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Abstract— In this paper, the problem of variable structure
adaptive fuzzy control for a class of nonlinear time delay
systems is investigated. Sliding surface dependent of the
time delay is constructed based on the Lyapunov-Krasovskii
method. Two adaptive fuzzy logic systems are proposed to
approximate two unknown continuous nonlinear functions
containing the current state and the delayed state respectively.
The corresponding reaching law is designed, which can drive
the state trajectory of the closed-system onto the sliding
surface within limited time.

I. INTRODUCTION

Time-delay is often encountered in various engineering
systems, such as electrical networks, turbojet engines, mi-
crowave oscillators, nuclear reactors, rolling mills, chemical
processes, manual control, long transmission lines in pneu-
matic, and hydraulic systems, etc. Its existence is often a
source of instability and poor performance. Therefore, the
problem of stability analysis and robust control for dynamic
time-delay systems has attracted considerable attention of a
number of researchers over the past years [13, 14 and the
references therein].

Fuzzy control has recently found extensive applications
for a wide variety of industrial systems, and has attracted the
attention of many control researchers due to its model free
approach ([1] and [2]). Fuzzy control algorithms attempt
to make use of information from human experts, which is
generally represented by fuzzy terms, such as small, large,
not very large or not very small, etc. More recently, an
important adaptive fuzzy control system has been developed
incorporated with the expert information systematically and
the stability is guaranteed by theoretical analyses ([3] and
[4]). An adaptive fuzzy system is a fuzzy logic system
equipped with a training algorithm, in which the fuzzy logic
system is constructed from a collection of fuzzy IF-THEN
rules, and the training algorithm adjusts the parameters of
the fuzzy logic system according to numerical input/output
data.

Based on fuzzy logic systems which are capable of
approximating, with arbitrary accuracy, any real continuous
functions on a compact set, a globally stable adaptive
controller is first synthesized from a collection of IF-THEN
rules in [5]. In the existing literature on fuzzy control
of nonlinear systems, fuzzy logic systems are used to
approximate unknown nonlinear functions. Reference [6]

investigatedH∞ tracking problem of uncertain nonlinear
SISO systems with external disturbance by using adaptive
fuzzy controllers. Fuzzy indirect adaptive controller for a
class of decentralized nonlinear systems is constructed in
[7]. Paper [8] investigated robust adaptive fuzzy control
for SISO nonlinear systems based on backstepping method.
However, in the existing papers, few results on fuzzy control
of time delay nonlinear systems are reported. Based on T-S
fuzzy models, [15] was the first paper on the fuzzy control
using Lyapunov-Krasovskii functional approach, while [16]
used the Lyapunov-Razumikhin functional appraoch.

In this paper we consider the problem of robust variable
structure adaptive fuzzy control for a class of nonlinear
systems with time delay. As we know that a sliding mode
control has attractive features such as fast response and good
transient response. So we adopt the sliding mode control
method in this paper. Fuzzy logic systems are also used as
universal approximators of unknown nonlinear functions.
The problem of designing both a linear sliding surface and
reaching motion controller is investigated. A sliding surface
is first designed by solving a Riccati inequality, which can
guarantee that the sliding motion is exponentially stable
dependent of the time delay. Then the reaching motion
controller is designed, which can drive the state trajectory
of the system onto the sliding surface within limited time.

The paper is organized as follows. The problem formu-
lation is given in Section 2. A brief description of fuzzy
logic systems is provided in Section 3. In Sections 4 and 5,
the designs of the sliding surface and the reaching law are
given respectively.

II. PROBLEM FORMULATION

Consider the following time delay system

·
x = (A+∆A(t))x+(Ad +∆Ad (t))x(t−d) (1)

+B(u+F (x,x(t−d) ,σ (t)))

x(t) = ϕ (t) , t ∈ [ −d 0
]
.

where x ∈ Rn and u ∈ R are the state and control input
respectively,d is the delay parameter,A,B and Ad are
matrices with appropriate dimensions.∆A(t) and ∆Ad (t)
are time-varying uncertainties.F (x,x(t−d) ,σ (t)) is an



unknown function containing uncertainties, whereσ (t) is
a time varying disturbance parameter. In system (1), for
simplicity we assume

B = [0, · · · ,0,1]T

and other matrices can be decomposed into the following

A =
(

A11 A12

A21 A22

)
, (2)

∆A(t) =
(

∆A11 ∆A12

∆A21 ∆A22

)
,

Ad =
(

Ad11 Ad12

Ad21 Ad22

)
,

∆Ad =
(

∆Ad11 ∆Ad12

∆Ad21 ∆Ad22

)

where A11,∆A11,Ad11,∆Ad11 ∈ R(n−1)×(n−1),
A22,∆A22,Ad22,∆Ad22 ∈ R. Thus system (1) can be
written as

·
x1 = (A11+∆A11)x1 (3)

+(Ad11+∆Ad11(t))x1 (t−d)
+(A12+∆A12)x2 +(Ad12+∆Ad12)x2 (t−d)

x1 (t) = ϕ1 (t) , t ∈ [ −d 0
]

·
x2 = (A21+∆A21)x1 (4)

+(Ad21+∆Ad21(t))x1 (t−d)
+(A22+∆A22)x2 +(Ad22+∆Ad22)x2 (t−d)
+u+F (x,x(t−d) ,σ (t))

x2 (t) = ϕ2 (t) , t ∈ [ −d 0
]

where x1 ∈ Rn−1,x2 ∈ R. We introduce the following as-
sumptions imposed on the system (1):

Assumption 1 The uncertainties∆A11(t) , ∆A12(t) ,
∆Ad11(t) and∆Ad12(t) satisfy

[
∆A11(t) ∆A12(t)

]
= D1F1 (t)

[
E11 E12

]
(5)

[
∆Ad11(t) ∆Ad12(t)

]
= D2F2 (t)

[
E21 E22

]

where ‖F1 (t)‖ ≤ 1, and D1,D2,E11,E12,E21 and E22 are
some known matrices with proper dimensions. In addition

‖∆A‖ ≤ γ1,‖∆Ad‖ ≤ γ2

Where positive scalarsγ1 and γ2 are not required to be
known.

Assumption 2F (x,x(t−d) ,σ (t)) satisfies the following
decomposition

F (x,x(t−d) ,σ (t))
= F1 (x)+F2 (x(t−d))+∆F (x(t) ,x(t−d) ,σ (t))

where F1 (x) and F2 (x(t−d)) are unknown continuous
functions,∆F (x(t) ,x(t−d) ,σ (t)) is an uncertain function
which is also unknown, but bounded

|∆F (x(t) ,x(t−d) ,σ (t))| ≤ α0 +α1‖x(t)‖+α2‖x(t−d)‖
(6)

whereα0, α1 andα2 are unknown positive scalars.
Problem: Design a sliding surface to guarantee the

sliding motion exponentially stable with a given decay rate
γ for system (1) and construct the reaching control law
u(t) to render the state trajectory of the closed-loop system
convergent to the sliding surface in limited time.

III. DESCRIPTION OF FUZZY LOGIC SYSTEMS

A fuzzy system is a collection of fuzzy IF-THEN rules
of the form:

R( j) : IF x1 is Aj
1 and · · · and xn is Aj

n

THEN y is Bj .
(7)

By using the strategy of singleton fuzzification, product
inference and center-average defuzzification, the output of
the fuzzy system

y(x) =
∑l

j=1y j
(

∏n
i=1 µ

A j
i
(xi)

)

∑l
j=1 ∏n

i=1 µ
A j

i
(xi)

(8)

where µ
A j

i
(xi) is the membership function of linguistic

variablexi , andy j is the point inR at which µB j achieves
its maximum value (assume thatµBi

(
yi

)
= 1).

By introducing the concept of the fuzzy basic function
vectorζ (x) , (8) can be written as

y(x) = θ Tζ (x)

where

θ = (θ1, · · · ,θl )
T ,ζ (x) = (ζ1 (x) , · · · ,ζl (x))

T

andζ j (x) is defined as

ζ j (x) =
∏n

i=1 µ
A j

i
(xi)

∑l
j=1 ∏n

i=1 µ
A j

i
(xi)

In this paper we will take two universal fuzzy systems
F̂1 (x,Θ1) and F̂2 (x(t−d) ,Θ2) with x,x(t−d) ∈ Ux for
some compact setUx, to approximate the uncertain terms
F̃1 (x(t)) and F̃2 (x(t−d)) defined in (34), where Θ1 and
Θ2 contain tunable parameters. We construct the fuzzy rule
bases ofF̂1 (x,Θ1) and F̂2 (x(t−d) ,Θ2) consisting of the
following rules:



Rj
F1

: IF x1 is Aj
1 and · · · and xn is Aj

n

THEN F̂1 (x,Θ1) is F j
1 .

Rj
F2

: IF x1 (t−d) is A
j
1 and · · · and xn (t−d) is A

j
n

THEN F̂2 (x(t−d) ,Θ2) is F j
2 .

and construct the following fuzzy systems

F̂1 (x,Θ1) = ΘT
1 ξ1 (x)

and

F̂2 (x(t−d) ,Θ2) = ΘT
2 ξ2 (x(t−d))

where ξ1 (x) and ξ2 (x(t−d)) are fuzzy basis functions.
According to the universal approximation theorem there
exist optimal approximation parametersΘ∗

1 andΘ∗
2 [3], such

thatξ1 (x)T Θ∗
1 andξ2 (x(t−d))T Θ∗

2 can approximatẽF1 (x)
andF̃2 (x(t−d)) to any desired degree. The parametersΘ∗

1
andΘ∗

2 are defined as follows

Θ∗
1 = arg min

Θ1∈ΩF1

(
sup
x∈Ωx

∣∣∣F̂1 (x,Θ1)− F̃1 (x)
∣∣∣
)

(9)

Θ∗
2 = arg min

Θ2∈ΩF2

(
sup

x(t−d)∈Ωx

∣∣∣∣
F̂2 (x(t−d) ,Θ2)
−F̃2 (x(t−d))

∣∣∣∣
)

(10)

whereΩF1, ΩF2 andΩx denote the sets of suitable bounds
on Θ1, Θ2 andx, respectively. We assume thatΘ1, Θ2 and
x never reach the boundaries ofΩF1, ΩF2 and Ωx. And
the minimum approximation error satisfies the following
assumption

Assumption 3 The approximation error between
F̃1 (x) , F̃2 (x(t−d)) and ξ1 (x)T Θ∗

1,ξ2 (x(t−d))T Θ∗
2 satis-

fies the following inequality

∣∣∣∣
F̃1 (x)−ξ1 (x)T Θ∗

1 + F̃2 (x(t−d))
−ξ2 (x(t−d))T Θ∗

2

∣∣∣∣ (11)

≤ h̄0 + h̄1‖x‖+ h̄2‖x(t−d)‖
where h̄0, h̄1 and h̄2 are unknown scalars. These two pa-
rametersΘ∗

1 and Θ∗
2 will be learned by using the adaptive

algorithms.

IV. SLIDING SURFACE DESIGN

Without loss of generality, we suppose that the sliding
surface is

S= C̃x=
[ −C 1

][
xT

1 x2
]T = (−Cx1 +x2) = 0

(12)
whereC∈Rn−1. Hence, substitutingx2 =Cx1 into (3) gives
the sliding motion

·
x1 = (A11+∆A11)x1 (13)

+(Ad11+∆Ad11(t))x1 (t−d)
+(A12+∆A12)Cx1

+(Ad12+∆Ad12)Cx1 (t−d)
x1 (t) = ϕ1 (t) , t ∈ [ −d 0

]

If system (13) is exponentially stable dependent of the
delay, the sliding motion (13) will be exponentially stable
dependent of the delay.

Theorem 1Consider system (13), if assumption 1 is met
and the following inequality is satisfied

P(A11+ γI)+(A11+ γI)T P (14)

+ε−1PD1DT
1 P+ εET

11E11

+ε−1e2γdPAd12A
T
d12P+e2γdPAd11XAT

d11P+X−1

+ε−1e2γdPD2DT
2 P+ εET

21E21

−[
ε
(
1+ET

12E12+ET
22E22

)]−1

(
PA12+ εET

11E12+ εET
21E22

)
(
PA12+ εET

11E12+ εET
21E22

)T

< 0

whereP andX are positive matrices,ε is a positive scalar,
then the following sliding surface

S =
[
ε
(
1+ET

12E12+ET
22E22

)]−1
(15)

(
PA12+ εET

11E12+ εET
21E22

)T
x1

+x2

will render the sliding motion exponentially stable depen-
dent of the delay with a given decay rateγ.

Proof: For system (13), we choose the following coordi-
nate transformation

z(t) = eγtx1 (t)

we can obtain

·
z = γeγtx1 +eγt ·x1 (16)

= (A11+A12C+ γI +∆A11+∆A12C)z

+eγd (Ad11+Ad12C+∆Ad11+∆Ad12C)z(t−d)

As we know, if system (16) is robust asymptotically
stable, system (13) will be exponential stable with a given
attenuanceγ dependent of the delay.

For system (16), let us define the following Lyapunov-
Krasovskii function

V (z) = zTPz+
∫ t

t−d
εzT (υ)

[
(E21+E22C)T (E21+E22C)

+X−1 +CTC

]
z(υ)dυ



Then the time derivative along the state trajectory of the
system (16) is

·
V = 2zTP

(
A11+A12C+ γI
+∆A11+∆A12C

)
z (17)

+2eγdzTP

(
Ad11+Ad12C

+∆Ad11+∆Ad12C

)
z(t−d)

+εzT (t)
[

(E21+E22C)T (E21+E22C)
+X−1 +CTC

]
z(t)

−εzT (t−d)
[

(E21+E22C)T (E21+E22C)
+X−1 +CTC

]

z(t−d)

Note

2zTP(∆A11+∆A12C)z (18)

= 2zTPD1F1 (t)(E11+E12C)z

≤ ε−1
1 zTPD1DT

1 Pz

+ε1zT (E11+E12C)T (E11+E12C)z

2eγdzTP(Ad12C+∆Ad11+∆Ad12C)z(t−d) (19)

≤ ε−1
2 e2γdzTPAd12A

T
d12Pz

+ε2z(t−d)T CTCz(t−d)+ ε−1
3 e2γdzTPD2DT

2 Pz

+ε3z(t−d)T (E21+E22C)T (E21+E22C)z(t−d)

2eγdzTPAd11z(t−d) (20)

≤ e2γdzTPAd11XAT
d11Pz+z(t−d)T X−1z(t−d)

where X is a positive matrix,ε1,ε2 and ε3 are positive
scalars. For simplicity we chooseε1 = ε2 = ε3 = ε, then
by substituting (18),(19) and (20) into (17), we get

·
V ≤ 2zTP(A11+A12C+ γI)z+ ε−1zTPD1DT

1 Pz

+εzT (E11+E12C)T (E11+E12C)z

+ε−1e2γdzTPAd12A
T
d12Pz+ εzTCTCz

+e2γdzTPAd11XAT
d11Pz+zTX−1z

+ε−1e2γdzTPD2DT
2 z

+εzT (E21+E22C)T (E21+E22C)z

= 2zTP(A11+ γI)z+ ε−1zTPD1DT
1 Pz

+εzTET
11E11z+ ε−1e2γdzTPAd12A

T
d12Pz

+e2γdzTPAd11XAT
d11Pz+zTX−1z

+ε−1e2γdzTPD2DT
2 z+ εzTET

21E21z

+εzTCT (
1+ET

12E12+ET
22E22

)
Cz

+2zT (
PA12+ εET

11E12+ εET
21E22

)
Cz

So if we let

C = −[
ε
(
1+ET

12E12+ET
22E22

)]−1

(
PA12+ εET

11E12+ εET
21E22

)T

then

·
V ≤ 2zTP(A11+ γ I)z (21)

+ε−1zTPD1DT
1 Pz+ εzTET

11E11z

+ε−1e2γdzTPAd12A
T
d12Pz

+e2γdzTPAd11XAT
d11Pz+zTX−1z

+ε−1e2γdzTPD2DT
2 Pz+ εzTET

21E21z

−zT (
PA12+ εET

11E12+ εET
21E22

)
[
ε
(
1+ET

12E12+ET
22E22

)]−1

(
PA12+ εET

11E12+ εET
21E22

)T
z

If inequality (14) is satisfied, (21) holds. So we complete
the proof of theorem 1.

In this section, we have designed the sliding surface
dependent of the time delay. Compared to the papers [11]
and [12] on variable structure control for time delay system,
our results have two merits: 1) Under condition (14), the
sliding surface is exponentially stable with decay rateγ. 2)
The condition (14) is dependent of the time delay, so it is
less conservative than the results independent of the time
delay when the time delay is sufficiently small.

V. DESIGN OF THE REACHING LAW

In this section, we will design the controller which can
drive the trajectory of system (1) onto the sliding surface
in limited time.

For system (1), consider the following controller

u = u1 +u2 +u3 (22)

where

u1 =−ΘT
1 ξ1 (x)−ΘT

2 ξ2 (x(t−d)) (23)

u2 = −ϑ0sign
(
C̃x

)
−ϑ1‖x‖sign

(
C̃x

)
(24)

−ϑ2‖x(t−d)‖sign
(
C̃x

)

u3 =−βC̃x (25)

where β is a positive scalar,Θ1,Θ2,ϑ0,ϑ1 and ϑ2 are
adaptive parameters, whose adaptive laws are as follows

·
Θ1 = Γ1C̃xξ1 (x) (26)

·
Θ2 = Γ2C̃xξ2 (x(t−d)) (27)

·
ϑ 0 = k0

∣∣∣C̃x
∣∣∣ (28)



·
ϑ 1 = k1

∣∣∣C̃x
∣∣∣‖x‖ (29)

·
ϑ 2 = k2

∣∣∣C̃x
∣∣∣‖x(t−d)‖ (30)

whereΓ1 and Γ2 are positive matrices with proper dimen-
sions,k1,k2 andk3 are positive scalars.

In the above controller,u1 contains two fuzzy logic sys-
tems used to approximate the unknown nonlinear functions,
u2 is an adaptive controller used to compensate for the time-
varying uncertainties and the approximation error, andu3

is used to further guarantee that the sliding functionS(·)
asymptotically converges to zero.

Theorem 2 Given system (1) with the sliding surface
(15), the above reaching law (23) will drive the trajectory
of the closed-loop system onto the sliding surface in limited
time.

Proof: For system (1), define the following Lyapunov
function

V (x) =
1
2
[S2 +ΘT

1 Γ−1
1 Θ1 +ΘT

2 Γ−1
2 Θ2 (31)

+k−1
0 ϑ 2

0 +k−1
1 ϑ 2

1 +k−1
2 ϑ 2

2]

where Θ1 = Θ∗
1−Θ1,Θ2 = Θ∗

2−Θ2,ϑ 0 = ϑ ∗
0 −ϑ0,ϑ 1 =

ϑ ∗
1 −ϑ1 andϑ 2 = ϑ ∗

2 −ϑ2.
The time derivative along the state trajectory of the

system (1) is

·
V = S

·
S+ΘT

1 Γ−1
1

·
Θ1 +ΘT

2 Γ−1
2

·
Θ2 (32)

+k−1
0 ϑ 0

·
ϑ 0 +k−1

1 ϑ 1

·
ϑ 1 +k−1

2 ϑ 2

·
ϑ 2

As we know

S
·
S = C̃xC̃

·
x

= C̃xC̃[(A+∆A(t))x+(Ad +∆Ad (t))x(t−d)
+B(u+F (x,x(t−d) ,σ (t)))]

= C̃x
[
C̃((A+∆A(t))x+(Ad +∆Ad (t))x(t−d))

+u+F (x,x(t−d) ,σ (t))]

Substituting the controller (22) into the above equality,
we can obtain

S
·
S (33)

= C̃x[C̃((A+∆A(t))x+(Ad +∆Ad (t))x(t−d))
+u1 +u2 +u3 +F (x,x(t−d) ,σ (t))]

The unknown nonlinear continuous functions are defined
as follows

F̃1 (x) = C̃Ax+F1 (x) (34)

F̃2 (x(t−d)) = C̃Adx(t−d)+F2 (x(t−d))

From the knowledge of section 3, we use two fuzzy
logic systemŝF1 (x,Θ1) = ΘT

1 ξ1 (x) andF̂2 (x(t−d) ,Θ2) =
ΘT

2 ξ2 (x(t−d)) , to approximateF̃1 (x) and F̃2 (x(t−d)) ,
substituting (23) into (33) we further get

S
·
S = C̃x[C̃∆A(t)x+C̃∆Ad (t)x(t−d) (35)

+F̃1 (x)−Θ∗T
1 ξ1 (x)

+F̃2 (x(t−d))−Θ∗T
2 ξ2 (x(t−d))

+(Θ∗
1−Θ1)

T ξ1 (x)
+(Θ∗

2−Θ2)
T ξ2 (x(t−d))

+u2 +u3 +∆F (x,x(t−d) ,σ (t))]

From assumptions 2 and 3, it is easy to obtain that there
exist unknown positive scalarsϑ ∗

0 ,ϑ ∗
1 andϑ ∗

2 satisfying the
following inequality

C̃x(∆F (x,x(t−d) ,σ (t)) (36)

+C̃∆Ad (t)x(t−d)+ F̃1 (x)
−Θ∗T

1 ξ1 (x)+C̃∆A(t)x

+F̃2 (x(t−d))−Θ∗T
2 ξ2 (x(t−d))

)

≤
∣∣∣C̃x

∣∣∣ [ϑ ∗
0 +ϑ ∗

1 ‖x‖+ϑ ∗
2 ‖x(t−d)‖]

Substitute (24), (25) and (36) into (35), we obtain

S
·
S ≤

∣∣∣C̃x
∣∣∣
[

(ϑ ∗
0 −ϑ0)+(ϑ ∗

1 −ϑ1)‖x‖
+(ϑ ∗

2 −ϑ2)‖x(t−d)‖
]

(37)

+
[

(Θ∗
1−Θ1)

T ξ1 (x)
+(Θ∗

2−Θ2)
T ξ2 (x(t−d))

]
C̃x

−βS2

So we can get the following inequality by substituting (37)
and (26-30) into (32)

·
V = S

·
S+ΘT

1 Γ−1
1

·
Θ1 +ΘT

2 Γ−1
2

·
Θ2 (38)

+k−1
0 ϑ 1

·
ϑ 1 +k−1

1 ϑ 2

·
ϑ 2 +k−1

2 ϑ 3

·
ϑ 3

≤ −βS2

From (38), it is easy to see that the reaching law (22)
guarantees that the trajectory of system (1) is driven onto
the sliding surface in limited time.

In the control process, we assume thatΘ1, Θ2 never reach
the boundary ofΩF1, ΩF2 defined as follows

ΩF1 = {Θ1|‖Θ1‖ ≤M1} (39)

ΩF2 = {Θ2|‖Θ2‖ ≤M2}
In order to guarantee the boundedness of the adaptive

parametersΘ1,Θ2, we introduce the projection operator [5]
to restrict them in the closed setsΩF1, ΩF2. The parameter
adaptive law (26) and (27) can be changed into



·
Θ1 =





Γ1C̃xξ1 (x) If ‖Θ1‖< M1

or (‖Θ1‖= M1 andC̃xΘT
1 ξ1 (x)≤ 0)

Pr

[
Γ1C̃xξ1 (x)

]
If ‖Θ1‖= M1

andC̃xΘT
1 ξ1 (x) > 0)

(40)

and

·
Θ2 =





Γ2C̃xξ2 (x(t−d)) If ‖Θ2‖< M2

or (‖Θ2‖= M2 andC̃xΘT
2 ξ2 (x(t−d))≤ 0)

Pr

[
Γ2C̃xξ2 (x(t−d))

]
If ‖Θ2‖= M2

andC̃xΘT
2 ξ2 (x(t−d)) > 0)

(41)
wherePr is determined by the following equations

Pr

[
Γ1C̃xξ1 (x)

]
= Γ1C̃xξ1 (x)−Γ1

C̃xξ T
1 (x)Θ1

‖Θ1‖2 Θ1

Pr

[
Γ2C̃xξ2 (x(t−d))

]

= Γ2C̃xξ2 (x(t−d))−Γ2
C̃xξ T

2 (x(t−d))Θ2

‖Θ2‖2 Θ2

We can find that the theorem can also be easily proved
by utilizing the adaptive laws (40) and (41) instead of (26)
and (27). Here the proof is omitted.

VI. CONCLUSION

This paper investigates the problem of variable structure
adaptive fuzzy control for a class of nonlinear systems
with time delays. The sliding surface and the corresponding
reaching law are designed. Different from the existing
literature, the sliding surface in this paper is dependent
on the time delay, and the sliding motion is exponentially
stable. During the design of reaching law, fuzzy logic
systems are adopted to approximate unknown functions.
The constructed reaching law can drive the state trajectory
of the system onto the sliding surface in limited time.
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