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Controlled Lagrangians with Gyroscopic Forcing:
An Experimental Application

C. Konda Reddy, William W. Whitacre, and Craig A. Woolsey

Abstract— This paper describes an experimental implemen- of physical damping, the control law provides stability in
tation of a feedback control law derived using the method of g basin that includes all states for which the pendulum
controlled Lagrangians. This technique, which was developed is inclined above the horizontal plane. The addition of
to stabilize underactuated mechanical systems, involves shap- S . . . L
ing a system’s total energy through feedback and introducing fe_edbaCk dISSIp_a_tlon prpwdes asymptotic stability mth' .
fictitious gyroscopic forces in the closed-loop system. The this same stability basin. However, because the kinetic
experimental application is the classic problem of stabilizing energy is modified through feedback, physical damping
an inverted pendulum on a servo-actuated cart. In the absence enters the system in a somewhat complicated way. Even
of damping, the control law provides asymptotic stability in 14,9k the desired equilibrium is a strict minimum of the
a region that contains all states for which the pendulum is i : . L
inclined above horizontal. Even with linear damping, stabi- control-modified energy, simple Rayleigh dISSIpe}tlon nsake
lizing control parameter values exist and simulations suggest the closed-loop system unstable. Careful analysis shaats th
that the region of attraction remains quite large. Although asymptotic stability may be recovered through appropriate
the nonlinear controller provides asymptotic stability within a  feedback dissipation, however it is not “automatic.”
large region of attraction, the controller’s local performance is Section II reviews the method of controlled Lagrangians.

poor when compared to that of a well-tuned linear controller. . . L
To obtain good performance both regionally and locally, a Section Il describes an example which illustrates the po-

Lyapunov-based switching strategy is employed. tentially detrimental effect of physical damping for a gyt
controlled by kinetic shaping. Section IV describes cdntro
I. INTRODUCTION design and stability analysis for the example of a pendulum

The method of controlled Lagrangians is a technique fd?" @ cart. In Section V, we present an experimental imple-
stabilizing underactuated mechanical systems. As ihjitial Mentation of the.control law described in Section IV. We
presented [6], [7], [9], the method provides a kinetictonclude in Section VI.
shaping algorithm for systems with symmetries in the ||, THE METHOD OF CONTROLLED LAGRANGIANS
input directions. Later work introduced additional cohtro
freedom by allowing potential shaping as well as k'ne“(fo stabilize an equilibrium of a given mechanical control

shaping [5], [8]. In [17], still more freedom was introducedg, 1o by providing a feedback control law under which

by _completely relgxing the sym_metry requirement and althe closed-loop dynamics derive from a control-modified
lowing for generalized gyroscopic forces in the CloseqalooLagrangian. To expand the class of eligible systems, and

% provide greater freedom for tuning performance, we
Mallow for generalized “gyroscopic” forces in the closedyo
system. These forces conserve the control-modified energy,
hich thus serves as a control Lyapunov function.

The aim of the method of controlled Lagrangians is

is restricted to a certain form, one which is inspired b
observations from geometric mechanics.

Other papers describe more general conditions und
which a feedback-controlled, underactuated mechanical sy
tem is Lagrangian [2], [3], [11] or Hamiltonian [4]. The A. Conservative Systems
equivalence of the Lagrangian and Hamiltonian views was Assume that the Euler-Lagrange equations hold for a
established in [10] for the most general case, where themechanical system with Lagrangian
are no prior restrictions on the form of the closed-loop 1
dynamics. There are advantages, however, in restricting L(q,q) = §<'1TM(Q)(1—V(Q) 1)
one's view to a sma_ller _cl_ass of systems. The control quI%hereM(q) is the positive definite kinetic energy metric,
problem may be simplified, for example, by assuming a i i 7 T
certain structural form for the closed-loop kinetic energy V(g) is the potential energy, ang = [q; q;] s

In [17], the method of controlled Lagrangians was applie(tjhe vector of generalized coordinates. Coordinajgsare

to the inverted pendulum on a cart, resulting in a feedbath'J]aCt,uatedr; cgo:dmftepd are actuat_ed. In thebabsenge Of_
control law which makes the inverted equilibrium a stricE@MPing, the Euler-Lagrange equations may be rewritten in

minimum of the control-modified energy. In the absencd® form W /o
Mij{—|—Cq+a—:(u), 2)
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The method of controlled Lagrangians provides a control
law and a modified Lagrangiad.(q,q) for which the
closed-loop equations become

Ve
Oq

where M. is a control-modified kinetic energy metric
(which satisfies a particular form given in [171);. is the
standard Coriolis matrix associated Ad ., and the matrix
S.(q,q) is skew-symmetric. The conditions under which
this is possible are the “matching conditions.” These condi Solving (5) forg and substituting into (3) gives
tions ensure that equations (3) require no control authorit
in unactuated directions. Skew-symmetry of the masSix MCM‘l[—Cq + v + ( Fy )]+ch+ Ve _ S.q.
ensures that the control modified energy corresponding to oq F.t+u oq
L. is conserved; these generalized forces are referred to Agplying the energy shaping control law (4), the control-
“gyroscopic” in analogy to a class of uncontrolled physicamodified energy satisfies
systems with similar dynamics.
The matching conditions are derived by comparing equa- E,=¢"M,M™! <§“> (6)
tions (2) and (3) and then choosing the contioland a
the free parameters i, in such a way that (3) holds. Assuming that the desired equilibrium is a minimum or
Solving (2) for g and substituting into the desired closed-a maximum of E., the equilibrium will remain stable in
loop equations (3) relates the original system parameteifse presence of damping providésl is negative semidef-
M andV to the control-modified parametefd ., V., and inite or positive semidefinite, respectively. One may apply
S.. To find the matching conditions, and the correspond-asalle’s’s invariance principle to determine whether the
ing feedback control law, we partition the input into twodesired equilibrium is asymptotically stable. K, = 0
components, and F, is specified as a dissipative feedback control law,
L Kl - then the modified energy rate can clearly be made either
u = uP(q) +u’%(q,q), (4)  negative or positive semidefinite, as desired. When the

and match velocity-independent and velocity-dependefYStem IS subject to physical damping, however, asymptotic
terms separately. The superscript “p” stands for “potéhtia Stabilization is more subtle. By “physical damping,” we
This term shapes the closed-loop potential energy. THB€aN dissipation which opposes velocity in the sense that
superscript “k/g” stands for “kinetic and gyroscopic.” $hi .7 (F, )

i ati i <0 V g#0.
term shapes the closed-loop kinetic energy and introduces q F,

gyroscopic forces into the closed-loop Euler-Lagrangeaequ . . . L
tions. See [17] for details. Consider, for example, simple Rayleigh dissipation

Mcqg+Ceq+

Fig. 1. The ball-on-a-beam system.

Having obtained a control-modified Lagrangian system, F,\ _Re
one may study closed-loop stability of equilibria by tregti F,) q
the control-modified total energy Then .
E.=-q"M.M ™" Rq @)

Fo(a,d) = 5d" M.(a)i + Vela)

) If M., M, and R are each positive definite, one might

as a control Lyapunov function. expect thatF, < 0. In general, this isot the case. The

symmetric part of the product of positive definite matrices
is not necessarily positive definite. Thus, one may not
To determine how physical and feedback dissipation atonclude that the closed-loop system is stable. The problem
fect the feedback-controlled system (2), withdetermined s not unique to the method of controlled Lagrangians. It can
according to the procedure in Section II-A, consider thgrise whenever kinetic energy is modified through feedback,

B. Dissipative Systems

more general open-loop equations: as illustrated in the following section.
.. .oV F . E :
M - u ) 5 . EXAMPLE: BALL ON A BEAM
a+Ca+ 5 (Fa+u> (®)

An alternative control design approach, similar in spirit
The terms F', and F', represent generalized forces into the method of controlled Lagrangians, is interconnectio
the unactuated and actuated directions, respectivelyseTheand damping assignment, passivity based control (IDA-
forces might include physical dissipation, propulsivecés, PBC). In [15], the authors apply IDA-PBC to stabilize
etc. We assume thd, = 0 and F', = 0 at the equilibrium a ball on a servo-actuated beam. Through energy-shaping
of interest. feedback, the desired equilibrium is made a minimum of
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By B,s A. Conservative Model

08 25 The inverted pendulum on a cart is shown in Figure 3.

2 To more accurately model the experimental apparatus, the

s pendulum is treated as a rod with uniformly distributed

04 mass. To begin, we define the non-dimensional parameters
39

02 . 4 M
o =IO a7 =4[
L 002 004 006 008 o0l By 3 m 4
Throughout this section, all variables have been replaged b
(a) (b) S ; .
their dimensionless forms. The Lagrangian for the uncon-

Fig. 2. Stable and unstable damping coefficientsifbr= 1. (@) kes — 1 trolled system is
and kgq; = 0. (b) kes = 0.1 and kq; = 0.01. Shaded regions represent

destabilizing damping coefficients. 1 qb T 1 cos ¢ (;S
L=—-1" "] — cos o,
2\ s cos ¢ ¥ $

a control-modified energy. Although the authors do no¥\/here overdot denotes differentiation with respect'tdhe

. : 90 . . fzedback control law modifies both kinetic and potential
consider physical damping in the dynamic model, one migh . L .
: . nergy and introduces fictitious gyroscopic forces. The
expect that physical damping would decrease the contro?— o S o
o . o .- modified kinetic energy metric is
modified energy, enhancing closed-loop stability. Thisds n
necessarily true. 1—2cos® ¢ +o7? )
- -a- I i i 2 —+ =
~ The ball-on-a-beam system is shown in Figure 1. An M. — +p (T 4 1os fb) p (T = cos ¢>
input torquew is applied in theg, direction. Including v
physical damping and neglecting rotational inertia of the p (T+ %cos ¢> p

ball, the non-dimensional equations of motion are

where
G+ sin(q2) — q12” = — P . o= 2 ’
(M + ¢})d2 + 2q1G1d2 + q1 c0s(qz) = —Baga +u  (8) cos ¢
- 4 — (24 cos® ¢) (1—%005%&)

where M = 52~ and m; and m, are the masses of o = - ,
the ball and beam, respectively. The constagts and dcos¢
B2 are damping coefficients. The energy-shaping control p = 2 .
law developed in [15] includes two control gairig, and cos ¢ (1 — %cos2 ¢)
kai, which shape the system energy and inject feedback ) o
dissipation, respectively. The velocity-dependent and velocity-independent compo-

Proposition 3.1; Defining u according to the control law nents of the energy shaping control law are

presented in [15] and using values kf; and kq; which k/g _ 1 219 B 9
stabilize the conservative system model (> 0 andkg; > utle = 2 (7 + cos? ¢)> ((7 ¢* (57 — 4 cos” ¢) sec ptan ¢
0), there exist positive values gl; and 3, for which the . .
closed-loop system (8) is unstable. —3¢* (57 + 2 cos® ¢) sin ¢ cos® ¢)

The proof is an application of the Routh-Hurwitz method. (72 (v — 2cos® ) tan ¢ — 3ysin ¢ cos® ¢) ¢S) 9)
Figure 2 shows regions of unstable damping values for
different values ofk., and kq;. Without damping injection (472 tan ¢ + cos ¢ (y — cos? ¢)2 %ﬁ)
(Case (a)), physically reasonable values of the dampingu® = 2(y 1 cos? §) )
constant3; destabilize the closed-loop system. For this 7 (10)

example, one may tune the feedback gains so that physical

damping in the unactuated direction does not destabilizgherewv(-) is an arbitraryC"! function and

the system. However, the example illustrates that asymoptot

stability is not “automatic.” Simply ensuring that the desi ©(¢, s) = s+ 6 arctanh <tan (—))

equilibrium is a minimum of the control-modified energy

does not ensure stability when there is physical dampingNote thaty is well-defined for alls and all¢ € (-7, 5).
Letting

_ . k/g P
IV. EXAMPLE: INVERTED PENDULUM u=ur"+ur,

To illustrate the ideas in Section Il, we consider théhe closed-loop equations of motion take the form (3) where

problem of stabilizing an inverted pendulum on a cart. The S — 0 <
example is described in detail in [17]. c7 7 \—<¢ 0
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B. Physical Dissipation

Although the equilibrium a strict minimum of the control-
modified energyE., the energy shaping control law does
not provide asymptotic stability when physical damping
is present andkyss = 0. Simple Rayleigh dissipation
destabilizes the inverted equilibrium unless it is properl
countered through feedback.

T T T Suppose that the C|05ed-|oop system described in Sec-
tion IV-A is subject to external forces

Fig. 3. Sketch of a pendulum on a cart.
Fy=—-dgé and F,=—ds (15)

and where dy, and d, are (dimensionless) damping constants.
We assume thatl, > 0. The value ofd,, on the other
Y ((7 — 3cos? ¢) sec? g tan ¢(3¢ + § cos ¢)) hand, can be modified directly through feedback.
53 We would like to know if there is a choice of control
(7 = cos*¢) parameters for whicl. remains a Lyapunov function, even
The control-modified total energy with linear damping. Recalling (7), the following lemma

gives conditions under which,. < 0.
1(6\" é 1
5=y (5) 20 (5) + (g 1) o)

Lemma 4.2: Given real, symmetric matrices
is conserved by construction. To include feedback dissipa-

= -

M—(Z i)>0 and MC—<g £>>0

tion, we let and 0
i ) r
w=uk/E 4 P oy (11) R< 01 rg)’
where wherer; > 0, there exists a range of valuessefsuch that
. _ _ T
i _ < 2s0? ¢(y + cos? 6) (36 + & cos ) (MM7'R)+ (MM T'R)') >0 (16)
= Rdiss | —
(7 — cos? ¢)? if -
and only if
(12) i VA

and wherekg;s is a dissipative control gain. It follows that ay — 8 >0, ca —bS8 >0, and
bB(ca+ ax) + ac(f* — 2ax) + b*(26% — ax) < 0.

P 2sec? (v 4 cos? ¢)(3h + $ cos ¢) ’
¢ — Ndiss ('7 — cos? ¢)2 .

For the inverted pendulum examplex — b3 < 0.
Therefore, there isno choice of d, for which (16) is
satisfied. ThusF. can not be made negative semidefinite
and E. is not a Lyapunov function when there is damping

The sign semidefiniteness df, depends on the sign of
kaiss- The following proposition is proved in [17].
Proposition 4.1: The control law (11), withu*/8 given of the form (15) withd
i diss . ¢ > 0.
by (9), w given by (10), andu™* given by (12), and with Rather than search for a new Lyapunov function, one

1 may analyze nonlinear stability using Lyapunov’s indirect
v(p) = 5"“/?2 (13)  method. Examining the spectrum associated with the lin-
earized dynamics gives conditions erand kq;s such that
asymptotically stabilizes the equilibrium at the origiropr (local) asymptotic stability is guaranteed.
vided x > 0 and kqiss < 0. The region of attraction Proposition 4.3 If /2 > dg > 0 andds > 0, then
) ) x there exist control parameter values and kg Which
W ={(¢,¢,5,5) € S" xR | [¢] < 51 (14)  exponentially stabilize the origin of the linearized dyriesn

contains all states for which the pendulum is inclined above Proposition 4.3 asserts that, under quite reasonable con-

horizontal. ditions on the physical parameter values, there exist obntr
The desired equilibrium is a strict minimum of theparameter values which locally asymptotically stabilize t

control-modified energy. Thu&, is a Lyapunov function dynamics. In fact, simulations suggest that the region of

and stability of the origin follows from Lyapunov’s direct attraction is a large subset &f given in (14).

method. Asymptotic stability follows from Lasalle’s invar Figure 4(a) shows the stabilizing control parameter values

ance principle. for v = 2 anddy = d, = 0.1. Figures 4(c)-(d) show a
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Fig. 4.
histories of E¢, ¢, ands.

(a) Stabilizing control parameter values (shadelohd)(Time

simulation of the system dynamics with= 0.5 andkg;ss =
—0.2 and with the initial conditions,

$(0) =80°, $(0) =0,

Figure 4 (b) shows the control modified energy, whicif
decays to its minimum value, althougiot monotonically.

s(0) =0, 5(0)=0. (17)

Pendulum

Fig. 5. Experimental apparatu®hoto courtesy Quanser Consulting, Inc.)

by lightly damped oscillations. The nonlinear control law
provides only two parameters with which to tune perfor-
mance while linear state feedback provides four. These
observations suggest a switching control strategy to obtai
good closed-loop performance both regionally and locally.
We employ a Lyapunov-based switching rule to switch from
the nonlinear controller, for states far from the equiliioni

to a linear controller for states nearer the equilibrium.
The Lyapunov-based switching rule ensures that, in the
bsence of disturbances, at most one switch occurs. The
strategy therefore satisfies a “dwell time” condition which

When physical damping is present, the control-modifielf Sufficient for stability of the switched system [13].
total energy isnot a Lyapunov function.

V. EXPERIMENTAL RESULTS

Figure 6 compares the performance of the controlled
Lagrangian controller and the switching controller. The
system parameters are

The experimental setup, shown in Figure 5, is available

as a commercial teaching aid [16]. The motor-driven cartM = 1.07031 kg,

m = 0.127 kg, [ =0.1778 m.

moves along the track through a rack and pinion arrange-
ment. One optical encoder measures the pendulum andlbe nonlinear controller gains are
and another measures the cart position. The maximum cart

travel is 0.814 m.

k=0.5 and kaiss = —50.

It was noted in Section IV that one may choose stabilizing
control parameter values, even when the mechanism kor the linear controller, the gains were chosen according
subject to linear damping. In reality, damping of the cart'so an LQR design provided with the apparatus [16].
motion is better modeled by static and Coulomb friction. Figure 6(a) illustrates the poor local performance of the
For control gains which are predicted to stabilize the syste nonlinear controller; the system appears to converge to a
this nonlinear friction degrades the system’s performancearge-amplitude limit cycle. Figure 6(c) shows the signifi-
introducing an asymptotically stable limit cycle. This iscantly improved performance of the switching controller.
a well-known phenomenon; see [1], [12] and referenceshe switching signal is chosen based on the value of
therein. Experimental parameter identification suggé®s t a quadratic Lyapunov functio’ = a” Pz chosen for
the static and dynamic friction coefficients for the cart'she linearized, LQR-controlled dynamic®( > 0). For
motion have the following values:

ns ~ 0.15

and

pa ~ 0.14.

the experiment shown, the switching value was chosen
to be V' = 0.08. Figures 6 (b) and (d) show the value
of this function for the two simulations. Note th&f is

To minimize the effect of static and dynamic friction innot a Lyapunov function for the controlled Lagrangian

experiments, a compensatory force was applied to the casistem; thus, one can not expect monotonic convergence in
While the control law derived using the method of conFigure 6 (b). The non-monotonic naturedfin Figure 6 (d)

trolled Lagrangians provides good regional performancés attributed to stick-slip. Note that, for the switchedtsys,

the local performance is less satisfactory. This obsemas

the cart position converges to a small offset, probably due t

illustrated by Figure 4; note the relatively quick converge static friction; this offset can be removed by adding in&gr
to a neighborhood of the desired equilibrium followedfeedback.
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Switched Controller. Pendulum angle shown solid. Cart tamsishown
dashed.

[10]
VI. CONCLUSIONS
Any control technique which shapes kinetic energ 1)

through feedback also modifies the effect of physical damp-
ing on a system’s closed-loop dynamics. One may not
simply choose a control law which makes the equilibriun2]
a minimum of the control-modified energy and expect that
physical damping will yield asymptotic stability. Instead [13]
one must account explicitly for the effect of damping.

This paper describes the implementation of a control laft ™!
developed using the method of controlled Lagrangians on[gs]
system composed of a pendulum on a servo-actuated cart.
For a conservative system model, the controller provides
asymptotic stability in a stability basin that contains all16]
states for which the pendulum is inclined above horizontal.
Even with linear damping, simulations suggest that the”
(appropriately modified) controller yields stability wiitha
large basin. If one tunes the controller’s regional perfor-
mance, using the two available control parameters, itd loca
performance becomes less satisfactory than that of well-
tuned linear state feedback. A Lyapunov-based switching
strategy is implemented to recover the best aspects of
both controllers: a large region of attraction with quick
convergence toward the equilibrium along with desirable
local performance.
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