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Abstract— A stable adaptive fuzzy control method is proposed
for single input and single output nonlinear systems. This
method needs not the assumption that the state variables
need full observability. And the state variables are estimated
by designing an observer. These unknown nonlinearities are
approximated by the fuzzy systems. The key assumption is that
the approximation errors satisfy certain bounding conditions.
The Lyapunov synthesis approach is used to analyse the fuzzy
system to obtain the corresponding parameters adaptive laws.
The overall control system guarantees that the tracking error
converges into a small neighborhood of zero and that all signals
involved are uniformly bounded. A simulation results show the
validity and efficiency of the proposed method.

I. INTRODUCTION

Recently, fuzzy systems are successfully applied to many
control problems because they need not accurate mathemat-
ical models of the system under control and can cooperate
with human experts’ knowledge. Furthermore, it is shown
that fuzzy systems can approximate certain classes of func-
tions to a given accuracy. Wang proved that the fuzzy systems
are universal approximations and the output of the system
can be represented by a linear combination of the so-called
fuzzy basis functions [1, 2]. Based on this property, many
researchers presented adaptive fuzzy control architectures for
nonlinear systems [3-6]. However, since the fuzzy descrip-
tions are imprecise and may be insufficient to achieve the
desired accuracy, the approximation error introduced into the
feedback loop makes it difficult to guarantee the stability
of the closed-loop control system [3]. This problem was
solved in [7] by means of sliding mode-like estimation of the
approximations error bound, but nonsmooth control input is
generated due to this estimation. In general, such discontin-
uous adaptive control schemes are avoided since it is well-
known that they not only create problems of existence and
uniqueness of solutions but also are known to display chat-
tering phenomena and to excite high-frequency unmodeled
dynamics [6]. Park tried to solve this problem by estimating
these bounds on the plant dynamics using fuzzy inference
in [8]. Chen et al. [9] proposed an adaptive fuzzy-based
controller combined with a control technique. However, their
controllers are intrinsically high-gain controllers since the
small attenuation level results in a large gain on the additional
robustifying control term. Park developed an indirect robust
adaptive control algorithm against the approximation errors
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using fuzzy systems for single-input single-output (SISO)
nonlinear dynamical systems with unknown nonlinearities
[10]. In addition, he proposed a smooth control input with
no chattering phenomena. However, adaptive fuzzy control
algorithms given above are based on the assumption that the
state vector of the system can be available for measurement.
So this algorithm can not be applied into nonlinear systems
whose state vectors can not be available.

The purpose of this paper is to propose an adaptive control
algorithm based on the observer for single-input single-
output (SISO) nonlinear dynamical systems whose state
vector can not be available. The continuous control algorithm
is applied to analyse approximation errors in the controller.
The control algorithm not only avoids chattering phenomena
but also improves performance of systems. The proposed
controller guarantees that the tracking error converges into
a small neighborhood of zero. Simulation example is given
to testify the validity and efficiency of the proposed method.

II. DESCRIPTION OF SYSTEMS AND CONTROL PROBLEMS

Consider the nth-order nonlinear system of the form

x(n) = f (x, ẋ, · · ·x(n−1))+g(x, ẋ, · · ·x(n−1))u
y = x (1)

where f and g are unknown continuous functions, u ∈ R,
y ∈ R are the input and output of the system, respectively,
and x = [x1,x2, · · ·xn]T = [x, ẋ, · · · ,x(n−1)]T ∈ Rnis the state
vector of the system. The unknown nonlinear system (1) can
be expressed as follows:

ẋ = Ax+B( f (x)+g(x)u)

y = CT x (2)

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤
⎥⎥⎥⎥⎥⎦ ,

C =
[
1 0 0 0 0

]T

We assume that ym is a given bounded reference signal,
x̂ represents estimate of x , e1 = ym − y represents output
tracking error. And

y
m

=
[
ym ẏm . . . y(n−1)

m

]T

e = y
m
− x =

[
e ė . . . e(n−1)

]T

ê = y
m
− x̂ =

[
ê ˙̂e . . . ê(n−1)

]T



The purpose of this work is to design a feedback controller
u = u(x̂,e1|θ) and adaptation laws of parameter vectors
θ with appropriate dimensions in order that the following
conditions are satisfied:

1. Variable of close-loop system are all bounded.
2. The tracking error e and êconverge into a small

neighborhood of zero.

III. ADAPTIVE FUZZY CONTROLLER DESIGN BASED ON

OBSERVER

If state vector of the system (1) can be available, according
to method in [9], the control law is chosen as

u = uc +ur =
1

ĝ(x|θg)
(− f̂ (x|θ f )+ y(n)

m +KT e)+ur (3)

Suppose that K = (kn, . . . ,k1)T be such that all roots of
h(s) = sn +k1sn−1 + . . .+kn are in the open left-half complex
plane. The unknown functions f (·), g(·) are approximated by
the fuzzy system f̂ (x|θ f ) and ĝ(x|θg) described as follows,
respectively.

f (x) = f̂ (x|θ ∗
f )+δ f (x)

g(x) = ĝ(x|θ ∗
g )+δg(x) (4)

f̂ (x|θ f ) = θ T
f ξ f (x)

ĝ(x|θg) = θ T
g ξg(x) (5)

where θ f and θgare adjustable parameter vectors with ap-
propriate dimensions, ξ f and ξg are regressive vectors whose
elements are fuzzy basis functions (FBF); δ f (x) and δg(x)are
the approximation errors, θ ∗

f and θ ∗
g are some unknown opti-

mal parameter vectors that are analytical quantities required
only for analytical purposes. Typically, θ ∗

f and θ ∗
g are chosen

as the values of θ f and θg, respectively, that minimize the
approximation errors, i.e.

θ ∗
f = argmin

θ f

[sup
x∈Uc

| f̂ (x|θ f )− f (x)|]

θ ∗
g = argmin

θg
[sup
x∈Uc

|ĝ(x|θg)−g(x)|] (6)

If the state vector of the system (1) is not available, the
control law (3) can not be applied to control system (1). In
this instance, choose the indirect adaptive control law as

u =
1

ĝ(x̂|θg)
(− f̂ (x̂|θ f )+ yn

m +KT e−us)+ur (7)

where usis feedback controller of approximation errors, ur is
an additional robustifying control term. Substituting(7) into
(2), we obtain the closed-loop dynamics of the fuzzy control
system as

ė = Ae−BKT ê+Bus +B[ f̂ (x|θ f )− f (x))
+(ĝ(x|θg)−g(x))u− ĝ(x|θg)ur]

e1 = CT e (8)

Design the observer of(8) as

˙̂e = (A−BKT )ê+BK0(e1 − ê1)

ê1 = CT ê (9)

Defining observation errors ẽ = e− ê, and using (8) and (9),
we obtain

˙̃e = (A−K0C
T )ẽ+Bus +B[ f̂ (x|θ f )− f (x)

+(ĝ(x|θg)−g(x))u− ĝ(x|θg)ur]
ẽ1 = CT e (10)

Defining x̂ = y
m
− ê as the input of fuzzy systems,(4)and(5)

can be represented as fellows

f (x) = f̂ (x̂|θ ∗
f )+δ f (x̂)

g(x) = ĝ(x̂|θ ∗
g )+δg(x̂) (11)

f̂ (x̂|θ f ) = θ T
f ξ f (x̂)

ĝ(x̂|θg) = θ T
g ξg(x̂) (12)

The approximation errors δ f (x̂) and δg(x̂) are critical
quantities, representing the minimum possible deviation
between the unknown functions f and g and the input/output
functions of the fuzzy system f̂ (x|θ f ) and ĝ(x|θg). We make
the following assumption on the approximation errors.

Assumption 1 On the compact region Uc, the following
inequality are satisfied.

|δ f (x̂)| ≤ ϕ∗
f s f (x̂),∀x̂ ∈Uc (13)

|δg(x̂)| ≤ ϕ∗
g sg(x̂),∀x̂ ∈Uc (14)

where ψ∗
f ≥ 0 and ψ∗

g ≥ 0 are unknown bounding parameters,
s f and sg are known smooth bounding functions.

Assumption 2 If there exist symmetric and positive definite
matrices P1 and P2, and some matrices K0, Y2 such that the
following matrix inequalities are satisfied.

P2(A−2BCT )+(A−2BCT )T P2 −Y2C
T

−CY T
2 +2CCT +P2BBT P2 < 0

(A−BKT )T P1 +P1(A−BKT )−2P1K0KT
0 P1 < 0

Introducing the estimate error of parameterθ̃ f = θ ∗
f −θ f and

θ̃g = θ ∗
g −θg, from (11) and (12), Eq.(10) can be rewritten

as

˙̃e = (A−K0C
T )ẽ+Bus +B[θ̃ T

f ξ f (x̂)

+θ̃ T
g ξg(x̂)u−θ f (x̂)−θg(x̂)u−θ T

g ξg(x̂)ur]

ẽ1 = CT ẽ (15)

For convenience of study, a lemma is given as follows.



Lemma 1 There exists κ > 0, such that the following
inequalities holds for any ε > 0 and any η > 0 .

0 ≤ |η |−η tanh(
η
ε

) ≤ κε

In the following, the robustifying controller, the output feed-
back controller and the adaptive laws are chosen.

ur =
β

ĝ(x̂|θg
,us = −KT

0 P1ê,β = − ϕT ω
1− ϕgsg

|ĝ(x̂|θg

(16)

θ̇ f = −γ f [ẽP2Bξ f +σ(θ f −θ 0
f ),

θ̇g = −γg[ẽP2Bξg +σ(θg −θ 0
g ), (17)

ω =
[

ω1

ω2

]
=

[
s f tanh( zs f

ε
sg|uc| tanh( zsg|uc|

ε

]

ϕ̇ = γϕ

[
zω1 −σ(ϕ f −ϕ0

f )

zω2 − zβ sg
‖ĝ(x̂|θg) −σ(ϕ f −ϕ0

f )

]
(18)

θ 0
g , σ > 0 and ε > 0 are design constants.

Theorem 1 For nonlinear system (1), suppose the bounding
assumption 1 and 2 hold globally. Then the robust adaptive
laws (7) with the parameter adaptive (16), (17) and (18)
guarantees that all the

a). signals and parameter estimates in on-line approx-
imation based on control scheme are uniformly
bounded.

b). given µ >

√
2ρ

λmin(P1)
, there exists T (µ), for any t ≥

T , such that |ê(t)| ≤ µ .

Proof: consider the Lyapunov function candidate

V (t) =
1
2

êT P1ê+
1
2

ẽT P2ẽ+
1

2γ f
θ̃ T

f θ̃ f +
1

2γg
θ̃ T

g θ̃g +
1

2γϕ
ϕ̃T ϕ̃

where ϕ̃ = ϕ −ϕ∗,ϕ∗ =
[
ϕ∗

f ϕ∗
g
]T

. The time derivative
of V (t) is

V̇ =
1
2

êT [(A−BKT )T P1 +P1(A−BKT )]ê+ êT P1K0C
T ẽ

+ ẽP2Bus − ẽP2Bδ f (x̂)+
1
2

ẽT [(A−K0C
T )T P2

+P2(A−K0C
T )]ẽ+ ẽT P2Bθ T

f ξ (x̂)+ ẽT P2Bθ T
g ξ (x̂)u

− ẽT P2Bδg(x̂)u− ẽT P2Bĝ(x̂|θg)ξ (x̂)ur +
1
γ f

θ̃ T
f θ̇ f

+
1
γg

θ̃ T
g θ̇g +

1
γϕ

θ̃ T
ϕ θ̇ϕ

≤−1
2

êT Q1ê− 1
2

ẽT Q2ẽ+ θ̃ T
f (

1
γ f

θ̇g + ẽT P2Bξ (x̂))

+ θ̃ T
g (

1
γg

θ̇g + ẽT P2Bξ (x̂)u)+Av (19)

where

−Q1 = P2(A−2BCT )+(A−2BCT )T P2 −Y2C
T −CY T

2

+2CCT +P2BBT P2 −2P1K0KT
0 P1

−Q2 = (A−BKT )T P1 +P1(A−BKT )−2(C−P2B)(C−P2B)T

(20)

Av = −ẽT P2Bδ f (x̂)− ẽT P2Bδg(x̂)u− ẽT P2Bβ +
1
γϕ

ϕ̃T ϕ̇

(21)

Defining z = −ẽT P2B, combining (13) and (14) with (16)
gives

Av =
1
γϕ

ϕ̃T ϕ̇ + zδ f (x̂)+ zδg(x̂)u+ zβ

=
1
γϕ

ϕ̃T ϕ̇ + zδ f (x̂)+ zδg(x̂)uc + zβ z+δg(x̂)
β
ĝ

≤ 1
γϕ

ϕ̃T ϕ̇ + |z|(ϕ∗
f s f +ϕ∗

g sg|uc|)+ zβ

+ |zβ |ϕ
∗
g sg

|ĝ|
where

ϕ∗ =
[
ϕ∗

f ϕ∗
g
]T

,ϕ∗ =
[
s f sg|uc|

]T
(22)

By zβ ≤ 0,it is obtained that

Av ≤ 1
γϕ

ϕ̃T ϕ̇ + |z|ϕ∗T
s− zϕT ω + zβ

ϕgsg

|ĝ|
+ |zβ |ϕ

∗
g sg

|ĝ|
≤ ϕ̃T (

1
γϕ

ϕ̇ − zω)+ϕ∗T
(|z|s− zω)+ zβ

ϕ̃gsg

|ĝ|
By using (18) and Lemma 1, it follows that

Av ≤−σϕ̃T (ϕ −ϕ0)+κε |ϕ∗|1 (23)

Substituting (23) into (19) yields

V̇ ≤−1
2

êT Q1ê− 1
2

ẽT Q2ẽ−σθ̃ T
f (θ f −θ 0

f )

−σθ̃ T
g (θg −θ 0

g )−σϕ̃T (ϕ −ϕ0)+κε |ϕ∗|1
≤−1

2
êT Q1ê− 1

2
ẽT Q2ẽ− σ

2
(|θ̃ f |2|+ |θ̃g|2 + |ϕ̃|2)

+
σ
2
|θ ∗

f −θ 0
f |2 +

σ
2
|θ ∗

g −θ 0
g |2 +

σ
2
|ϕ∗ −ϕ0|2 +κε |ϕ∗|1

Solving the LMI in Assumption 2, matrices P1, P2 and K0

can be obtained. From (21) we get Q1 and Q2. By (19), it is
followed that

V̇ ≤−αV +λ (24)

where

α : = min
λmin(Q1)
λmax(P1)

,
λmin(Q2)
λmax(P2)

,σγ f ,σγg,σγϕ

λ : =
σ
2
|θ ∗

f −θ 0
f |2 +

σ
2
|θ ∗

g −θ 0
g |2 +

σ
2
|ϕ∗ −ϕ0|2 +κε |ϕ∗|1

(25)



Selecting ρ = λ
α > 0, then (24) satisfies

0 ≤V (t) ≤ ρ +(V (0)−ρ)exp(−αt) (26)

Therefore, x and θ f and ϕ are uniformly bounded.
Furthermore, using (19) and (26), we obtain that, given any

µ >
√

2ρ
λmin(P1) , there exists T (µ) such that for all t ≥ T , the

error ê(t) satisfies |ê(t)| ≤ µ .

Remark: It is shown that zωi ≥ 0 from Lemma 1. To
guarantee zβ ≤ 0, the following inequality must be satisfied

ϕg <
gM

αg

where

αg = sup
x̂∈Uc

sg(x̂),gM = min
x̂∈Uc

ĝ(x̂|θg).

IV. SIMULATION EXAMPLE

To illustrate the control procedure and performance, we
apply the method proposed in this paper to control the in-
verted pendulum to track a sine-wave trajectory. The dynamic
equations of the system are described as follows [11].

ẋ1 = x2

ẋ2 =
gsin(x1)−mlx2

2 cos(x1)/(mc +m
l(4/3−ml cos2(x1)/(mc +m)

+
cos(x1)/(mc +m)

l(4/3−ml cos2(x1)/(mc +m)
(27)

where x1 = θ represents the angle of the pendulum, x2

represents angular velocity, g = 9.8m/s2 is the acceleration
due to gravity, mcis the mass of cart, m is the mass of pole,
l is the half-length of pole, u is the applied force (control).
Choose mc = 1kg,m = 0.1kg, m = 0.1kg. Obviously, (27) is
on the form of (1), thus our fuzzy controller applies to this
system. Select the membership function

µF1
i
(xi) =

1
1+ exp[5(xi +0.6)]

,µF2
i
(xi) = exp[−(xi +0.4)2],

µF3
i
(xi) = exp[−(xi +0.2)2],µF4

i
(xi) = exp[−(xi)2],

µF5
i
(xi) = exp[−(xi −0.2)2],µF6

i
(xi) = exp[−(xi −0.4)2],

µF7
i
(xi) =

1
1+ exp[−5(xi +0.6)]

choose

ym = (pi/30)sin(t),K = [18,80],γ f = 1000,

γg = 10,γϕ = 1,σ = 0.1,s f = 100,

sg = 0.8,θ 0
f = θ 0

g = 1.

The simulation results are shown in Fig.1 to Fig.3
From the Fig1 and Fig2, it can be seen that the system

output tracks the desired output well by the proposed con-
troller. From the Fig3, the observe error converges to zero,
which testifies the validity of design of the observer (9).
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Fig. 1. system output y and desired output ym

4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Fig. 2. the trajectory of ẏ and ẏm
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Fig. 3. the trajectory of observe error ê



V. CONCLUSION

A stable adaptive fuzzy control method is proposed for sin-
gle input and single output nonlinear systems. This method
needs not the assumption that the state variables are measure.
And the state variables are estimated by designing observer.
The Lyapunov synthesis approach is used to analyse the
fuzzy system to obtain the corresponding parameters adaptive
laws. Simulation example is given to show that the proposed
method is validated and efficient.
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