
Generalized Fuzzy Lyapunov Stability Analysis 
of Discrete Type II/III TSK Systems 

 
Assem Sonbol M. Sami Fadali 
Electrical Engineering/260 Electrical Engineering/260 
University of Nevada University of Nevada 
Reno, NV 89557 Reno, NV 89557 
sonbol@unr.nevada.edu fadali@ieee.org 

 
Abstract--- We propose a new approach for the stability 
analysis of discrete Sugeno Types II and III fuzzy systems. 
The new approach uses arguments similar to those of 
traditional Lyapunov stability theory with positive and 
negative definite functions replaced by fuzzy positive 
definite and fuzzy negative definite functions, respectively.  
We introduce the concept of the equivalent fuzzy system 
for a cascade of two fuzzy systems.  We use the cascade of 
a system and a fuzzy Lyapunov function candidate to 
derive new conditions for stability and asymptotic stability 
for Type II and Type III fuzzy systems.  We apply our 
results to a numerical example. 

I. Introduction 
The stability analysis of fuzzy systems has been the 

subject of extensive research (see the review paper [5].  
However, due to the nonlinear structure of fuzzy systems 
the development of a general approach is highly unlikely. 

For a systematic stability analysis, we start with a 
classification of fuzzy systems. Sugeno [5] classified fuzzy 
systems into three types.  Type I, which was first 
introduced by Mamdani, uses fuzzy rules of the form 
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where ji
jA  and niiH ...1  are fuzzy sets.  If we replace the 

consequents in (1) with  
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where 
nii ...1

h  is a vector of singletons, we obtain Type II 
Takagi-Sugeno-Kang (TSK) fuzzy systems.  Type II is a 
special case of Type III systems whose consequents are 
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where )(...1
xf

nii  are functions of xi, i = 1, …, n. 
While it is possible to transform one type of fuzzy system 
to another [11], these transformations do not allow the 
extension of sufficient stability tests for one type to others.  
In general, the stability analyses of Type II and Type III 
systems are significantly different [5]. 

Recently, the stability analysis of Type III systems has 
attracted considerable interest in the literature [1]-[10].  
Most of these results require the existence of a common 

quadratic Lyapunov function [1]-[5].  Unfortunately, 
conditions for the existence of such functions are restrictive 
and difficult to establish [12].  For example, the search for 
a common Lyapunov function can be posed as a convex 
optimization problem in terms of linear matrix inequalities 
(LMIs) [9].  However, the LMI conditions for quadratic 
stability for fuzzy systems are often conservative. 
Moreover, the convex optimization problem often involves 
a large number of LMIs and a dramatically increasing 
computational load with the number of inputs [10]. 

Several authors were able to analyze the stability of 
fuzzy systems without a common Lyapunov function [6], 
[9], [10]. Lo and Chen [6] used Kharitonov theory to derive 
a sufficient condition for fuzzy controller stability.  
Unfortunately, Johansen and Slupphaug [7] showed by a 
counterexample that the conditions proposed in [6] are not 
sufficient.  Dvorakova and Husek [8] also analyzed the 
results in [6] and showed that the computational procedure 
presented is not valid for fuzzy systems where the number 
of rules is greater than three.  Johansson and Rantzer [9] 
presented a novel approach for stability analysis of fuzzy 
systems. The analysis was based on piecewise-continuous 
quadratic Lyapunov functions. The approach resulted in 
stability conditions that can be verified via convex 
optimization over LMIs.  Feng and Harris [10] also used a 
piecewise-continuous quadratic Lyapunov functions.  Their 
approach exploited the properties of the input membership 
functions to reduce the number of candidate Lyapunov 
functions and the associated LMIs. 

To date, there has been no theoretical study of the 
stability of Type I [5] and only two papers on Type II 
systems [5], [15].  Sugeno [5] gave stability conditions for 
both discrete-time and continuous time Type II systems. In 
[15], we introduced the concept of fuzzy positive definite 
and fuzzy negative definite systems. Then, we used them to 
derive Lyapunov like conditions for the stability analysis of 
discrete Type II systems. Here, we generalize our earlier 
results to allow more flexibility in the selection of the 
Lypunov function ( ))(kV x .  Whereas our earlier results 
restricted the shape of the ( ))(kV x  contour, our new results 
allow any piecewise linear closed contour. In addition, our 
earlier results are restricted to Type II systems while our 
new results are applicable to both Type II and Type III.  
We provide an example where no common Lyapunov 
function exists but where our method establishes the 
stability of the fuzzy system. 

The paper is organized as follows.  Section II 
introduces basic definitions and concepts.  In Section III, 



we derive conditions for Lyapunov stability and asymptotic 
stability of Type III/II fuzzy systems, and provide an 
illustrative example.  Section IV gives conclusions and 
suggestions for future work. 

II. Definitions and Concepts 
We first introduce concepts and definitions that we 

need for the stability analysis of Type II/III TSK systems. 
Because Type II is a special case of Type III. Unless 
otherwise stated, we use fuzzy rules of the form (1) with 
consequents of the form of (3) throughout the paper. 
Definition 1: Components of the fuzzy system 

The class of TSK fuzzy systems to be analyzed 
comprises four principal components: 

1. A singleton fuzzifier that maps to triangular, 
normal, complete and consistent fuzzy sets. 

2. A complete fuzzy rule base of the form (1) with 
consequents of the form of (3), where 
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3. A product inference engine. 
4. A weighted-average defuzzifier. 
The following functions play the same role in the 

stability analysis of fuzzy systems that crisp definite 
functions play in traditional Laypunov stability theory. 
Definition 2: Positive definite Type II fuzzy function 

A fuzzy function that comprises the four principal 
components of Definition 1.5 and has a scalar output y is 
positive definite if and only if  
y > 0 for all xi ≠ 0, and y = 0 for all xi = 0, i = 1, …, n. 
Definition 3: Positive semi-definite fuzzy function 

A fuzzy function that comprises the four principal 
components of Definition 1.5 and has a scalar output y is 
positive semi-definite if and only if  
y ≥ 0 for all xi ≠ 0, and y = 0 for all xi = 0, i = 1, …, n. 
Definition 4: Negative definite fuzzy function 

A fuzzy function that comprises the four principal 
components of Definition 1.5 and has a scalar output y is 
negative definite if and only if  
y < 0 for all xi ≠ 0, and y = 0 for all xi = 0, i = 1, …, n. 
Definition 4: Negative semi-definite fuzzy function 

A fuzzy function that comprises the four principal 
components of Definition 1.5 and has a scalar output y is 
negative definite if and only if  
y ≤ 0 for all xi ≠ 0, and y = 0 for all xi = 0, i = 1, …, n. 
Definition 5: Discrete Dynamic TSK Type III/II  

Discrete Type III/II dynamic fuzzy systems have fuzzy 
rules of the form 
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We define the sum, difference, and cascade of fuzzy 
systems. 
Definition 6: Sum and difference of fuzzy systems 

The sum/difference of fuzzy systems fj, j = 1,…, m, is a 
system whose output is the sum or difference of their 
outputs. 

myyy ±±= L1  (6) 
where yj is the output of the jth fuzzy system. 
Definition 7: Cascade of two fuzzy systems 

Let f1 and f2 be fuzzy systems, we denote their cascade 
by 21 ff o  and the output of the overall system as y12. 

In the next section we give new sufficient conditions 
for Type III/II stability and asymptotic stability.  

III. Type III / II TSK Fuzzy Systems Stability 
 
Given a Type III/II fuzzy system with a rule base of the 

form (3), the output can be calculated by taking the 
weighted average of consequents as follows: 
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For normal, complete and consistent triangular membership 
function, as shown in Figure 1, y can be rewritten as 
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where jjj N
j

i
j

i
jj eeee LL <<<< +11 . From Figure 1, we 

define ( )jA
xji

j
µ  for xj ∈ [ 11 , +− jj i

j
i
j ee ] as follows: 
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We also assume (see Figure 1) that if xj ∈ [ 11, +− jj i
j

i
j ee ], 
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Figure 1 Triangular membership functions. 

The next lemma is derived based on Definition 6 of the 
sum/difference of fuzzy systems. Although the definition is 



quite general, we are interested in Type II/III fuzzy 
systems. In particular, we are interested in the parallel 
combination of systems with input x defined by the same 
fuzzy sets 

nii K1A , ij = 1,…,Nj, j = 1,…,n. 
Lemma 1: Consider the sum or difference of two Type 
III/II fuzzy systems f1 and f2 with the following rule bases 
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then the parallel combination f1 ± f2 is equivalent to a 
single fuzzy system with inputs x ⊂ 

nii K1A  and a rule base 
given by 
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Proof: Using (8), we obtain 
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• 
Next, we introduce the equivalent fuzzy system for a 

cascade of two fuzzy systems. 
Lemma 2: Given Type III/II fuzzy systems f1 and f2 with 
rule bases 
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(i) The system f2 has the property  
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Then the cascade of f1 and f2 is equivalent to a single fuzzy 
system with fuzzy sets 1

...1 niiA  and rule base 
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Proof: Using (8), the output of f2 can be written as 
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Expanding the last summation and using (10) gives 
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Expanding the last summation in (17) and using (10) and 
(14), we have 
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Repeat the last step to obtain 
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Using (9), we have 
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Substituting (20) into (19), we obtain 
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We rearrange (20) as follows 
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Expanding the last term in (22), we have 
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The expression (23) reduces to 
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Figure 2 Geometric representation of Theorem 1. 

 

We now introduce our new stability criterion for 
discrete Type III/II dynamic fuzzy systems using 
arguments similar to those of Lyapunov stability theory 
[14]. 
Theorem 1: Consider the discrete Type III/II dynamic 
fuzzy system f and the fuzzy Lyapunov function candidate 
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where ij = 1,…,Nj −1, lj = 0, 1, j = 1,…,n, then f is stable 
in the sense of Lyapunov. 
2. If ∃ 
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where ij = 1,…,Nj −1, lj = 0, 1, j = 1,…,n, then f is 
asymptotically stable. 
Proof: From Figure 3 and using Lemma 2, the cascade of 
the fuzzy system f and the fuzzy function V(x(k)) yields an 
equivalent set of fuzzy systems ( )
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Then, using Lemma 1, ( )
nppkV K1

)(x∆  takes the form 
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Figure 3 Calculating ∆V(x(k)) for the fuzzy system f. 

 

Since )(...1 xnii
jf  are affine functions defined by (4), 

conditions (28) and (29) are sufficient for (31) to be 
negative semi-definite and negative definite, respectively. 
Now, given 0>ε , choose ],0( ε∈r  such that 

{ } DrkkB n
r ⊂≤∈= )(|)( xRx  

Let ( ))(min kV
r

x
x =

=α . Then 0>α since it is the minimum 

of a positive continuous function over a compact set. Take 
),0( α∈β  and let ( ){ }β≤∈=Ωβ )(|)( kVBk r xx  

Then βΩ  is entirely inside rB  (see Figure 2). If ( ))(kV x∆  
is negative-semi-definite Type II, then  



( ) ( ) ( ) L,2,1,0)()1(0)( =β,≤≤+⇒≤∆ kkVkVkV xxx  
Since ( ))(kV x  is continuous , ( ) 0=0V , ∃ 0>δ  such that 

( ) β≤⇒δ≤ )()( kVk xx  
Hence, we have rBB ⊂Ω⊂ βδ  and 

rBkkkBk ∈+⇒Ω∈+⇒Ω∈⇒∈ ββδ )1()1()()( xxxx  

Therefore, ε≤<+⇒δ≤ rkk )1()( xx  and 0x =  is 
stable in the sense of Lyapunov. 

Similarly, we can show that 0x =  is stable in the sense 
of Lyapunov for the negative definite case. To establish 
asymptotic stability, we prove convergence to the origin.  
( ))(kV x  decreases continuously along the system 

trajectories and is lower bounded by zero ( ) 0)( ≥→ LkV x  
as k → ∞. 
We show that L is zero by contradiction. Let L > 0 and 
consider the set ( ){ }ckVkL ≤=Ω )(|)( xx  
Select a ball LdB Ω⊂ , then the trajectories of the system 
remain outside dB .  Let 

( ) 0)(sup)(
)(

<∆=−
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kVk
rkd

x
x

γ  

then the function 

( ) ( ) ( ) ( ) )1(()(
0

+−≤+= ∑
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kViVVkV
k

i
γ0x0x  

tends to −∞ as k → ∞.  This contradicts the lower 
boundedness of ( ))(kV x . • 
Example 1: Determine the stability of the system with the 
vertex conditions of Table 1. 

We first choose a fuzzy Lyapunov function candidate 
( ))(kV x  that has the same fuzzy sets as x(k), to satisfy the 

condition (22) and the vertex conditions of Table 2.  By 
Theorem 1, ( ))(kV x∆  is a fuzzy system that has the same 
fuzzy sets as x(k) and the vertex conditions of Table 3. We 
next select the set of constants 0

21
>iiC , i1 = 1,2,3, i2 = 

1,2,3, by solving a set of inequalities that guarantee 
( ))(kV x∆  is a negative-definite function.  A solution exists 

(Table 4) and the system is asymptotically stable.  ( ))(kV x  
and its contours are shown in Figure 5 and Figure 5 
respectively.  ( ))(kV x∆  is shown in Figure 6.  The 
simulation results of Figure 7 confirm the system’s stability 
since the trajectories of the system converge to the origin 
for all initial conditions tested. 
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Table 2 Vertex conditions of ( ))(kV x  fuzzy system. 
1
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Table 3 Vertex conditions of ( ))(kV x∆ . 
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Table 4 Vertex conditions of ( ))(kV x  fuzzy system. 
1
1e  2

1e  3
1e   

-1 0 1 
1
2e  -1 41.20 18.00 22.00 
2
2e  0 23.20 0 4.00 
3
2e  1 29.20 6.00 10.00 

 
Remark 1:  We can check for the existence of the set of 
constants 

21iiC  by solving a linear programming feasibility 
problem using MATLAB, Maple, or Lingo. 
Remark 2: No common Lyapunov function exists because 
the system’s consequent matrices in Table 1 are not all 
stable (Lemma 21.1, [12]). 
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Figure 4 The function ( ))(kV x . 
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Figure 5 The contours of ( ))(kV x . 
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Figure 6 The function ( ))(kV x∆ . 

-1 0 1
-1

0

1

x
1

x 2

x(0)=[-1 0.5]'
x(0)=[0.5 -1]'
x(0)=[-0.5 -1]'

 
Figure 7 Trajectories of the system of Example 1. 

IV. Conclusion 
This paper introduces a new approach for the stability 

analysis of discrete Sugeno Types III/II fuzzy systems 
using fuzzy definite functions. We show that if a fuzzy 
positive definite function has fuzzy negative definite 
changes along the trajectories of a discrete Type III/II 
dynamic fuzzy system, then the system is asymptotically 
stable.  Similarly, we derive conditions for stability in the 
sense of Lyapunov.  The main contribution of this work is 
that it eliminates the difficult condition of a common 
Lyapunov function.  In addition, it simultaneously solves 
the stability problem for Type II and Type III systems. 

Future work will extend these results to continuous Type 
III/II fuzzy systems and to forced systems. 
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