ), determine ifSafe[0,+∞)(A, X0, Xf ) = 1.
Problem 2.2: (Timing verification) Given a linear system

(A, X0, Xf ), if Safe[0,+∞)(A, X0, Xf) = 0, then compute
a time interval[Tmin, Tmax] so that

Safe[0,Tmin](A, X0, Xf ) = 1

Safe[Tmin,Tmax](A, X0, Xf ) = 0

Safe[Tmax,+∞)(A, X0, Xf ) = 1

Computing such a time interval[Tmin, Tmax] exactly is
possible if the linear system(A, X0, Xf ) has a certain struc-
ture [1], [2]. Approximate answers rely on the following
straightforward proposition.

Proposition 2.3:Given linear system and sets
(A, X0, Xf ), consider (A, X̂0, X̂f ) where X0 ⊆ X̂0

andXf ⊆ X̂f . Then,

Safe[T∗

min,T∗

max](A, X̂0, X̂f ) = 1

⇒ Safe[T∗

min,T∗

max](A, X0, Xf ) = 1 (7)

Safe[0,+∞)(A, X̂0, X̂f) = 1

⇒ Safe[0,+∞)(A, X0, Xf ) = 1 (8)

where [T ∗

min, T
∗

max] is an over-approximate time interval
such thatT ∗

min ≤ Tmin ≤ Tmax ≤ T ∗

max.

A. System decomposition

Our solutions to the above problems rely on the well-
known decomposition of linear systems in modal coor-
dinates. Throughout the paper, it is assumed that system
matrix A is diagonalizable, thereforeA can be written as,

A = T−1ΛT, (9)

where Λ ∈ Cn×n is a diagonal matrix whose diagonal
entries are eigenvalues of matrixA, andT ∈ Cn×n is an
invertible transformation matrix. By the complex conjugate
symmetry property of matrices with real entries, eigenvalues
of the system matrixA can be written as,

λi = ai + jwi, i = 1, . . . , m, (10)

λ̄i = ai − jwi, i = 1, . . . , m, (11)

λi = ai, i = 2m + 1, . . . n, (12)

whereai are the real andwi are the imaginary parts of the
eigenvaluesλi. Since the matrixA is diagonalizable, the
linear system (1) can be decomposed as,

[

ẋ1

ẋ2

]

=

[

A1 0
0 A2

] [

x1

x2

]

(13)

so that eigenvalues ofA1 ∈ R(n−2m)×(n−2m) are the real
eigenvalues in (12) and eigenvalues ofA2 ∈ R2m×2m are
the complex conjugate pairs in (10) and (11).

III. L INEAR SYSTEMS WITH REAL EIGENVALUES

In this section, we consider linear systems with real
eigenvalues. We first transform the system in modal or
eigen-coordinates. Note that, throughout the paper, we use
the notationmin / max f(x) to express that the minimum
and maximum values of the functionf(x) are computed
subject to the same constraints.

A. Transforming the system in eigen-coordinates

Assuming the matrixA is diagonalizable, we have,A =
T−1ΛT whereT ∈ R

n×n is an invertible transformation
matrix whose columns are left eigenvectors ofA and
Λ ∈ Rn×n is a diagonal matrix whose diagonal entries are
eigenvalues of matrixA. If we define a new state vector
z ∈ Rn, z = Tx, then we obtain the following equivalent
differential equation and its solution,

ż = Λz, zi(t) = eλitz0i, i = 1, . . . , n, (14)

where λi are the eigenvalues of the system matrixA
and z0 = Tx0 is the initial state vector. Hence, by the
transformationz = Tx, we break the verification problem
of the linear systeṁx = Ax into verification problems of
multiple 1-dimensional linear systems.

The transformed states and the sets in eigen-coordinates
are as follows,

z0 = Tx0, Z0 = {z0 : z0 = Tx0, x0 ∈ X0}, (15)

zf = Txf , Zf = {zf : zf = Txf , xf ∈ Xf}, (16)

wherez0 andzf are the initial and final states in eigenspace,
Z0 and Zf are the sets of initial and final states in
eigenspace,x0 and xf are the states in the setsX0 and
Xf defined in (3) and (4) respectively.

In order to compute time intervals for safety certificates,
we project the setsZ0 andZf on each eigendirection. This
is easily performed by the following linear programs,

min/max z0i

s.t. z0 = Tx0

H0x0 ≤ h0

min/max zfi,
s.t. zf = Txf

Hfxf ≤ hf

(17)

This projection yields the over-approximated sets in
eigenspace as,

Ẑ0 = {z0|z
L
0 ≤ z0 ≤ zU

0 }, (18)

Ẑf = {zf |z
L
f ≤ zf ≤ zU

f }, (19)

where zL
0 , zL

f are the lower bound vectors andzU
0 , zU

f

are the upper bound vectors of initial state vectorz0 and
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Fig. 1. Over-approximation in state space

final state vectorzf in eigenspace respectively. For a 2-
dimensional system, the over-approximation in state space
is illustrated in Figure 1 wherex1 andx2 are the original
coordinates,e1 and e2 are the eigenvectors,X0 is the
original set andX̂0 is the over-approximated set such that
X0 ⊆ X̂0.

Therefore, we have the over-approximation of the system
(Λ, Z0, Zf) as(Λ, Ẑ0, Ẑf ) which is n 1-dimensional linear
systems,

zfi = eλitz0i, i = 1, . . . , n, (20)

zL
0 ≤ z0 ≤ zU

0 , (21)

zL
f ≤ zf ≤ zU

f . (22)

We compute time intervals for each 1-dimensional subsys-
tem and intersect the results to obtain the general solution.
For the verification of each 1-dimensional subsystem, we
have three cases in the analysis,
Case 1: zL

0i, z
U
0i, z

L
fi, z

U
fi > 0 or zL

0i, z
U
0i, z

L
fi, z

U
fi < 0 : We

compute the time interval[timin, t
i
max] for the 1-dimensional

subsystemi as

timin = min{
1

λi

log(
zL

fi

zU
0i

),
1

λi

log(
zU

fi

zL
0i

)} (23)

timax = max{
1

λi

log(
zL

fi

zU
0i

),
1

λi

log(
zU

fi

zL
0i

)} (24)

If timax < 0 then we can conclude that the set of final states
of subsystemi is not forward reachable from the set of
initial states and thereforeSafe[0,+∞)(A, X0, Xf ) = 1.
Case 2: zL

0i, z
U
0i < 0, zL

fi, z
U
fi > 0 or zL

0i, z
U
0i > 0, zL

fi, z
U
fi <

0 : Since, when the eigenvalue is real, a final state in
negative (positive) orthant is not reachable from an initial
state in positive (negative) orthant, we can immediately con-
clude that 1-dimensional subsystemi is safe and therefore
Safe[0,+∞)(A, X0, Xf ) = 1.
Case 3: Otherwise:We explain this case by an example.
Consider the case wherezL

0i ≤ 0 < zU
0i and zL

fi, z
U
fi > 0.

We split the initial set of states into two subsets each of
which are defined in negative orthant of the eigenspace as
zL
0i ≤ z0i < 0 and positive orthant of the eigenspace as

0 < z0i ≤ zU
0i. Since 1-dimensional final set of states is not

reachable from the states that belong to the subset in the
negative orthantzL

0i ≤ z0i < 0, it’s sufficient to verify the
subsystemi for the subset0 < z0i ≤ zU

0i. The rest of the
verification can be done as in case 1.
Remark: Note that, a safety certificate for any 1-
dimensional subsystemi is a sufficient safety certificate for
the overall system.

B. Illustrative Example

Consider the 2-dimensional system matrix,

A =

[

−2 −2
−1 −3

]

(25)

with real eigenvaluesλ1 = −1 andλ2 = −4. Consider the
polyhedral sets of initial and final states defined in positive
orthant defined as in (3) and (4) where

Hf , H0 =









−1 1
1 −1
−1 −1
1 1









, hf =









−1
2

−16
18









, h0 =









−1
2
−4
6









.

Performing the linear programs defined in (17) yields the
following bounds for the states in eigenspacez0 andzf ,

0.6667 ≤ z01 ≤ 1.3334, 0.6667 ≤ zf1 ≤ 1.3334
7.6667 ≤ z02 ≤ 8.8333, 1.6667 ≤ zf2 ≤ 2.8333

For the first 1-dimensional subsystemzf1 = e−tz01, the
time interval is calculated as[0, 0.6931]. For the second 1-
dimensional subsystemzf2 = e−4tz02, the time interval is
calculated as[0.2488, 0.4169]. The intersection of two time
intervals is[T ∗

min, T
∗

max] = [0.2488, 0.4169]. Therefore,

Safe[0,T∗

min](A, X0, Xf ) = 1

Safe[T∗

min,T∗

max](A, X0, Xf ) = 0

Safe[T∗

max,+∞)(A, X0, Xf ) = 1

by Proposition 2.3. The required CPU time for the compu-
tation is0.13 seconds.

C. High Dimensional Verification

We implemented our method presented in Section III
using MATLAB. The results, performed on a laptop which
has an Intel Pentium-4 2.4GHz processor and 512 MB
RAM, are given in the following table.

System System Compute T ∗

min T ∗

max

Dimension Safe? Time (sec) (sec) (sec)

5 No 0.35 0.6453 1.4232
5 Yes 0.29
10 No 0.86 0.3278 1.2924
10 Yes 0.8
100 Yes 351.73

Table 1 - Safety computation results
Note that the majority of the computation is done in
computing over-approximations of the initial and final states
in modal coordinates using linear programs.



IV. L INEAR SYSTEMS WITH COMPLEX EIGENVALUES

In this section, we consider linear systems with complex
eigenvalues. In this case, we shall transform the systems in
polar coordinates.

A. Transforming the optimization in polar coordinates

The matrixA ∈ R2m×2m can be decomposed into block
diagonal form by an invertible transformation matrixT ∈
R2m×2m. If we define a new state vectorz ∈ R2m, z = Tx,
then we obtain the equivalent linear systemż = Λz where
A = T−1ΛT, andΛ ∈ R2m×2m is a matrix of the form,















[

a1 −w1

w1 a1

]

0
. . .

0
[

am −wm

wm am

]















(26)

where ai and wi are real and imaginary parts of the
eigenvaluesλi defined in (10) and (11). Therefore, for any
complex conjugate eigenvalue pair(λi, λi) there exists a
2-dimensional subspace of the state space. The differential
equations in each 2-dimensional subspace take the form,

[

ż2i−1

ż2i

]

=

[

ai −wi

wi ai

] [

z2i−1

z2i

]

, i = 1, . . . , m,

(27)
which can be transformed (and solved) in polar coordi-
nates1,

ρ̇i = aiρi ρi(t) = eaitρ0i, i = 1, . . . , m, (28)

θ̇i = wi, θi(t) = θ0i + wit, i = 1, . . . , m, (29)

where ρi is the radial coordinate, andθi is the angular
coordinate of polar space. Hence, by the transformation
z = Tx and further transformation to polar coordinates, we
break the verification problem of the linear systemẋ = Ax
into verification problems of multiple 2-dimensional linear
systems.

Transformed sets of initial and final states in polar
coordinates are as follows,

P0 = {ρ0 | ρ0i = z2
0,(2i−1) + z2

0,(2i), i = 1, . . . , m,

z0 = Tx0, x0 ∈ X0}, (30)

Pf = {ρf | ρfi = z2
f,(2i−1) + z2

f,(2i), i = 1, . . . , m,

zf = Txf , xf ∈ Xf}, (31)

Θ0 = {θ0 | θ0i = tan−1 z0,(2i)

z0,(2i−1)
, 0 ≤ θ0i ≤ 2π,

i = 1, . . . , m, z0 = Tx0, x0 ∈ X0}, (32)

Θf = {θf | θfi = tan−1 zf,(2i)

zf,(2i−1)
, 0 ≤ θfi ≤ 2π,

i = 1, . . . , m, zf = Txf , xf ∈ Xf}, (33)

1We exclude the origin point of the polar space in the computations
since if initial state vector is at the origin, then the statewill remain at
the origin for all time. Conversely, origin point is not reachable from any
nonzero state in finite time.

whereX0 and Xf are the polyhedral sets defined in (3),
and (4),x0 andxf are the states inX0 andXf .

We formulate the safety verification problem using the
following optimization programs which searches for such
Tmin and Tmax so that the equations (28), (29) and set
constraints (30), (31), (32), (33) are satisfied,

min/max t,
s.t. ρfi = eaitρ0i, i = 1, . . . , m,

θfi = θ0i + wit, i = 1, . . . , m,
ρ0i = z2

0,(2i−1) + z2
0,(2i), i = 1, . . . , m,

ρfi = z2
f,(2i−1) + z2

f,(2i), i = 1, . . . , m,

θ0i = tan−1 z0,(2i)

z0,(2i−1)
, i = 1, . . . , m,

θfi = tan−1 zf,(2i)

zf,(2i−1)
, i = 1, . . . , m,

z0 = Tx0,
zf = Txf ,
H0x0 ≤ h0,
Hfxf ≤ hf ,
t > 0

(34)

Optimization program (34) is, in general, a nonconvex
nonlinear optimization problem which is computationally
expensive and hard to solve globally. By relaxing the
set constraints, (34) can be over-approximated by linear
programs. We over-approximate the setsP0, Pf , Θ0 and
Θf by computing the lower and upper bounds of the states
ρ0, ρf , θ0, θf so that the over-approximations are expressed
as,

P̂0 = {ρ0 | ρL
0 ≤ ρ0 ≤ ρU

0 }, P̂f = {ρf | ρL
f ≤ ρf ≤ ρU

f } (35)

Θ̂0 = {θ0 | θL
0 ≤ θ0 ≤ θU

0 }, Θ̂f = {θf | θL
f ≤ θf ≤ θU

f } (36)

whereP0 ⊆ P̂0, Pf ⊆ P̂f , Θ0 ⊆ Θ̂0 and Θf ⊆ Θ̂f . The
lower boundsρL

0 andρL
f of the statesρ0 andρf in each 2-

dimensional subspace can be computed by performing the
following quadratic programs,

min ρ2
0i = z2

0,(2i−1) + z2
0,(2i), i = 1, . . . , m,

s.t. z0 = Tx0,
H0x0 ≤ h0,

min ρ2
fi = z2

f,(2i−1) + z2
f,(2i), i = 1, . . . , m,

s.t. zf = Txf ,
Hfxf ≤ hf .

(37)

Since maximization of a quadratic program is not a
convex program, we compute the upper boundsρU

0 andρU
f

of the statesρ0 andρf in each 2-dimensional subspace as,

ρU
0i =

√

(zU
0,(2i−1))

2 + (zU
0,(2i))

2, i = 1, . . . , m, (38)

ρU
fi =

√

(zU
f,(2i−1))

2 + (zU
f,(2i))

2), i = 1, . . . , m (39)

wherezU
0 andzU

f can be computed by the linear programs
(17).

In order to find the lower and upper boundsθL
0 andθU

0 of
the stateθ0 in each 2-dimensional subspace, we divide the
setθ0 into four subsets so that each subset is defined in one
of the orthants of the 2-dimensional subspace. Then for each



orthant we perform fractional programs to find the minimum
and maximumθ0 for the portion of the set defined in that
orthant. Note that splitting is performed in order to express
the over-approximation of the setΘ0 as fractional programs
[11] which can be further transformed in linear programs.
In the first orthant wherez0,(2i−1) ≥ 0, z0,(2i) ≥ 0, the
following fractional programs are performed,

min/max
z0,(2i)

z0,(2i−1)
, i = 1, . . . , m,

s.t. z0 = Tx0,
H0x0 ≤ h0,
z0,(2i−1) ≥ 0, z0,(2i) ≥ 0

(40)

⇒ αL
i1 = tan−1(min{

z0,(2i)

z0,(2i−1)
})

αU
i1 = tan−1(max{

z0,(2i)

z0,(2i−1)
})

For the second orthant wherez0,(2i−1) ≤ 0, z0,(2i) ≥ 0,
by the change of variables̄z0,(2i−1) = −z0,(2i−1), the
following fractional programs are performed,

min/max
z0,(2i)

z̄0,(2i−1)
, i = 1, . . . , m,

s.t. z0 = Tx0,
H0x0 ≤ h0,
z̄0,(2i−1) ≥ 0, z0,(2i) ≥ 0

(41)

⇒ αL
i2 = π − tan−1(min{

z0,(2i)

z̄0,(2i−1)
})

αU
i2 = π − tan−1(max{

z0,(2i)

z̄0,(2i−1)
})

For the third orthant wherez0,(2i−1) ≤ 0, z0,(2i) ≤ 0, by
the change of variables̄z0,(2i−1) = −z0,(2i−1) andz̄0,(2i) =
−z0,(2i), the following fractional programs are performed,

min/max
z̄0,(2i)

z̄0,(2i−1)
, i = 1, . . . , m,

s.t. z0 = Tx0,
H0x0 ≤ h0,
z̄0,(2i−1) ≥ 0, z̄0,(2i) ≥ 0

(42)

⇒ αL
i3 = π + tan−1(min{

z̄0,(2i)

z̄0,(2i−1)
})

αU
i3 = π + tan−1(max{

z̄0,(2i)

z̄0,(2i−1)
})

For the fourth orthant wherez0,(2i−1) ≥ 0, z0,(2i) ≤ 0, by
the change of variables̄z0,(2i) = −z0,(2i), the following
fractional programs are performed,

min/max
z̄0,(2i)

z0,(2i−1)
, i = 1, . . . , m,

s.t. z0 = Tx0,
H0x0 ≤ h0,
z0,(2i−1) ≥ 0, z̄0,(2i) ≥ 0

(43)

⇒ αL
i4 = 2π − tan−1 z̄0,(2i)

z0,(2i−1)

αU
i4 = 2π − tan−1 z̄0,(2i)

z0,(2i−1)
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Fig. 2. Over-approximation ofZ0 in polar coordinates

ThenθL
0 andθU

0 can be calculated by the following,

θL
0i = min(αL

i1, α
L
i2, α

L
i3, α

L
i4), (44)

θU
0i = max(αU

i1, α
U
i2, α

U
i3, α

U
i4). (45)

The lower and upper boundsθL
f and θU

f of the state
θf can be computed for each subspace by the method
above where the computed values are in the interval[0, 2π].
However, we need to identify angles whose difference is
an integer multiple of2π. Therefore, in the optimization
programs,θL

fi + 2kiπ andθL
fi + 2kiπ for ki ∈ Z should be

used as the lower and upper bounds ofθf .
For a 2-dimensional subspace, the over-approximation in

polar space is illustrated in Figure 2 wherez1 andz2 are the
states,Z0 is the original set and̂Z0 is the over-approximated
set such thatZ0 ⊆ Ẑ0.

Subsituting the over-approximated sets (35) and (36)
into (34) and writing the constraintsρfi = eaitρ0i as
ρ−1

fi eaitρ0i = 1 yield the following relaxed optimization
programs,

min/max t,
s.t. ρ−1

fi eaitρ0i = 1, i = 1, . . . , m,

θfi = θ0i + wit, i = 1, . . . , m,
ρL
0 ≤ ρ0 ≤ ρU

0

ρL
f ≤ ρf ≤ ρU

f

θL
0 ≤ θ0 ≤ θU

0

θL
fi + 2kiπ ≤ θfi ≤ θU

fi + 2kiπ, i = 1, . . . , m,

ki ∈ Z, i = 1, . . . , m,
t > 0

(46)

There are infinite number of optimization programs (46)
in the grid of the integer variableki. However, the optimiza-
tion programs (46) can be written equivalently as a series
of finite number of linear programs by finding lower and
upper boundski andki of the integer variableki. For this
purpose, we split the optimization programs (46) into two:



optimization inρ space and optimization inθ space. Then
the results of two cases can be intersected to obtain the
general result.

B. Verification inρ coordinates

The optimization programs inρ coordinates are,

min/max t,
s.t. ρ−1

fi eaitρ0i = 1, i = 1, . . . , m,

ρL
0 ≤ ρ0 ≤ ρU

0

ρL
f ≤ ρf ≤ ρU

f

t > 0.

(47)

Sinceρf , ρ0, ρ
L
f , ρU

f , ρL
0 , ρU

0 , t > 0, optimization programs
(47) are geometric programs [11] consisting of only mono-
mial equality constraint, by the change of variablesρf =
eρ̄f , ρ0 = eρ̄0 they can be written equivalently as linear
programs,

min/max t,
s.t. −ρ̄fi + ait + ρ̄0i = 0, i = 1, . . . , m,

ρ̄L
0 ≤ ρ̄0 ≤ ρ̄U

0 ,
ρ̄L

f ≤ ρ̄f ≤ ρ̄U
f ,

t > 0, (LPr)

where ρ̄L
0 = log(ρL

0 ), ρ̄U
0 = log(ρU

0 ), ρ̄L
f = log(ρL

f )

and ρ̄U
f = log(ρU

f ). Hence, if the sets of initial and final
statesX0 and Xf are given in state space as in (3), and
(4), they can be transformed into polar space where the
ρ coordinate of the sets is defined in (30) and (31). The
ρ coordinate of the sets can be over-approximated by per-
forming the quadratic programs (37) and (39). After over-
approximation, the predicateSafe[0,+∞)(A, X0, Xf ) = 1
can be verified by solving the linear programs (LPr). If the
linear programs (LPr) return a time interval[T ∗

min, T
∗

max],
we can conclude,

Safe[0,T∗

min](A, X0, Xf ) = 1

Safe[T∗

min,T∗

max](A, X0, Xf ) = 0

Safe[T∗

max,+∞)(A, X0, Xf ) = 1

by Proposition 2.3. Note that, only two linear programs are
required for the verification inρ coordinates. If a more
precise time interval is required or safety analysis inρ
coordinates failed to showSafe[0,+∞)(A, X0, Xf ) = 1,
verification in θ coordinates focusing only on the critical
time interval[T ∗

min, T
∗

max] can be done.

C. Verification inθ coordinates

The optimization programs inθ coordinates are,

min/max t,
s.t. θfi = θ0i + wit, i = 1, . . . , m,

θL
fi + 2kiπ ≤ θfi ≤ θU

fi + 2kiπ, i = 1, . . . , m,

θL
0 ≤ θ0 ≤ θU

0 ,
ki ∈ Z, i = 1, . . . , m,
T ∗

min ≤ t ≤ T ∗

max,

(48)

where [T ∗

min, T
∗

max] is the time interval computed by the
linear programs (LPr).

Since, we are only focusing on the critical time interval
[t∗min, t

∗

max], we can find the lower and upper boundski and
ki of ki in each subspace by,

ki = ⌊
wiT

∗

min

2π
⌋, ki = ⌈

wiT
∗

max

2π
⌉. (49)

In each subspace, for each integerki ∈ [ki, ki], optimiza-
tion programs (48) become the following linear programs,

min/max t,
s.t. θfi = θ0i + wit,

θL
fi + 2kiπ ≤ θfi ≤ θU

fi + 2kiπ

θL
0i ≤ θ0i ≤ θU

0i

T ∗

min ≤ t ≤ T ∗

max, (LPt)

Therefore, the verification inθ coordinates can be done
by solving linear programs (LPt) for each integerki ∈
[ki, ki] in each 2-dimensional subspace and then intersect-
ing the results obtained by each linear program to obtain
the general solution inθ coordinates. The total number of
linear programs (LPt) required ism(ki − ki + 1) wherem
is the number of 2-dimensional subspaces. Note that, finite
number of linear programs are required for the verification
in θ coordinates.

Hence, if the sets of initial and final statesX0 and
Xf are given in state space as in (3), and (4), they
can be transformed into polar space whereθ coordinate
of the sets is defined in (32) and (33). Theθ coordi-
nate of the sets can be over-approximated by performing
the fractional programs (40),(42),(43),(44) and perform-
ing (44) and (45). After over-approximation, the predicate
Safe[0,+∞)(A, X0, Xf ) = 1 can be verified by the method
proposed in this section. If the verification method returns
a time interval[T ∗

min, T
∗

max], we can conclude,

Safe[0,T∗

min](A, X0, Xf ) = 1

Safe[T∗

min,T∗

max](A, X0, Xf ) = 0

Safe[T∗

max,+∞)(A, X0, Xf ) = 1

by Proposition 2.3.

D. Illustrative Example

Assume the two dimensional system with the system
matrix,

A =

[

−3 1
−5 1

]

, (50)

with eigenvaluesλ1,2 = −1± 1i.The set of initial and final
(unsafe) states are given as in (3) and (4), where

Hf , H0 =









1 0
0 1
−1 0
0 −1









hf =









10
10
−1
−1









h0 =









420
420
−410
−410









With the following transformation matrix,

T =

[

5.3284 −2.2071
0.3787 0.9142

]

, (51)



the system matrixA can be decomposed into,

Λ =

[

−1 1
−1 −1

]

. (52)

The solution in polar coordinates to differential equation
ż = Λz is given in (28) and (29). Performing the quadratic
programs (37) and (39) to overapproximate the sets inρ
coordinates yield,

2.3890 ≤ ρf < 19.2604,

1368.3938 ≤ ρ0 ≤ 1435.9588 (53)

Performing the linear programs (40), (42), (43), and (44)
and performing (44) and (45) to overapproximate the sets
in θ coordinates yield,

0.0918 ≤ θf < 2.6245, 0.3809 ≤ θ0 ≤ 0.4050 (54)

Verification in ρ coordinates by solving (LPr) with
the computed over-approximations inρ coordinates yields
T ∗

min = 4.2633 andT ∗

max = 6.3987.
Now we proceed to the verification inθ coordinates by

focusing on the critical time interval[4.2633, 6.3987] to
obtain a more precise time interval or a safety certificate.
Substitutingw = 1 and computedT ∗

min and T ∗

max values
into (49) yieldsk = 0 andk = 2. For k = 0 solving (LPt)
yields infeasible solutions which means that the final set is
not reachable in the first revolution. Fork = 1 solving (LPt)
yields the time interval[5.9699, 6.3987]. For k = 2 solving
(LPt) yields infeasible solutions which means that the final
set is not reachable in the third revolution. Therefore, the
intersection of all time intervals computed for eachk is
T ∗

min = 5.9699 andT ∗

max = 6.3987. Hence,

Safe[0,T∗

min](A, X0, Xf ) = 1

Safe[T∗

min,T∗

max](A, X0, Xf ) = 0

Safe[T∗

max,+∞)(A, X0, Xf ) = 1

by Proposition 2.3. The elapsed CPU time for computing
the above linear programs is0.27 seconds.

E. High Dimensional Verification

We implemented our method presented in Section IV
using MATLAB. The results in different dimensions are
given in the following table,

System System Compute T ∗

min T ∗

max

Dimension Safe? Time (Sec) (sec) (sec)

6 No 0.94 113.14 186.88
6 Yes 0.79
10 No 1.70 81.70 109.86
10 Yes 1.72
100 Yes 705.60

Table 2 - Safety computation results
Note that, only two linear programs are sufficient to do
verification in ρ coordinates. Therefore, besides the di-
mension, another factor affecting computational time sig-
nificantly is the value of(ki − ki + 1) which determines
the number of linear programs in the safety analysis inθ

coordinates. Depending on the eigenstructure and sets, it
is possible to get quick results by only performing safety
analysis inρ coordinates. If more precise time intervals are
required, or safety analysis inρ coordinates failed to show
Safe[0,+∞)(A, X0, Xf ) = 1, then we can proceed to do
further analysis inθ coordinates focusing only on the critical
time interval provided by the analysis inρ coordinates.

V. CONCLUSIONS

In this paper, we have presented a novel method to obtain
safety certificates of continuous linear systems by exploiting
the structure of linear systems and the monotonicity of the
exponential function. The safety verification problem was
written as series of geometric programs and further trans-
formed to equivalent linear programs which provides the
ability to verify the safety properties of (high dimensional)
linear systems in realistic computation times. Our method
provides time intervals over which the system is safe and
unsafe.

VI. ACKNOWLEDGMENTS

This research would not have been possible without the
inspired teaching of Ali Jadbabaie on Convex Optimization
course in the Fall 2002 semester at the University of
Pennsylvania. We also thank Stephen Prajna for discussions
on this paper.

REFERENCES

[1] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic reachability
computations for families of linear vector fields,”Journal of Symbolic
Computation, vol. 32, no. 3, pp. 231–253, September 2001.

[2] H. Anai and V. Weispfenning, “Reach set computations using real
quantifier elimination,” inHybrid Systems : Computation and Con-
trol, ser. Lecture Notes in Computer Science, M. D. D. Benedetto
and A. L. Sangiovanni-Vincentelli, Eds. Springer Verlag, 2001, vol.
2034, pp. 63–76.

[3] A. Tarski, A decision method for elementary algebra and geometry,
2nd ed. University of California Press, 1951.

[4] A. Tiwari, “Approximate reachability for linear systems,” in Hybrid
Systems: Computation and Control, ser. Lecture Notes in Computer
Science, O. Maler and A. Pnueli, Eds., vol. 2623. Springer-Verlag,
Apr. 2003, pp. 514–525.

[5] I. Mitchell and C. Tomlin, “Level set methods for computation in
hybrid systems,” inHybrid Systems : Computation and Control, ser.
Lecture Notes in Computer Science, B. Krogh and N. Lynch, Eds.
Springer Verlag, 2000, vol. 1790, pp. 310–323.

[6] A. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability
analysis,” inHybrid Systems : Computation and Control, ser. Lecture
Notes in Computer Science, B. Krogh and N. Lynch, Eds. Springer
Verlag, 2000, vol. 1790, pp. 203–213.

[7] A. Chutinan and B. H. Krogh, “Computational techniques for hy-
brid system verification,”IEEE Transactions on Automatic Control,
vol. 48, no. 1, pp. 64–75, Jan. 2003.

[8] T. Dang and O. Maler, “Reachability analysis via face lifting,” in
Hybrid Systems : Computation and Control, ser. Lecture Notes in
Computer Science, T. Henzinger and S. Sastry, Eds. Berlin: Springer
Verlag, 1998, vol. 1386, pp. 96–109.

[9] R. Alur, T. Dang, and F. Ivancic, “Counter-example guided predicate
abstraction of hybrid systems,” inTools and Algorithms for the
Construction and Analysis of Systems (TACAS), ser. Lecture Notes in
Computer Science, H. Garavel and J. Hatcliff, Eds. Warsaw, Poland:
Springer, April 2003, vol. 2619, pp. 208–223.

[10] R. Alur and D. Dill, “A theory of timed automata,”Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[11] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeA17.2
	Page0: 553
	Page1: 554
	Page2: 555
	Page3: 556
	Page4: 557
	Page5: 558
	Page6: 559


