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Abstract—In this paper, the problem of variable structure  investigatedH., tracking problem of uncertain nonlinear
adaptive fuzzy control for a class of nonlinear time delay SISO systems with external disturbance by using adaptive
systems is_investigated. Sliding surface dependent of the f,77y controllers. Fuzzy indirect adaptive controller for a

time delay is constructed based on the Lyapunov-Krasovskii . . . .
method. Two adaptive fuzzy logic systems are proposed to class of decentralized nonlinear systems is constructed in

approximate two unknown continuous nonlinear functions [7]. Paper [8] investigated robust adaptive fuzzy control
containing the current state and the delayed state respectively. for SISO nonlinear systems based on backstepping method.

The corresponding reaching law is designed, which can drive However, in the existing papers, few results on fuzzy control
the state trajectory of the closed-system onto the sliding of time delay nonlinear systems are reported. Based on T-S
surface within limited time. .
fuzzy models, [15] was the first paper on the fuzzy control
| INTRODUCTION using Lyapunov-Krasovskii fur!ctional 'approach, while [16]
used the Lyapunov-Razumikhin functional appraoch.
Time-delay is often encountered in various engineering In this paper we consider the problem of robust variable
systems, such as electrical networks, turbojet engines, mitructure adaptive fuzzy control for a class of nonlinear
crowave oscillators, nuclear reactors, rolling mills, chemicadystems with time delay. As we know that a sliding mode
processes, manual control, long transmission lines in pnegentrol has attractive features such as fast response and good
matic, and hydraulic systems, etc. Its existence is oftenteansient response. So we adopt the sliding mode control
source of instability and poor performance. Therefore, theethod in this paper. Fuzzy logic systems are also used as
problem of stability analysis and robust control for dynamianiversal approximators of unknown nonlinear functions.
time-delay systems has attracted considerable attention offee problem of designing both a linear sliding surface and
number of researchers over the past years [13, 14 and tfaching motion controller is investigated. A sliding surface
references therein]. is first designed by solving a Riccati inequality, which can
Fuzzy control has recently found extensive applicationguarantee that the sliding motion is exponentially stable
for a wide variety of industrial systems, and has attracted thrdependent of the time delay. Then the reaching motion
attention of many control researchers due to its model frasontroller is designed, which can drive the state trajectory
approach ([1] and [2]). Fuzzy control algorithms attempbf the system onto the sliding surface within limited time.
to make use of information from human experts, which is The paper is organized as follows. The problem formu-
generally represented by fuzzy terms, such as small, lardetion is given in Section 2. A brief description of fuzzy
not very large or not very small, etc. More recently, arlogic systems is provided in Section 3. In Sections 4 and 5,
important adaptive fuzzy control system has been developéte designs of the sliding surface and the reaching law are
incorporated with the expert information systematically andiven respectively.
the stability is guaranteed by theoretical analyses ([3] and
[4]). An adaptive fuzzy system is a fuzzy logic system Il. PROBLEM FORMULATION
equipped with a training algorithm, in which the fuzzy logic Consider the following time delay system
system is constructed from a collection of fuzzy IF-THEN
rules, and the training algorithm adjusts the parameters of

the fuzzy logic system according to numerical input/output = (A+DA(D)X+(Aa+ DA () x(t—d) (1)

data. +B(U+F(X,X(t—d),0(t)))
Based on fuzzy logic systems which are capable of
approximating, with arbitrary accuracy, any real continuous x() =9 (1), te [ d o ]

functions on a compact set, a globally stable adaptive

controller is first synthesized from a collection of IFF-THENwhere x € R" and u € R are the state and control input
rules in [5]. In the existing literature on fuzzy controlrespectively,d is the delay paramete’\ B and Aq are
of nonlinear systems, fuzzy logic systems are used tmatrices with appropriate dimension8A(t) and AAq (t)
approximate unknown nonlinear functions. Reference [@re time-varying uncertaintiess (x,x(t—d), o (t)) is an
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unknown function containing uncertainties, wherét) is

a time varying disturbance parameter. In system (1), for

simplicity we assume F(xx(t—d),o(t)
= FR(X)+R(X({t-d)+AF (x(t),x(t—d),o(t))

B=10,---,0,1] where Fy (x) and F» (x(t—d)) are unknown continuous
functions,AF (x(t),x(t—d), o (t)) is an uncertain function

and other matrices can be decomposed into the fOHOWin%\/hich is also unknown. but bounded

Al Az
A= ( Por Az ) ’ @ |oF (x(1),x(t—d),0 ()] < ao+a1||x<t>u+azux<t—o})\;
6
MA(t) = ( ﬁ” ﬁlz ) 7 whereap, a1 anda, are unknown positive scalars.
21 22 Problem: Design a sliding surface to guarantee the
Ay — ( Adi1 Adiz > sliding motion exponentially stable with a given decay rate
Adz1 Ad22 )’ y for system (1) and construct the reaching control law
DAG11 DAgio u(t) to render the state trajectory of the closed-loop system
- Mgo1 Mg convergent to the sliding surface in limited time.
where AiLDAL Ay MMy, €  RO-Dx(-1) Il DESCRIPTION OF FUZZY LOGIC SYSTEMS
A2, DA22, Agoo, AAg22 € R Thus system (1) can be A fuzzy system is a collection of fuzzy IF-THEN rules
written as of the form:
: R : IF x isA{and~~~and>§]isAfj1
X1 = (A1 +DA)X 3 1 1
1 (A11 11) X1 3) THEN y is B. (7)

At b b)palt-d) By using the strategy of singleton fuzzificat duct
Ayt AA t—d y using the strategy of singleton fuzzification, produc
* (Aaz+DA12) X+ (Adiz + DAdrz) Xo ) inference and center-average defuzzification, the output of
x () = 91(t), te[ —d O] the fuzzy system

i1y (I'Iinzlllpg (Xi))
s i @ N S Ty ) @
+ (Ad21 +AAg21 (1)) X1 (t —d) A
1 (Aga+ DAR) Yo + (Agzo + Mg2) xo (t —d)  Where i, (%) is the membership function of linguistic

Fu+F (xx(t—d),o(t)) yariable_xi, andy! is the point inR at which yizj achieves
0 = 0, te[ —d 0] its maximum value (assume thagi (y') = 1).
R = P2, By introducing the concept of the fuzzy basic function

where x; € R™1,x, € R We introduce the following as- vector{ (x), (8) can be written as
sumptions imposed on the system (1):

Assumption 1 The uncertaintiesAAq(t), AAga(t), y(x) =8¢ (%)
DAg11 (t) andAAg12 (t) satisfy where
[ AA11(t) DAga(t) |=DiFi(t)[ Eir E12 ] (5) 6=(61,,0) LX) =(01(x), 4 (X))
and ! (x) is defined as
[ DAG11(t) AAgia(t) | =DoFa(t) [ Ear Eo | 200 = |_|in:1HAii (%)
where ||F1 (t)|| < 1, and D1,D2,E11,E12,E»; and Epp are : le:1 rlin:luAii (Xl)

some known matrices with proper dimensions. In addition In this paper we will take two universal fuzzy systems

DA <y, |DAG] < ¥ F1(x,01) and B (x(t—d),0) with x,x(t—d) € Uy for
some compact sdfy, to approximate the uncertain terms
Where positive scalargy and y» are not required to be F;(x(t)) and Fx(x(t—d)) defined in (34) where ®; and

known. ©2 contain tunable parameters. We construct the fuzzy rule
Assumption 2F (x,x(t — d), o (t)) satisfies the following bases offF; (x,©;) and R, (x(t —d),©,) consisting of the
decomposition following rules:
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RLl © IF xgis Al and --- and % is A) X1 = (Au+D0A)X (13)

THEN Fy(x,©) is F/. + (Ad11+DAg11 (1)) X1 (t —d)
+ (A12+A0A12)Cxq
_ L o + (Ad12+DAqG12) Cxq (t —d)
RE, : IFxi(t—d)isA;and - and % (t—d) is A, xi(t) = (), te[ -d 0]

THEN R (x(t—d),0;) is F}. If system (13) is exponentially stable dependent of the

and construct the following fuzzy systems delay, the sliding motion (13) will be exponentially stable

dependent of the delay.
E (x,01) = 9151 (x) Theorem 1 Consider system (13), if assumption 1 is met

and the following inequality is satisfied
and

£ (x(t — —or _ P(Au+y)+(A+y) P (14)
FZ(X(t d) 762) - e2 EZ (X(t d)) +571PD1DIP+EEI1E11

where &, (x) and & (x_(t—d)) are fuzzy basis functions. e 1ePPAY AT P + 29PAY X AT P+ XL

According to the universal approximation theorem there 120D, DI+ cELE

exist opt|mal approximation paramet@§ and®j [3], such +€ 202 P+ €551 Zfl

thaté; (x)" ©f and&; (x(t —d))" ©; can approxmatEl( ) — [e (1+E{;E12+ ELE2) ]

andR (x(t —d)) to any desired degree. The parame®is (PAL+ €E] Eqo + €EJ E20)

and ©; are defined as follows T T T
(PAlZ +eEj1En+ £E21E22)

< 0

01€Qr \ xe0y

©; =arg_min (sup F1(x,01)—F (X)D (9) N . _ N
whereP and X are positive matrices; is a positive scalar,
then the following sliding surface

-1

O =arg mm( sup F2(x(t—d),©) D (10)

02608, \xt_d)e,| —F2(X(t—d)) S = [e(1+EfE12+E}E)] (15)
T
whereQr,, Qr, and Q, denote the sets of suitable bounds (PA12+ €E{1E12+ €EJ1E22) X1
on ©1, ©2 andx, respectively. We assume th@g, ©, and +Xo

X never reach the boundaries O, Qr, and Q. And

the minimum approximation error satisfies the followmg will render the sliding motion exponentially stable depen-
assumption dent of the delay with a given decay rate

__Assumption 3 The approximation error between na?erot(r):n:gr;yasttigrr? (13), we choose the following coordi-
F1(X),F2(x(t—d)) and & ()" ©%, & (x(t—d))" ©; satis-

fies the following inequality z(t) = 'xq (1)
=€ X

Fi(X) — &L (0T O + R (x(t — d)) a we can obtain
~&H(x(t—d)" e . |
< PotPu x| + Pz [x(t - d) z = ye'xi+e'x (16)

where fp,h; and h, are unknown scalars. These two pa- = (A t+AC+ vl +0A+AARC)Z

rameters®; and ©; will be learned by using the adaptive +€" (Ad11 + Ag12C + DAg11 + AAG1.C) z(t — d)
algorithms. As we know, if system (16) is robust asymptotically
IV. SLIDING SURFACE DESIGN stable, system (13) will be exponential stable with a given

attenuancey dependent of the delay.
Without loss of generality, we suppose that the sliding g system (16), let us define the following Lyapunov-

surface is Krasovskii function
~ T t
S=Cx=[ -C 1][x ] =(-Cat+x)=0 V() = zTPz+/ €' (v)
12) t—d
whereC € R"1. Hence, substituting, = Cx; into (3) gives (E21+ E22C) " (E21+ E22C) 2(0)du
the sliding motion +Xx-14+C'cC
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Then the time derivative along the state trajectory of the
system (16) is

-1
C = -— [8 (1+ EIZE12+ Engzg)]
;
vV = 27p A1 +ACHyl . (17) (PA12+£EIlE12+£E2TlE22)
o +AA11+AA1C then
+Ag12C
+2e%77P ( Adir ) z(t—d) .
E+AA‘I’E“Z$A‘:E12C . V < 27P(Au+yl)z 1)
+€Z' (1) [ (Bar+ +2)2(7)1+( clech 22C) } z(t) +& 17'PD.D] Pz+ e2" E] E112
(Ez21+ E2C)" (Ez1 4+ E2C) +e Tz PAsAGP2
—&7' (t—d) { T aALce ] +€92 PAX Al Pz+2' X'z

2(t —d) +e 1?7 PD,D] Pz+ £7' E} Ez
—ZT (PA12 + SE]T]_E12 + £E;lE22)

Note 1
(€ (14 EfLE1+ EJE2) ]
ZZT p (AAll + AA:LZC) 7 (18) (PA12 + 8EI1E12 + SE;lEzz)T z
= 22'PDsFy(t) (E1n+E1C)z If inequality (14) is satisfied, (21) holds. So we complete
< 8{1ZTPD1DIF’Z the proof of theorem 1.

In this section, we have designed the sliding surface
dependent of the time delay. Compared to the papers [11]
and [12] on variable structure control for time delay system,
VT our results have two merits: 1) Under condition (14), the
2¢"°2 P (Ad12C+ AAg11 +8A1C) z(t —d) - (19)  gjiing surface is exponentially stable with decay mate)

+&7" (Enn+ ElZC)T (E11+Ei1C)z

< & teZTPAYLAL Pz The condition (14) is dependent of the time delay, so it is
+&z(t—d)TCTCz(t —d) —&-EsflezdeTPDzD; Pz less conservative_ than the _result_s _independent of the time
szt —d)T (Ex+ E22C)T (Ext+ ExC)2(t — d) delay when the time delay is sufficiently small.
V. DESIGN OF THE REACHING LAW
In this section, we will design the controller which can
27T PAG11z(t — d) (20)  drive the trajectory of system (1) onto the sliding surface
< M7 PAIX AL PZ+ Z(t —d)T X 1z(t —d) in limited time.

) N ) N For system (1), consider the following controller
where X is a positive matrix,£1,& and €3 are positive

scalars. For simplicity we choosg = & = &3 = ¢, then

- ! U=u;+Ux+Uu3 (22)
by substituting (18),(19) and (20) into (17), we get
where
V < 2ZP(Ai1+ACHYl)z+e 12" PDID] Pz U = —OL & (X) — O & (X(t —d)) (23)
+SZT (Ell + E12C)T (EllJF ElZC) z
+& 167" PAG1,AYPZ+ €2 CTCz o o
LT PAdMXAJlle—&- STx-1, u = —Jpgsign (Cx) —91]|x|| sign (Cx) (24)
+e 1?7 PD,D] 7 — 9, ||x(t —d)||sign((~2x)
+ez' (Eo1+ EzzC)T (Ez1+ExC)z
= 2Z'P(A1+yl)z+¢& 2" PDD] Pz uz = —BCx (25)

where B is a positive scalar@;,02,39,31 and 9, are

adaptive parameters, whose adaptive laws are as follows
+£7' E] E117+ £ 1?97 PAG1 APz ptive p P

47T PAGIX AL Pz 2T X1z 01 = 1Cx&; (x) (26)
+& e PD,D) 2+ £7" E Ennz
+£2' CT (14 Ef,E10+ EJ)E22) CZ O = MoCx& (X (t —d)) @7)
+27" (PAro+ €EJ Eqo+ €EL Epp) Cz

So if we let do=ko ‘GX‘ (28)
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) N From the knowledge of section 3, we use two fuzzy
1=k ‘CX‘ 1] (29) logic systemd; (x,01) = O] & (x) and P (x(t —d), @) =

O] & (x(t—d)), to approximateF; (x) and F (x(t —d)),
substituting (23) into (33) we further get

92 =ke )éx( X (t —d)]| (30)

whererl andrl, are positi\_/_e matrices with proper dimen- s — 6x[6AA(t)x+6AAd O)x(t—d) (35)
sions,ky, ko andks are positive scalars. N T

In the above controllen); contains two fuzzy logic sys- *El (%) =017 &1(x)
tems used to approximate the unknown nonlinear functions, +R (x(t—d)) — 03" & (x(t—d))
Uz is an adaptive controller used to compensate for the time- + (05 — @1)T &1(x)
varying uncertainties and the approximation error, agd 0t — 0T & (x(t —d
is used to further guarantee that the sliding functi(n) +(85-62) &x(t=0))
asymptotically converges to zero. +Up + U3 +AF (x,x(t —d), 0 (t))]

Theorem 2 Given system (1) with the sliding surface  From assumptions 2 and 3, it is easy to obtain that there

(15), the above reaching law (23) will drive the trajectoryexist unknown positive scalaik;, 97 andd; satisfying the
of the closed-loop system onto the sliding surface in limitegy|jowing inequality

time.
Proof: For system (1), define the following Lyapunov ~
function CX(AF (x,x(t—d),o (1)) (36)
+CAAy (t)x(t —d) + Fp (X)
Vi) = SIS0 88 (@) ~017 &1 (9 + CAA()X
- - - +R(x(t—d))— 05T & (x(t—d
where By — ©; — 01,87 — @ — 6z, Fo — 9 — 90,91 — < [CXY19 + 91 Ix]+ 9 Ix(t ~ )]
9 =51 _and I2 = 195_ — ). ) Substitute (24), (25) and (36) into (35), we obtain
The time derivative along the state trajectory of the
system (1) is . .
SS < ‘GX‘ |: (790 - "90) + ("91 - "91) ”XH :| (37)
| o = +(95 — 82) [x(t —d)|
V = S5+0,I'0:1+0,,'0; (32) (@ — 0T & (x) ~
I T e exit-ay |
+k51190190+k51191191+k2_1192192 + 2 2 2
_BSZ
As we know
So we can get the following inequality by substituting (37)
. ~ -~ and (26-30) into (32)
S = CxCx
OC[(A+DA(1)) X+ (Ag+AAg (1)) X(t —d) . S PR
FB(U+F (x(t—d),0 (1) Vo= Sralretere @
= Cx|C((A+DA()x+ (Ag+ DA (1)) x(t —d)) 19181+ k 19292+ k19393
FUHF (xx(t—d), o (t))] < -pg
Substituting the controller (22) into the above equality, From (38), it is easy to see that the reaching law (22)
we can obtain guarantees that the trajectory of system (1) is driven onto
the sliding surface in limited time.
- In the control process, we assume t@at ©, never reach
§S ~ (3 the boundary of)r,, QF, defined as follows
= CXC((A+DA(t))x+ (Ag+DAq (1)) x(t —d))
+ur+u2+uz+F (x,x(t—d),o(t))] Or, = {O4]|oy] <M} (39)
The unknown nonlinear continuous functions are defined Qr, = {0g]|02] <My}
as follows .
In order to guarantee the boundedness of the adaptive
_ ~ parameter®;,®,, we introduce the projection operator [5]
R = CAx+F(x) (34)  to restrict them in the closed se®,, Qr,. The parameter
FR(x(t-d) = CAxx(t—d)+FR(x(t—d)) adaptive law (26) and (27) can be changed into
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[7]
M1CxE1 (X) If [|©1]] < My

or (||©1]| = My andCx®] & (x) < 0) (8]
1= ~ _ (40)
P [rlcﬁsl (x)} If [|©] =My o
andCx9] & (x) > 0)
and [10]
M2Cx&2 (x(t—d)) If [[©2] <Mz [11]
or (||@z]| = Mz andCx@] & (x(t —d)) < 0)
T R[rO&xE-d)| If e =M [12]
andCx@} & (x(t —d)) > 0) [13]
(41)
wherePR; is determined by the following equations
[14]
~ ~ CxE] (x)©1
P MG ()| = 1 (9) - Mo 5]
N [16]
P [FoCxta (x(t - )]
N CxET (x(t —
= T[,Cx¢ (X (t — d)) — FZCX£2 <X (t d)) ©2 (O]

2
O]

We can find that the theorem can also be easily proved
by utilizing the adaptive laws (40) and (41) instead of (26)
and (27). Here the proof is omitted.

VI. CONCLUSION

This paper investigates the problem of variable structure
adaptive fuzzy control for a class of nonlinear systems
with time delays. The sliding surface and the corresponding
reaching law are designed. Different from the existing
literature, the sliding surface in this paper is dependent
on the time delay, and the sliding motion is exponentially
stable. During the design of reaching law, fuzzy logic
systems are adopted to approximate unknown functions.
The constructed reaching law can drive the state trajectory
of the system onto the sliding surface in limited time.
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