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Abstract—In this paper, we study the invariance of the Since global absolute stability does not generally hold,
convex hull of an invariant set for a class of nonlinear systems another trend in the development of absolute stability theory
safisfying a generalized sector condition. The generalized s the study of absolute stability within a finite region (see,
sector is bounded by two symmetric functions which are
convex/concave in the right half plane. In a recent paper, we e.g.,'['4], [8], 9], [13], [17]). In the case th_at global absplute
showed that, for this class of systems, the convex hull of a Stability does not hold, we need to restrict our attention to
group of invariant level sets (ellipsoids) of a group of quadratic a finite region in the state space, where a sector that is
Lyapunov functions is invariant. This paper shows that the narrower than the global sector can be used to bound the
convex hull of a general invariant set needn't be invariant, sniinear functiony(u, t). Fig. 2 plots a sector between
and that the convex hull of a contractively invariant set is, . . v ’ . .
however, invariant. two straight linesv = kju andv = {cQu. This ;ector is .

a global bound for one of the nonlinear functions but is
only a local bound for the other one, which can only be

l. INTRODUCTION globally bounded byy = kju and v = 0. In the finite
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Convexity is often a desired property for a function or
a set. In stability analysis, we usually use invariant sets v
to estimate the domain of attraction and are interested in *| vk u ‘
knowing if an invariant set is convex, or if the convex hull st , ]
of an invariant set is still invariant. In this paper, we study , N |
the convexity of invariant sets for a nonlinear system ﬁ//( .

@ = Az + By(Fz,t), 1) | /g )

ok 4

wherey (-, t) is an uncertain or irregular nonlinear function | -/
which satisfies a certain sector condition. A block diagram I ===l g
for such a system is plotted in Fig. 1. The absolute stability -2 / 1

-3k / 4
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Fig. 2. The classical linear sector.

Fig. 1. A system with a nonlinear component . - . .
9 Y P region, a guaranteed stability region can then be obtained

of the Lure systems in Fig. 1 is a classical problenpy using some invariant level set of a quadratic or Lur'e
in control theory. It has been studied extensively in thtt.*ype Lyapunov functl.on (seg, e.g. [9], [13].)
nonlinear systems and control literature (see, e.g., [1], [8£, In an effort to give a tighter bound for the uncer-

[12], [14], [15], [17], [18] and the references therein), and i ain(irregular nonlinear compqnent, we rece_ntly (i_n [5]) gen-
still attracting tremendous attention (see [2], [3], [4], [10]’erallzed the gector §uch that |Fs boungiary is d_eflned by two
[11], [13], [16] for a sample of recent literature). odd symmetric nonlinear functions which are either concave

Traditionally, the uncertain nonlinear function is assume@" convex over[0, co]. For simplicity, these functions are
to be inside a sector bounded by two straight lines. Th%ald to be concave or convex. We first studied the absolutely

common tools for absolute stability under such a sectdontractively invariant (ACI) ellipsoids and developed a

condition include circle criterion and Popov criterion, which€cessary and sufficient condition under which an ellipsoid

give sufficient conditions for global stability over the sector!S AC!I- We then showed that the convex hull of a group of

ACI ellipsoids is also ACI.
0-78D 8B 3BpMOBHN7HE0 20T ghahCTMS-0324329. With the results of [5], we are tempted to ask3bpe
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1) +(u) is continuous, piecewise differentiablg(0) = 0

and %‘ > 0.

. 2) P(u) is odd symmetric, i.eq)(—u) = —(u).

A function v (u) satisfying the above assumption is said
to be concaveif it is concave foru > 0. That is, for any
Uy, Uz > Oy

0 Y(yur+(1—=y)uz) = v (u1) +(1=7)¢(u2) Vv € [0,1].

——= A function ¢ (u) satisfying the above assumption is said
-2t , . to be convexif it is convex forw > 0. That is, for any
, u, ug >0,

/ ] P(yur+(1=7)uz) < y(ur)+(1=7)¢(uz) Vv €[0,1].
5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ These definitions are made for simplicity. It should be

understood that by odd symmetry a concave function is
Fig. 3. The generalized sector. convex foru < 0 and a convex function is concave for
u < 0. Fig. 4 illustrates a few concave functions.

guestion: is the convex hull of an arbitrary ACI set also @
ACI? This paper will give a positive answer to this ques-
tion. It then follows that for a sector bounded by two .
concave/convex functions, the largest ACI set is convex.
An implication of this result over [5] is that, if a level set,
not necessarily an ellipsoid as resulting from a quadratic
Lyapunov function, is contractively invariant and hence an
estimate of the domain of attraction, then its convex hull is °©
also an estimate of the domain of attraction.

In an attempt to further generalize the results, we would -,
like to know if we can replace ACI with Al (absolutely
invariant) and still get a positive answer. However, we will .
use an example to show that the convex hull of an arbitrary
invariant set needn’t be invariant even for a system with

convex nonlinearity. -3,

This paper is organized as follows. Section Il gives a
review of the definitions of the generalized sector and
absolute invariance. Section Ill presents some results on
convex analysis. Section IV analyzes the invariance of the
convex hull of an invariant set and Section V contains some
concluding remarks.

W(v)

Fig. 4. A class of concave functions.

Here is a simple fact about concave and convex functions.
Fact 1: Let ¢ (u) be a concave (convex) function. If
we draw a straight line that is tangential t(u) at
(ug, ¥ (ug)),ug > 0, then the straight line is above (below)

Notation: ¥(u) for all uw > 0.
- Fortwointegers:;, ks, k1 < k2, we denotel [k, ko] = B. The generalized sector and absolute stability

klakl +1a"'ak2-

- For a setS, we use c§S} to denote the convex hull
of S.

- For asetS and a real numbet, oS = {ax : = € S}.

- For a setS, 9S is the boundary of5.

Consider the system

i@ = Az + Bi(Fz,t), )

whered € R"*" B e R"*! and F € R*". The domain
of attraction of the origin for system (2) is an invariant set

and a traditional way to estimate it is to use invariant sets

Il. A GENERALIZED SECTOR AND ABSOLUTE that contain the origin in its interior.
INVARIANCE Let us first give the definition for the invariance of a set.

Definition 1: Consider system (2),

A. Concave functions and convex functions

We first give a formal definition of some functions that

a. A setS is invariant if all the trajectories starting from

it will stay inside it.

we will use to define the boundary of the generalized sectorb. Let S be a compact set containing the origin in its

Given a scalar functiom = t(u). Assume that

interior andkS c S for all k € [0,1]. We say that§36



is contractively invariant if for every € (0, 1] and for By Fact 2, we see that the absolute (contractive) in-
everyx € 0kS, 4 points strictly inward oft.S. variance of a convex set is equivalent to its (contractive)
In the above definition of invariance, the nonlinear funcinvariance under bothy; (u) and ) (u).
tion ¢(u,t) in system (2) is assumed to be known. In Although we may use two arbitrary nonlinear functions
practice, there always exists some degree of uncertainfyy and v, to define a generalized sector, concave and
about a nonlinear component. In view of this, we would likeconvex functions appear to be simpler and easier to handle,
to study the invariance of a set for a class of nonlinear fun@and may lead to better properties. For example, it was
tions, for example, a class af(u,t) € co{y1(u),v2(u)}, shown in [5] that the invariance of an ellipsoid under a
where v (u) and ¢»(u) are known functions. On the concave/ convex nonlinearity is equivalent to some linear
other hand, some nonlinear functigr{u,t) could be very matrix inequalities. Moreover, the convex hull of a group
irregular and we would like to bound it with simpler of contractively invariant ellipsoids is also contractively
functions v, (u) and v, (u). These problems arise from invariant. With two general nonlinear functiogs and/s,
the same situations that motivated the problem formulatioih is hard to expect other properties beyond Fact 2. On the
of absolute stability, where the nonlinear functigtiu,¢)  other hand, many commonly encountered nonlinearities are
is bounded by two linear functiong;(u) = «u and either concave or convex, for example, the tangent function,
Y9 (u) = Pu. If the system is not globally absolutely stablethe saturation function and the deadzone function.
over a linear sectojw, 3], we have to consider the stability In view of this, we will focus on the invariance of a set
on a finite region of the state space, over which a paitnder a concave or convex function.
of nonlinear functiong); andy may better describe the
property of the nonlinear component. In view of this, we Ill. SOME FACTS ABOUT CONVEX SETS
introduced the generalized sector in [5]. For easy reference, we collect in this section some results
Following the definition of absolute stability initiated from convex analysis (e.g., see [7]).
by Lure, we define the generalized sector and absolute Let S be a compact convex set. We say thate S is an
invariance as follows. extreme point of5 if it cannot be represented as the convex

Definition 2: Given functionsy (u) and,(u), each of combination of other points ii$, i.e.,

which is concave or convex. A functiop(u,t), piecewise N N
continuous int and locally Lipschitz inu, is said to satisfy Zo = Z%% Z% =1, >0, ;€8
a generalized sector condition if i=1 i=1

— I1 =Tg =:'*=TN = 9.
¥(u,t) € co{thr(u),a(u)} Vu,t €R. Ah | / . - |
We use céi1,12} to denote the generalized sector, i.e.5g i yperpanee 'S & supporting hyperpiane 2§ <
the sgt of functions that satisfy the above generalized sector dr<1 Vzebs,
condition.

A set S is said to be absolutely invariant (Al) over thelf ¢’z = 1 is a supporting hyperplane a, then the vector
sector cdu, 1o} if it is invariant for (2) under all the cis normal toS atxo, i.e.,c/(z —zo) <0 forallz € S.
possibley (u, t) satisfying the generalized sector condition. The intersection of a supporting hyperplane with the set

A set S is said to be absolutely contractively invariantS is called an exposed face 6t A point z, is an extreme
(ACI) over the sector cfayy, v} if it is contractively point of S if and only if it is an extreme point of any
invariant for (2) under all the possiblg¢(u,t) satisfying €exposed face containing it. This implies thatzif € S is

cxo = 1.

the generalized sector condition. not an extreme point, then it is not an extreme point of any
We see that ifS is ACI, then any trajectory starting from exposed face.
it will converge to the origin under all)(u,t) satisfying If S is a compact convex set containing the origin in its

the generalized sector condition. HenSeis an absolute interior, a Minkowski function can be defined as
stability region. Let us next state a simple fact. .

Facty2: given a convex sef and a CFI)ass of functions V(z) i=min{fa > 0: = € as}. 3)
¥i(u),i € I[1, N]. Suppose that for eache I[1,N], S'is  This V(z) will be used as a Lyapunov function to study the
(contractively) invariant for stability inside the seb.

. If 9S is “smooth” at xg, then there exists a unique

* = Az + Byi(Fz). supporting hyperplan€z = 1 atxy. In this case, the vector
Let ¢(u, t) be a function such that(u,t) € co{v;(u), i € ¢ gives the direction of the derivative df (x), i.e., the
I[1,N]} for all u € R andt € R, thenS is (contractively) derivative of V(z) at z, equals tokc for somek > 0 .

invariant for If S is not smooth atry, then the supporting hyperplane
iz = Ax + By(Fuz,t). is not unique and the corresponding vecis form a

This fact follows directly from the definition of the convex set. In this case, each of ttie gives the direction
invariance and the convexity of. Here;(u) andv(u,t)  for a subderivative at,. The (contractive) invariance can
can be any nonlinear functions. be equivalently defined in terms of its subderivativeg.3For
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xo € S, denote the vectarsuch that’x = 1 is a supporting
hyperplane at, asc(z). ThenS is contractively invariant
if and only if 2or
d(x0)(Azg + BY(Fxp)) <0 Vo€ S\ {0}, ol
and S is invariant if and only if
d(x0)(Azg + BY(Fxp)) <0 Vo € dS. )

Here ¢(z() represents any vector such théfzg)z = 1 is ol
a supporting hyperplane at.

IV. INVARIANCE OF THE CONVEX HULL OF AN el
INVARIANT SET

-30 L L L L L I I

Consider the system ~40 -30 -20 -10 0 10 20 30 40

i = Az + By(Fx). ()

Fig. 5. A nonconvex domain of attraction
We assume thap(-) is concave. Ify)(-) is convex, we can
replacey (u) with kou — 11 (u), wherek is a constant and

11 (u) is concave, and obtain toward (0,5) and the other two go from infinity toward
. (Oa _5)
& = (A+koBE)a — By (Fu). ®) It is obvious that this domain of attraction is not convex.

It is easy to see that if we have a group of Contracti\/e|9—hen what about its convex hull? Is it invariant? The convex
invariant sets, then their union is also contractively invarianfiull of the domain of attraction is a strip, whose boundary is
Hence an invariant set needn’'t be convex. What we a,pjotted as dash-dotted lines in Flg 5. We chose an arbitrary
interested in is the convex hull of an invariant set. In [5]initial state (marked with ¥”) inside the strip but outside
we showed that the convex hull of a group of contractivelyhe domain of attraction, the trajectory goes out of this strip
invariant ellipsoids is contractively invariant. In this paperand diverges.
we would like to extend this result of [5] to a more This gives us a counter example for the invariance of
general invariant set. It turns out that we have quite differertbe convex hull of an invariant set. However, for the convex
conclusions for the convex hull of an invariant set and thBull of a contractively invariant set, we have a quite different
convex hull of a contractively invariant set. We will discussconclusion, as will be shown next.

these two situations separately. B. The contractive invariance

A. The general invariance In [5], we have shown that the convex hull of a group

We know that the domain of attraction is an invariant sef contractively invariant ellipsoids is also invariant. In
It is desirable that the domain of attraction is a convex sewhat follows, we will generalize this result to an arbitrary
We may have a reason to expect this for a class of systerg@ntractively invariant set.
where the nonlinearity is convex/concave, e.g., system (4). Without loss of generality, assume thép/dul,—o = 1.
As we have shown in [6], for the special case where LetS be acompact set containing the origin in its interior.
is the standard saturation function, 4 € R?*? and its Suppose that is contractively invariant for (4). Then by
eigenvalues have positive real part’ then the domain &eﬁnition 1,]€S is Contractively invariant for alk € (0, 1}
attraction is convex and its boundary is the unique limitnsidekS, ask approaches, the system approximates the
cycle. However, this result cannot even be extended {ear system
all the second order systems, especially whetas two & = Az + BFx. (6)

eigenvalues of different signs. For example, we have gy aking the limit, it is easy to see thas is invariant for

system . the linear system (6), and hengeis also invariant for the
& = Az + Bsa(F), linear system.
where safu) = sign(u) min{1, [u|} and If ¥(u) = u for an interval [0, ug],up > 0, then for
sufficiently smallk, the system is exactly linear insides.
A= [ 0 1 ] B = [ 0 ] F=[-2 -1]. Hence, the contractive invariance of a setimplies its
1 0J 5] contractive invariance for the linear system (6).

The domain of attraction is not bounded, as shown in Fig. 5, The following is the main result of the paper.

where its boundary is plotted with solid lines. The boundary Theorem 1:

of the domain of attraction is generated by simulation. It is a) If S is contractively invariant for (4), then ¢45} is
composed of four trajectories, two of them go from infinity invariant for allk € (0, 1]. 438



b) If S is contractively invariant for both (4) and (6), then{z1, 2, -

its convex hull is contractively invariant for (4).

Proof:
a) We will show that for allz on the boundary of ¢},
4 points inward ofS, i.e.,

d(z)(Az + By(Fz)) <0 Yz € dco{S},

whered/(z) is any subderivative oV (z) as defined in (3).

The invariance of cpkS} for k£ € (0, 1] follows from the
same arguments.

Here we only need to considerc dco{S} \ 9S. Since
for thosex € 05, & points inward ofS implies that it points
inward of cdS}.

Now, considerz, € dco{S} \ 0S. Let /z = 1 be a

supporting hyperplane aty. We need to prove that
¢ (Axg + By(Fxg)) < 0. (7

Sincex ¢ 09, it is not an extreme point of ¢&'}. Hence,

this supporting hyperplane must also touch some points
0S. In other words¢’z = 1 is also a supporting hyperplane

--,xn}, others are not. For thosg ¢ {z;: i€
I[1,N]}, we must haveF'y; = 0 andy; € cofx; : i €
I[1, N]}. It follows from (10) thatc’(Ay; + BFy;) < 0.
Sincey(0) = 0, for thosey;’s such thatF'y; = 0, we have

(Ay; + By(Fy;)) = ¢'(Ay; + BFy;) < 0.
In summary, we have

d(Ay; + ByY(Fy;)) <0 VjelI[l,Ny]. (12)

Because of this, we can work on the sefgQys, -+, yn, }
instead of cgxy,zs,---,2n}. SinceFy; > 0 for all j €

I[1, Nq], same arguments can be used to prove (7) by using
(12) instead of (8).

b) The procedure of the proof is very similar to the proof for
a). The only difference is to replace” in the inequalities
with “ < ”. This is guaranteed by the additional condition
that S is contractively invariant for the linear system.
&Fcause of this, instead of (9), we have

d(Azj+ BFzj) <0 Vjel[l,N].

at some points irdS. Moreover,xy can be expressed as a

convex combination ofy,zs,---,xn € 95 andcz; = 1
for all j € I[1, N]. This means that there exist > 0, j €
I[1, N], such that

N N
0= YT Y =1
j=1 j=1
Since S is contractively invariant, we have

d(Akz; + By(kFxj)) <0, k€ (0,1].

(8)
By taking & — 0, and noting thatdy/du|,_, = 1, we
obtain

j € I[1, NJ,

d(Az; + BFx;) <0 VjelI[l,N]. 9)
Hence, for allz € co{xy,z2, -+, 2N},
d(Az + BFz) <0. (10)

Assume thatF'zy > 0. (If Fzg < 0, then by the

symmetry ofiy(-), we can use similar argument to prove

(7).
First, we suppose thdtz; > 0 for all j € I[1, N]. In this
case,Fxz > 0 for all z € cofxy, 29, -, xn}. If /B >0,

This leads to «” for all the remaining inequalities. =

We note that the statement of a) is stronger than the
simple invariance of. From Theorem 1, we can conclude
that the largest contractively invariant set for system (4) is
convex. One may be tempted to extend this result to systems
with more than one nonlinear components, i.e., to the case
where)(-) is a vector function and3 has more than one
column. However, it is difficult to see such a possibility
from the proof of Theorem 1, which relies on the fact that
for a fixedc, the functiond’ (Az+ By (Fx)) is either convex
or concave ine. For the case thap(-) is a vector function,
even if all of the components af(-) are concave, their
linear combinationc’ By)(-) could be neither concave nor
convex.

V. CONCLUSIONS

This paper studies the invariance of the convex hull of
an invariant set for a class of nonlinear systems satisfying
a general sector bound. We focused on the invariance of a
set for a system with concave nonlinearities. We used an
example to show that the convex hull of an invariant set
needn’t be invariant but the convex hull of a contractively

then by the assumption thatz, > 0 and by the concavity invariant set is invariant

of the functiony (), we havey(F'zy) < Fzq, and hence,
d(Azg + BY(Fzo)) < /(Azo + BFzo) <0, (11)

If /B < 0, then also by the concavity of)(-),
dAxr + JBy(Fzr) is a convex function forz €
co{xy,z2,---,zN}. Hence we also have (7) by (8).

If Fz; > 0 does not hold for alj € I[1, N], then we can
get an intersection of the setfa, 2, -,z N} With the

half spaceF'z > 0. This intersection is also a polygon and

can be denoted as €@, 42, -, yn, - Since Fzg > 0,
we havez, € co{yi,y2, -+, yn, }. Somey;’s belong to
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