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Abstract—Many high speed color printers require that of the sheet. The generalized coordinateepresents the
sheets be accurately controlled in order to achieve a precise gmount of deformation (buckling or stretching) along the

alignment of colors. To accomplish this goal, a steerable nips gpeet, which is the difference between the distance separat
mechanism has been proposed as an actuator to propel sheets. "
along the printer's paper path. This steerable nips mechanism "9 POINts 1 and 2, as measured along the papeb - o)

allows the sheet to be precisely controlled in the longitudinal, and along the straight line§). To move the sheet from an

lateral and skew directions. In this paper we develop a control initial statex (o) to a final state,(¢ ), the control strategy
strategy based on linearization by state feedback and Dynamic developed in this paper uses a combination of linearization

Surface Control (DSC) to precisely control the position of the by state feedback [5] and Dynamics Surface Control (DSC)
sheet. The proposed controller is able to move the sheet from [6] techniques

an initial to a final state under the condition that the sheet . . ) )

has nonzero initial and final velocities. The system model is  The steerable nips mechanism is a nonholonomic system

nonlinear and subject to four nonholonomic constraints. Two and has four nonholonomic constraints, two of these con-
of these constraints are related to the fact that the velocities straints come from the fact that the velocities perpendicul

perpendicular to the wheels must be zero, and the other tWo 14 the wheels must be zero, and the other two constraints
constraints are due to the non-slip condition. . . .

are due to the no-slip condition. In the steerable nips

. INTRODUCTION system a positivé represents the amount buckle on a sheet.

Some high speed color printers require that sheets bSéretchmg of the paper is something undesirable sincenit ca

accurately positioned so that colors can be accuratel ;jlacmark or damage the paper. Also, when the paper buckles the
yp e non-slip condition is satisfied. This is not the case when the

on the _sheet. To accomplish this goal a steergble N per is stretched. To avoid stretching some buckle is added
mechanism has been proposed as an actuator. This actu%to N : .
he sheet while it is being controlled by the steerable nip

is located at the end of the copier's paper path. The St@ra.?nechanism. This is accomplished by having the proposed

nips perm|F a more swift (;orrect|on of 'a‘er?" errors. THS | ontroller track the amount of buckl&,and the buckle rate,
a challenging mechatronic problem especially when sheeﬁs

) " -0, Also, rotation of the sheet is still possible when the sheet
must move at high speeds. The steerable nips mechanis : : .
. . . N is buckled since the sheet is transversally stiff.

is schematically depicted in Fig. 1.

: . . , Results presented in this paper show that, by using

The problem of controlling paper trajectories with steer- o . .
BN the proposed control strategy, it is possible to drive the
able nips is similar to the control of two-wheel robots, such

as the one studied in [1]. However, the control law proposepol";lper from an initial sheet staig(t,) with nonzero initial

. . . - . velocity to a final sheet state (¢;) also with nonzero
n [1]. fails to account for singularities that arise v_vhen thefinal velocity. This was accomplished without stretching
steering angle of the wheels ap.proach zero. Also, in the Cagfe sheet. The remainder of this paper is organized as fol-
of the two-wheel robot, three inputs are needed to follo ows. Section Il will describe the nonholonomic constrgjnt

a reference trajectory. This is not the case with steerab & ematic model, and dynamic model of the steerable nips

nips, where four inputs are needed due to the erXIbIIIt¥ne<:hanism. The control strategy is derived in section lll.

of the paper. The system model has four inputs, the firgt. . . ; : .
. . Simulation results will be shown in section V. Finally,
and second inputs rotate wheels one and two respectively. . X
nclusions and some comments regarding the control per-

The third and fourth inputs steer wheels one and tw . .
. o ormance are stated in section V.
respectively. Similar to the two-wheel robot, the steerabl

nips mechanism is a nonholonomic system. Analytic work ||, KINEMATIC AND DYNAMIC MODEL OF THE
related to nonholonomic systems can be found in [2], [3] STEERABLE NIPS MECHANISM
and [4].

Th trol obiecti idered h is 1 th The steerable nips is illustrated in Figs. 2 - 3. The
€ control objective considered nere 1S 10 Move tMeqqrgple nips moves a sheet on a flat surface. Figure 2

s_heet on the plane from an initial sheet stalgto) to a . represents an initial sheet position once the two nips are in
final statez,(t;), where the state vector of the sheet is

) _ . ) . . contact with the sheet. Figure 3 represents a sheet position
dﬁfmgd by%f(t)t = [ dm vy o d¢t 6th 6]|' tGenIer- dWhile it is being tracked. The left corner of the sheet, point
allzed coordinates: andy corresponds fo the lateral an C, will be used to track the position of the sheet. The
longitudinal position of the leading left corner of the shee

Th lized di s th | i angular orientation of the sheet ¢ Note that while the
e generalized coordinagerepresents the angular posi Ionpaper buckles, poinC remains on the flat surface since

Email: *rsanchez@me.berkeley.edu, **horowitz@me.berketiy, the bUCkIe_ occurs only between points_and 2. For this
=*tomizuka@me.berkeley.edu reason pointC' does not move perpendicular to the sheet.
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% coordinated); and ¢, will be used to respectably describe
i Timing Belt the angular position of whedl in the directions parallel
! and perpendicular to the sheet. Likewigg, and ¢o will
respectably describe the angular position of wikil the
Fig. 1. Steerable Nips Shematic directions parallel and perpendicular to the sheet.

B. Welocities

It is assumed that when the sheet buckles, the sheet is still . . .

. L : o The velocities of the paper at pointsand 2 in global
transversally stiff so rotation is possible. This is ilkaged :
B . . . coordinates are
in Fig. 3 where any line perpendicular to the line that
connects pointsl and 2 drawn on the buckle surface is L . )
parallel to the flat surface. v = (& + o)y + (9 — oz + )], 1)

A. Notation vy = (& +dy)is+ (Y + b~z +b+ )i, @

Figure 4 shows a schematic representation of the moghyoking the non-slip condition, they can also be written

eling variables for the steerable nips system. This systefy terms of the angular speed of the wheels in local
has two independent steering wheels, located at pdintscoordinates:

and 2. These steerable wheels are separated by a distance v, = rfyi 3)
2b. Three coordinate frames are defined to describe the -t B
position and orientation of the paper: A fixed global co-
ordinate system denotegif(if,kf), and two local frames
(zl,il,kl) and @2,12&2) attached to wheell and 2 wherer is the radius of the wheels.
respectively. The generalized coordinates of the system . _

are(x,y, ¢, 6,01, 05, 1, 7). Generalized coordinatesand  C. Constraint Equations

y will be used to respectably represent the lateral and Four constraint equations can be obtained by writing Eq.

longitudinal position of the left corner of the sheet (poin{1) and Eq. (2) in terms of the local coordinates. That is
C), the generalized coordinat¢ represents the angular

position of the sheet and the generalized coordingte vy = ((& + ¢y) cos 1 — (§ — d(z +b) sin ¢1))i; 5)
represents the amount of buckle of the sheet. Generalized +((& + ¢y)sing; + (y — ¢(z + b) cos ¢1))21

vy = i, @)
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are satisfied at all times. As detailed in [7] this is given
by a basis of the right null space of the constraints, which
will be denoted byg;(p) € R™, j =1,...,n — k = m. By
construction, this basis satisfies

a;i(p)gi(p) =0 i=1,...k j=1,.,n—k peR”

and all allowable trajectories of the system can thus be
written as the possible solutions of the system

p = g1(p)U1 + ...+ gm(p)um- (8)

That is,p(t) is a feasible trajectory of the system if and only
if p(t) satisfies Eq. (8) for a choice of contro(t) € R™.

For our system this basis can be obtained by casting
Egs. (3) and (4) in terms of the global coordinates and
equating them to Eqgs. (1) and (2) respectively. This gives
the following relations

Fig. 4. Two Wheel Moving Bar

. . & = (rsin¢g; + %y—i(; cos ¢1)01 — Qby—ié cos ¢ (9)
vy = (& + dy) cos dz — (§ + S~ + b + 8) sin ) )i
+((& + ¢y) sin g2 + (§ + ¢(—x + b+ ) cos ¢2))i2 ©) gy = (rcos¢; — (92cb—|——+b()$r cos </)1)91 + % oS Pob
This provides four nonholonomic constraints. Two come ; r . . (10)
from the fact that the velocities perpendicular to the wheel =13 P (cos §26 — cos $161) (1)
at points1 and?2 are zero. This means that the velocity at § = 1sin oy — 1 sin 16, (12)

wheell in the directioni; must be zero. The same must be
true for wheel2. The other two constraints are due to theThe above equations are the kinematic equations of our
non-slip condition. Using the previously defined generalsystem. They can be written in the following form
izedcoordinatg = [z y ¢ 0 61 62 é1 ¢ ]T,

each constraint can be written in Pfaffian form [7] as: p=GP)n (13)
where
ai(p)p=0 i=1,...4 peR® o
. . . . x g1 gi2 0 O
For our system the constraints can be written in matrix form Y g21 g2 0 O .
as ‘fg gn g2 0 0 61
. _ ( _ | 941 ga2 0 O .| 02
Ap)p =0 I e I A e B U R R
. : , 02 o L 00 2
where A(p) is the4 x 8 matrix defined below. 1 0 0 1 0
~ 0 0 0 1
L ¢2 |
ail; a1z ai3 0 0 0 0 0 with
A(p) = as azz azz 0 ax 0 0 O g11 = rsing; + #L;COS%’QU = *#L; CoS @2, ga1 =
as1 a3z as a0 0 0 TCOS 1 — (‘g';*ffg" COS @1, g22 = %;*f?;’ CoS @2,931 =
s G4y a4z aag O asg 00 — 3575 COSP1, 932 = 5575 COSP2, 041 = —TSINP1, gaz =
ayy = cosdi,ai;s = —singi,a;3 = ycosP; + rsin ¢y
(x + b)sing1,a21 = singy,ae = cosdr,az = o . )
ysing; — (z + b)cos b1, ass = —r,as; = cos ¢, azy = In the above equatioy € R® is a vector of independent
—Sings,azz = ycosgs — (—z + b + 0)sings,azy = Velocities. Note that, in general} is smooth inp, and
COS $a, Ay = SiN o, ago = COS do, a3 = ysin gy + (—z +  liN€ar in p, (i(p,p)) [3]. The above equation indicates
b+ 6) cos P, gy = Sin ¢, age = —7- that velocities 61,0, ¢1,¢> are sufficient to determine

the instantaneous velocities of all generalized coordmat
These constraints are nonholonomic and therefo@ the system. Also, note that the velocities calculated

cannot be integrated. with Eq.(13) satisfy the nonholonomic constraints, since
. . G(p) = lo1(p) 92(p) g3(p) ga(p)] is the right null
D. Kinematic Model space of the constraints. That is

The kinematic model represents the kinematic relation of A(p)g;(p) = 0
the system in the direction that it can move. These are the =PI
directions of motion where the nonholonomic constraint&quation (13) is referred to as tkmematic state-model [2].
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E. Dynamic Model I1l. FEEDBACK CONTROL

A dynamic model of the system is obtained by consider- In this section we derive the control law. This deriva-
ing only the dynamics of the actuators and neglecting thiéon makes use of linearization by state feedbe_lck _[8] and
inertia of the sheet. For simplicity, we consider actuatoPynamic Surface Control (DSC) [6]. The following is the

dynamics of the following form nonlinear system derived in the previous section
Jij=u (14) o { P ] { 084 }
- = T = = . + U
A = | Cpp) B(p) |~
where
. y (18)
1000 01 uy y=h(z) = ;Z
J= 01 0 0 o 92 w = U2 5
1o o 1o |27 4 YT us
0 0 01 bo Uy The above system is a square Multi-Input Multi-Output
_ _ _ o _ (MIMO) system. It is a square system since it has as many
Making use ofkinematic state-model derived in section Il inputs as outputs. Differentiating the output functiontwit
D. The time derivative of Eq. (13) is respect to time, as described in [5], Eq. (19) is obtained.
Note that Eq. (19) does not have inputs and uy. These
b=5 (G| p+ Gij (15) inputs are accessed by using a technique similar to Dynamic
1 Surface Control (DSC). That is, we make, and¢- to be
Combining Eq. (14) and Eq. (15) we obtain pseudo inputs.
p=C(p,p) + Bp)u (16) s
= N = 19
In Eq. (16),C(p, p) and B(p) are computed as: §=Mz)+ Nz) b14 (19)
9 ) <ﬁZd
Clpp Gn) p,B(p) = G(p)J~ . . . . .
®:2) = 329 [ ] - ¢14 and ¢o,4 are the desired values gfi and ¢, (synthetic
h inputs). The matrix\ (x) and N (x) are computed as follow
where
, \ 0 o mi ni1r  Ni2 N13 N34
C1 11 12 ma2 _ n2 n22  N23  N24
c2 bo1 b2 0 O M(z) = |: m3 N(z) = { nsi n32  M33 N34 ]
c3 b31 bz2 0 O 0 n41  N42  N43  N44
bsg1 bsz 0 O
C(p,p) = %l ,B(p) 1 0 0 0 . 5o . ‘i
= = — ; % — . (z+b)d¢ —
0 0 1 0 0 mi = =y + 2'7{7+57m2 = 0F - Gsoma =
8 8 8 (1) (1) *%,nn = ghzcosér + TSIH¢17TL12
T cosd?g,nlg = rcospiby — T sin¢161,n14 =
i ) O, — U g 6:)d sh=8in gofly,noy = TCOSP — (ztb)r CoS ¢1,Moy =
e = =0yt g + (reosond — psingidd + s I
Sl sin obada, 00 = Gi — (zngi)gd) + (~rsing.6; + 2?;_%)(,,:.0%%’7;23 = —rsingify + 20+ sin 101, n2g =
G s — Gl nghne = ity ¢ B Sl = g esdo -
55 S0 G10101 — ifs sin dabada, ey = —rcos di1dr + 2b+6 2 933 - 45 o 3; B
7CoS pabad2, b1 = Tsingr + gl cosér,bio — %75 an? 2,41 = ;”Selndh, Nag = 7SN ¢, Ny =
r T4-b)r —7 CO8 ,M44 = T COS
—oirs COS @, b1 = rcosdr — (2;4?35 cosP1,bay = 171, g = 22
z+b)r T _ . .
(2b+z)$ €S ¢2, b3 = 245 €08 1, b32 = Then by choosing the following state feedback law
2575 COS @2, ba1 = —rsin gy, bay = rsinds.
U1
Equation (16) is the dynamic model of the steerable ug |
nips with a sheet allowed to buckled. o | =N (2)(v— M(z)) (20)
This system can be represented in state space gw
form by choosing the following state vectox =
[z y ¢ & 01 02 ¢ 2 & § & & 61 62 b1 o). where
This gives 11 N1 N3 0
: 8x4 N-L(g) = | 21 ina2 inag ingy
= [ o 2 ] + [ % }g (17) (@) ing1 ingy ingz 0
(}2; 1_7) (B) Mg 1M4o  1N43 N4y
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with

uz andu, SO as to respectively drive; and S, to zero.

T COS

ing = wséisings 0 1—sin ¢} ing = uz = ¢14 + C151 hi=dua ¢1d +C15: 25)

—b—x—sin ¢ (—y cos ¢1 —(b+x) sin ¢1)

T Ccos 1

, 1M1 = u4:é2d+0152:¢2 ¢2d+052

cos ¢2 sin ¢2

T COS P2

cos 2 (b

T COS 1
cos ¢3

, 199 = cos 4y 7 1123 = This choice of inputs force the errofs and.S, to asymp-

Cos ¢2 sin ¢o

T COS P2

z+98) C?; p2+y sin ¢>z) Ny totically decay to zero since
T COS
? cos ¢1 singy

gL = T pEinge = G gy = Sy 4+ CaSy =0, S+ 8y = 0. (26)

Yy cos ¢1+(b+ac)<1n P1 cos pa _ sings
7‘02 02

Y COS o — (b z+9) sin ¢o

yiMg = Iy = , 1143

whereC; and Cs are positive constants.

_ cosga

M4y =
r02 T2 IV. SIMULATION RESULTS

the linear close loop system results: The model was simulated for the following

At this points we have four decoupled equations. Thi: — X, [mm] |
means that;,vs,vs,v4 Only affect the outputse, y, ¢,0 — Yo [mm]

respectably. Choose = &g+ k1T + 1T, v2 = g+ kay +
@27, v3 = bg + ksd + g3 and Jvy = ba + k45 + qu6 Where

.Z'—.Z’d

and ky, ko, ks, k4, q1, g2, g3, q4 are positive constants.
The choice ofv; with positive constants fok;, ¢; gives
exponentially decaying errors. The differential equegiof
these errors will b@l—i—klx—i—qlx =0, §i+koZ+ o = 0,
¢i + k3d+ g3 = 0 andd; + kad + 46 = 0.

¢, and ¢, are not actual inputs but rather the desirec
values of¢; andgs. In our case we have acces&;ﬁtpf u3
and gzsg = uq4 and not to¢1 and gzsg This problem is solved
by Dynamic Surface control (DSC) technique [6]; this
method is a "synthetic input technique”, which is similar to

sheet initial conditions:z(ty) = —10mm,&(ty) =
U1 500mm/sec,y(tg) = 10mm,¢(tp) = 10°. Simulation
_ | v2 (21) results are shown in Figs. 5 - 8.

0 &
]
3

V4 Paper Position Errors
10 T T T T T

— 0 [degrees] |4

— T, G =Ya— Y b = da— ¢ 0 = 64— 9,

mm,degrees

L L L L L L
0.4 . 05 0.6, 0.7 0.8 0.9 1
time (sec)

backstepping [9] and multiple surface control [6] methods. Fig. 5. Paper Position

The DSC method utilizes additional low pass filters, in

order to overcome the problem of finding derivatives of

the trajectories¢;; and ¢4. The design procedure for Steering Angles of Steerable System

determining the inputss andu, is as follows. Define the

tracking

velocities by

and their respective derivatives by

If ¢1 and ¢, were to trackg;q and g2, respectably, then
S1 and.S; would converge to a neighborhood @f ¢, and
#1 which are derived in Eq. (20) are passed through firs
order filters, i.e.

>

errors between the desired and the actual angu

S1 = ¢a1 — b1, Sz = baz — b2 (22) %

Si = bar —uz, S1= da1 — us. (23)

94,0, (degrees)

Tlﬁ:éld + <Z:51d = Q}h Q}ld(o) = QEl(O) (24) ) | ' ™ time (seo'é) oo e 1
To2d + P24 = 2,  $24(0) = ¢2(0)

Fig. 6. Wheels Steering Angle vs. Time

By differentiation of¢ 4 ande,, it is now possible to define
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Angular Velocity of Steerable Nips System
T

35 T T T T T

30

— do, /dt
— de, /dt

de4/dt ,deo/dt, (rad/sec)

10 L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time (sec)

Fig. 7. Angular velocities of the Wheels vs. Time

x10° Constrain Error &

0.8 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Velocity Constrain Error d & /dt

0.8 0.9

mm/sec
o
&

0.1 i | i i i ; |
0 0.1 0.2 03 0.4 0.5 0.6 0.7

time (sec)

0.8 0.9

Fig. 8. Constraint vs. Time

has been corrected, as shown in Fig. 7. Figure 8 shows the
amount of buckle that the sheet has. The controller has a
reference obum for sheet buckle, that i§; = 5um. This

is done to avoid stretching the sheet. Since the paper is
not easily stretch any negative value forwill mark or
break the paper. Also, while the paper is been actuated, any
disturbance will not induce any stretching of the sheetesinc
the sheet is already buckled a small amount.

V. CONCLUSION

Results obtained in this paper have shown that, by using
the proposed control strategy, it is possible to drive atshee
from an initial state with nonzero longitudinal velocity to
a final state also with nonzero longitudinal velocity. This
proposed controller uses linearization by state feedbakk |
and Dynamic Surface Control (DSC) [6] to fully control
the position of a sheet from an initial statg(ty) with
nonzero paper velocity to a final statg(¢;) also with
nonzero paper velocity. This is accomplished with a small
amount of buckle on the sheet. The amount of sheet buckle
is less than6um. Since the induced buckle wasum
the performance of the controller is excellent. Buckle is
introduced in order to avoid stretching the sheet while it
is being propel. Stretching of a sheet is not desirable since
this can mark or break the sheet.

VI. ACKNOWLEDGEMENTS

This work was support by the National Science Fundation
under Award ID 0301719. The authors thank Gabriel Gomes
for his numerous critical remarks and suggestions duriag th
preparation of this manuscript.

REFERENCES

[1] Xiaoping Yun and N. Sarkar. Dynamic feedback control ohictes
with two steerable wheels. 11096 |EEE International Conference on
Robotics and Automation, pages 3105-3110, 1996.

[2] G. Campion, d’Andrea Novel, and G. Bastin. Controllailand
state feedback stabilisability of nonholonomic mechanigatesms. In
Advanced robot control : proceedings of the International Workshop

Figure 5 shows the position errors of the paper
as it goes from its initial state atz,y,¢,0) = 3]
(=12mm, 10mm, 10°,0) to its final state a{z,y, ¢,d) =
(200mm, 0,0,5um). The plant parameters used in this
example areb = 100mm and r = 20mm. The control
parameters aré; = ko = ks = 60, k4 = 600,91 = ¢2 =
g3 = 900,¢4 = 90000, = 7 = 0.0001,Cy = Cy =
1000. Note thatC; andC5, are chosen so that the actuatiOh[5
errors from DSC decay faster than the paper errors, that'i
the bandwidth of actuator are greater than of the bandwidfbj
of the control. The steering angles of both wheels are shown
in Fig. 6 and the velocity of both wheels are shown in Fig. 7.
The initial steering angles of the wheels are zero. They afg
steered immediately once the controler senses the arri\@l
of the sheet and both wheels are in contact with the sheet.
This action will correct the lateral errors. The steeringlan [9]

(4]

on Nonlinear and Adaptive Control: Issues in Robotics, pages 106
—124, Grenoble, November 1990.

G. Campion, B. d’Andrea Novel, and G. Bastin. Modellingdan
state feedback control of nonholonomic mechanical systems. In
Proceedings of the 30th IEEE Conference on Decision and Control,
pages 1184-1189, Brighton, England, December 1991.

B. d’Andrea Novel, G. Bastin, and G. Campion. Modellinglarontrol
of non-holonomic wheeled mobile robots. Bnoceedings of the 1991
IEEE Conference on Robotics and Automation, pages 1130 —1135,
Sacramento, CA, April 1991.

S. S. Sastry. Nonlinear Systems : Analysis, Sability, and Control.
Springer, 1999.

D. Swaroop, J. C. Gerdes, P. P. Yip, and J. K. Hedrick. Dyica
surface control of nonlinear systems. Proceedings of the American
Control Conference, pages 3028 —3034, Albuquerque, New Mexico,
June 1997.

Richard M. Murray, Zexiang Li, and Shankar S. SastyMathemat-
ical Introduction to Robotic Manipulation. CRC Press, 1993.

J.-J. E. Slotine and W. LiApplied Nonlinear Control. Prentice Hall,
Inc., N.J., 1991.

P. Kokotovic. The joy of feedback: nonlinear and adagtiControl

will become zero once the lateral errors have been corrected Yystems Magazine, IEEE, pages 7-17, June 1991.

as it is shown in Fig. 6. Also, the angular velocities of the
wheels will be equal, once the angular position of the paper

487



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeA15.1
	Page0: 482
	Page1: 483
	Page2: 484
	Page3: 485
	Page4: 486
	Page5: 487


