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Abstract— Thermodynamics is a physical branch of science not restrict the ability to convert work into heat or heat
that governs the thermal behavior of dynamical systems into work, except that energy must be conserved in the
as simple as refrigerators to as complex as our expanding process. The second law of thermodynamics asserts that
universe. The development of thermodynamics spawned out while the system energy is always conserved, it will be
of steam tables and venous bleeding with many scientists degraded to a point where it cannot produce any useful
and engineers expressing concerns about the completenessyork. Hence, it is impossible to extract work from heat
and clarity of its mathematical exposition over its tortuous  \ithout at the same time discarding some heat giving rise
history. In this paper we develop a system-theoretic founda- 5 3 monotonically increasing quantity known estropy
tion for thermodynamics using a large-scale dynamical sys- \ypjle energy describes the state of a dynamical system
temts perspectlvef.l Spec'f'ga:ly’ usmglcomptﬁrtmer]tal dylnamlcal entropy refers to changes in th&@tus quaf the system and
system energy tiow moaels, we place € universal energy . :
conservation, energy equipartition, temperature equipatrtition, Iesnaerrggaiiu;e g;rr;naorlneigglla(r e?:Z%S)e rt?;nds%ren?éntigﬁnﬁrgm%ﬂgd

and entropy nonconservation laws of thermodynamics on tate (f ¢ ther. Si ih t t toni
a system-theoretic foundation. Furthermore, we introduce State (form) to another. Since the system entropy monotoni-

a new and dual notion to entropy; namely, ectropy as a Cally increases, the entropy of the dynamical system tends to
measure of the tendency of a dynamical system to do useful & Maximum and thus time, as determined by system entropy
work and show that conservation of energy in an isolated increase [1-3], flows on in one direction only. Even though
thermodynamic system necessarily leads to nonconservation €ntropy is a physical property of matter which is not directly
of ectropy and entropy. In addition, using the system ectropy Observable, it permeates the whole of nature, regulating
as a Lyapunov function candidate we show that our large-scale the arrow of time and responsible for the enfeeblement
thermodynamic energy flow model has convergent trajectories and eventual demise of the universe. While the laws of
to Lyapunov stable equilibria determined by the large-scale thermodynamics form the foundation to basic engineering
system initial subsystem energies. systems as well as nuclear explosions, cosmology, and our
expanding universe, many engineers and scientists have
expressed concerns about the completeness and clarity of
the different expositions of thermodynamics over its long
and flexuous history, see [4-12].

Energy is a concept that underlies our understanding of Since the specific motion of every molecule of a ther-
all physical phenomena and is a measure of the ability of @odynamic system is impossible to predictnacroscopic
dynamical system to produce changes (motion) in its OWfodel of the system is typically used with appropriate
system state as well as changes in the system statesp@icroscopic states which include pressure, volume, temper-
its surroundings. Thermodynamics is a physical branch @fture, internal energy, and entropy, among others. However,
science that deals with laws governing energy flow from ong thermodynamically consistent energy flow model should
body to another and energy transformations from one forgnsyre that the system energy can be modelled by a dif-
to another. These energy flow laws are captured by the fufision (conservation) equation in the form ofparabolic
damental principles known as the first and second laws @frtial differential equation. These systems are infinite-
thermodynamics. The first law of thermodynamics gives gimensional and hence finite-dimensional approximations
precise formulation of the equivalence of heat and work angre of very high order giving rise to large-scale dynamical
states that among all system transformations, the net Systeffstems. Since energy is a fundamental concept in the
energy is conserved. Hence, energy cannot be created oubflysis of large-scale dynamical systems and heat (energy)
nothing and cannot be destroyed, merely transferred fro a” fundamental concept of thermodynamics involving
one form to another. The law of conservation of energyhe capacity of hot bodies (more energetic subsystems) to
is not a mathematical truth, but rather the_consequentfﬁoduce work, thermodynamics is a theory of large-scale
of an immeasurable culmination of observations over th@ynamical systems. High dimensional dynamical systems
chronicle of our civilization and is a fundamentatiom of can arise from both macroscopic andcroscopicpoints
the science of heat. The first law does not tell us Wheth@f view. Microscopic thermodynamic models can have the
any particular process can actually occur; that is, it do&grm of a distributed parameter model or a large-scale sys-

em model comprised of a large number of interconnected
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the evolution of global quantities (e.g., energy, temperaarise from second-moment analysis of state space systems
ture, entropy, etc.), microscopic models are based upamder the assumption of weak coupling. Even though these
the modeling of local quantities that describe the atomsesults can be potentially applicable to linear large-scale
and molecules that make up the system, and their speedgnamical systems with weak coupling, such connections
energies, masses, angular momenta, behavior during colire not explored in [23]. With the notable exception of [34],
sions, etc. The mathematical formulations based on thesene of the aforementioned SEA-related works address the
guantities form the basis oftatistical mechanicsSince second law of thermodynamics involving entropy notions
microscopic details are obscured on the macroscopic levéh, the energy flow between subsystems.

it is appropriate to view a microscopic model as an inherent 1, goal of the present paper is directed toward placing
model of uncertainty. However, for a thermodynamic systearmodynamics on a system-theoretic foundation. Specif-
the macroscopic and microscopic quantities are related singe)y “since thermodynamic models are concerned with
thhey are S'm}l?r']y dlfffet%ent oeys of describing th(;".t.s""m‘aenergy flow among subsystems, we develop a nonlinear
phenomena. Thus, It theé giobal macroscopic quantiies Calymparimental dynamical system model that is character-
be expressed in terms of the local microscopic quantitiegqq' by energy conservation laws capturing the exchange
lthe laws Off thtertm?dylnamlc?] could 1?he d_estcrlbed in et energy between coupled macroscopic subsystems. Fur-
e O e e ointe of vimer lang (ihermore, using graph theoretic notions we state two ther-
€ MICroScopic and mMacroscopic points of VIew 1éad 16,,4qynamic axioms consistent with the zeroth and second

diffusion being a natural consequence of dimensionalityy, < o thermodynamics that ensure that our large-scale

?”?’tﬂe{‘fﬁv uncertainty or; t_het migrostct(r)]picd!fefve! despite t{Qnamical system model gives rise to a thermodynamically
act that there 1S no uncertainty about the diffusion processnsistent energy flow model. Specifically, using a large-

per se. scale dynamical systems theory perspective for thermody-

In the last half of the 20th century thermodynamicsiamics, we show that our compartmental dynamical system
was re-formulated as a global nonlinear field theory wittmodel leads to a precise formulation of the equivalence
the ultimate objective to determine the independent fieldetween work energy and heat in a large-scale dynamical
variables of this theory [13—15]. This aspect of thermodysystem. Next, we give a deterministic definition of entropy
namics, which became known eational thermodynamigs for a large-scale dynamical system that is consistent with the
was predicated on an entirely new axiomatic approach. Asdaassical thermodynamic definition of entropy and show that
result of this approach, modern continuum thermodynamids satisfies a Clausius-type inequality leading to the law of
was developed using theories from elastic materials, viscoestropy nonconservation. Furthermore, we introduceea
materials, and materials with memory [16—19]. Connectionand dual notion to entropy; namebgtropy as a measure of
between thermodynamics and system theory as well as itlte tendency of a large-scale dynamical system to do useful
formation theory were also explored [20-27]. For an excelwork and show that conservation of energy in an isolated
lent exposition of these different facets of thermodynamicthermodynamically consistent system necessarily leads to
see [28]. Thermodynamic principles have also been repeatenconservation of ectropy and entropy. Then, using the
edly used in coupled mechanical systems to arrive at energystem ectropy as a Lyapunov function candidate we show
flow models with modal energy playing the role of tem-that our thermodynamically consistent large-scale nonlinear
perature. Specifically, in an attempt to approximate highdynamical system model possesses a continuum of equilib-
dimensional dynamics of large-scale structural (oscillatoryja and issemistablethat is, it has convergent subsystem
systems with a low-dimensional diffusive (non-oscillatory)energies to Lyapunov stable energy equilibria determined by
dynamical model, structural dynamicists have developetthe large-scale system initial subsystem energies. In addi-
thermodynamic energy flow models using stochastic energipn, we show that the steady-state distribution of the large-
flow techniques. In particular, statistical energy analysiscale system energies is uniform leading to system energy
(SEA) predicated on averaging system states over the statiguipartitioning corresponding to a minimum ectropy and a
tics of the uncertain system parameters has been extensiveigximum entropy equilibrium state. In the case where the
developed for mechanical and acoustic vibration problemsibsystem energies are proportional to subsystem tempera-
[29-34]. Thermodynamic models are derived from largetures, we show that our dynamical system model leads to
scale dynamical systems of discrete subsystems involvitgmperature equipartition wherein all the system energy is
stored energy flow among subsystems based on the asnsferred into heat at a uniform temperature. Furthermore,
sumption of weak subsystem coupling or identical subsysve show that our system-theoretic definition of entropy and
tems. However, the ability of SEA to predict the dynamiche newly proposed notion of ectropy are consistent with
behavior of a complex large-scale dynamical system iBoltzmann’s kinetic theory of gases involving anbody
terms of pairwise subsystem interactions is severely limitetheory of ideal gases divided by diathermal walls.

by the coupling strength of the remaining Subsystems on e contents of the paper are as follows. In Section Il

the subsystem pair. Hence, it is not surprising that SEfye egtaplish notation, definitions, and review some basic
energy flow predictions for large-scale systems with strong.g it on nonnegative and compartmental dynamical sys-
coupling can be erroneous. Alternatively, a deterministigs e “In Section IIl we use a large-scale dynamical sys-

thermodynamically motivated energy flow modeling foriamg’ perspective to provide a system-theoretic foundation
structural systems is addressed in [35], [36]. This approaqgr thgrmo%ynamics.pSpecificaIIyy we develop a nonlinear
exploits energy flow models in terms of thermodynami [

energy ('-ed' ab|l|tyt t? d_ltss(,jlp?te heal? asbopptosed to Sltpr%‘gnservation laws that is consistent with the basic thermo-
energy and 15 not fimited o weak subsystem COUDiNGyynamic principles. Then we turn our attention to stability

Finally, a stochastic energy flow compartmental model (i.eanq” convergence. In particular, using the total subsystem
a model characterized by conservation laws) predicated Qergies as a candidate system energy storage function,
averaging system states over the statistics of stochasfie show that our thermodynamic system is lossless and
system exogenous disturbances is developed in [23]. TR&ce "can deliver to its surroundings all of its stored

basic result demonstrates how linear compartmental mod Gbsystem energies and can store all of the work done to

mpartmental dynamical model characterized by energy
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all of its subsystems. Next, using the system ectropy as(eespectivelypositivg if W; ;) > 0 (respectivelyW; ;) >
Lyapunov function candidate we show that the propose@), i,j =1,...,q.
thermodynamic model is semistable with & uniform energy e fo|10wing definition introduces the notion of essen-

distribution corresponding to a minimum ectropy and g : :
maximum entropy. In Section IV we generalize the result&l"s"’lIIy nonnegative functions [24], [38].

of Section Il to the case where the subsystem energies inDefinition 2.2: Let w = [wy,---,w,]" : V — RY, where
large-scale dynamical system model are proportional to sul~ js an open subset dR? that contains@i. Thenw is

system temperatures and arrive at temperature equipartitiggsentially nonnegativéé w;(z) > 0 for all i = 1,...,q
for the proposed thermodynamic model. Furthermore, W§ e " T

q - ) X
provide a kinetic theory interpretation of the steady-stat Q%Z OﬁeIE{OS&UCh thatz; = 0, wherez; denotes theith
expressions for entropy and ectropy. In Section V, we spe- P o
cialize the results of Section Ill to thermodynamic systems Note that ifw(z) = Wz, whereW € R4, thenw(-)
with linear energy exchange. In Section VI we extend thés essentially nonnegative if and onlyWif is an essentially
results of Section Ill to continuous thermodynamic system@onnegative matrix.
wherein the subsystems are uniformly distributed oven an - : q
dimensional (not necessarily Euclidian) space. Specificagﬁ;mpos{“on .2'1 ( [24]’.[38])' SupposelR, V. Then
we develop a nonlinear distributed parameter model wher is an invariant set with respect to
the system energy is modeled by a diffusion (conservation) coN _
equation in the form of a parabolic partial differential ) =w(z(t), z(to) =20, t=to, @)
equation. Energy equipartition and semistability are shown =q — . :
using the well-known Sobolev embedding theorems and tr’(}éhefe Z € Ry, if and only if w : ¥ — R? is essentially

notion of generalized (or weak) solutions. Finally, we dravponnegatlve.. N o _
conclusions in Section VII. The following corollary to Proposition 2.1 is immediate.
Corollary 2.1: Let W € R?*4, Then W is essentially
II. MATHEMATICAL PRELIMINARIES nonnegative if and only i£"* is nonnegative for alt > 0.

. . . . _— The following definition introduces several types of sta-
In this section we introduce notation, several deflnltlonsoi"ty for the nonnegativedynamical system (1).

and some key results needed for developing the main L ° )
results of this paper. LeR denote the set of real numbers, Definition 2.3: The equilibrium solutionz(¢) = z. of
R" denote the set of: x 1 column vectors,(-)T denote (1) is Lyapunov stablef, for every e > 0, there exists

. V! H q
transpose-)# denote group generalized inverse, and lef = 9(¢) >0 such that ifzg € Bs(z.) N R, thenz(t) €
I, or I denote then x n identity matrix. Forv € R?  B.(z.) "R, t > to. The equilibrium solutionz(t) = 2,
we write v >> 0 (respectively,y >> 0) to indicate that of (1) is semistablef it is Lyapunov stable and there exists
every component of is nonnegative (respectively, positive).§ > 0 such that ifz, € Bs(ze) N @‘i, then lim,_, . z(t)
In this case we say that is nonnegativeor positive exists and converges to a Lyapunov stable equilibrium point.
respectively. LetR} andRY denote the nonnegative andThe equilibrium solutionz(¢) = z. of (1) is asymptotically
positive orthants ofR?; that is, if v € RY, thenv € @3_ stable if it is LyapunOV Stit?]le and there exists > 0
andv € R% are equivalent, respectively, to >> 0 and Such that ifzy € Bs(z) N Ry, thenlim .o 2(t) = z.
v >> 0. Furthermore, le®S and S denote the boundary Finally, the equilibrium solutior(t) = = of (1) is globally
and the closure of the sé, respectively. Finally, we write asymggotlcally stabléf the previous statement holds for all
|| - || for the Euclidean vector nornj|- || for the operator Zo € R;.
e oo 18 a1 1 e Eohat e il recall ht 3 Aty ¢ R i semistabe
of ‘g/ atpm B-(a), a € R” (xs) > 0, for the open ball it and only if lim; .. e exists [23], [24 ¥vh|IeW S
centered at with radiuse, M > 0 (respectively) > 0)to  2Symptotically stabléf and only if lim; .o e = 0.
denote the fact that the Hermitian matiiX is nonnegative
(respectively, positive) definite, andt) — M ast — oo
to denote that:(¢) approaches the seit; that is, for each Ill. A SYSTEM-THEORETIC FOUNDATION FOR
e > 0 there existsT" > 0 such that digtz(¢), M) < ¢ THERMODYNAMICS

for all ¢ > T, where distp, M) = infocn|lp — 5. The fundamental and unifying concept in the analysis
The following definition introduces the notion df-, M- of complex (large-scale) dynfgmi%al systgms is the conycept
, essentially nonnegative, compartmental, and nonnegatiye energy. The energy of a state of a dynamical system
matrices. is the measure of its ability to produce changes (motion)
Definition 2.1 ( [23], [24], [37]): LetW € R?*7. W is in its own system state as well as changes in the system
a Z-matrix if W; ) <0,4,j=1,...,q,i# j. Wis an states of its surroundings. These changes occur as a direct
M-matrix (respectively, aonsingular)M/-matrix) if W isa consequence of the energy flow between different subsys-
Z-matrix and all the principal minors d¥ are nonnegative tems within the dynamical system. Since heat (energy) is a
(respectively, positive)lV is essentially nonnegativie —1W  fundamental concept of thermodynamics involving the ca-
is a Z-matrix; that is,IW; y > 0, 4,5 = 1,...,¢, % # j. pacity of hot bodies (more energetic subsystems) to produce
W is compartmentaif Vﬁf is essentially nonnegative and work, thermodynamics is a theory of large-scale dynamical
S Wi <0, j=1,..,q. Finally, W is nonnegative ~ systems. As in thermodynamic systems, dynamical systems
- can exhibit energy that becomes unavailable to do useful
1in this paper it is important to distinguish between a square nonnegatiork. This in turn contributes to an increase in system
(respectively, positive) matrix and a nonnegative-definite (respectivelgnNtropy; a measure of the tendency of a system to lose the
positive-definite) matrix. ability to do useful work. In this section we use a large-scale
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Note that (2) yields a conservation of energy equation and

of the large-scale dynamical syst&jn Equation (5) shows
that the rate of change of energy, or power, in the
subsystem is equal to the power input (heat flux) toithe
subsystem plus the energy (heat) flow to ittesubsystem
from all other subsystems minus the power dissipated from
the ith subsystem to the environment. Note that (3) or,
) _ _ equivalently, (6) is a statement of tHest law of ther-
dynamical systems perspective to provide a system-theoretitodynamicgor each of the subsystems with;(-), s;(-),
foundation for thermodynamics. 0ii(+), 1 # j, andoy;(-), i,j = 1,...,¢, playing the role of

To develop a system-theoretic foundation for thermody‘he ith subsystem internal energy, rate of heat supplied to
namics, consider the large-scale dynamical sygfeshown (or extracted from) theth subsystem, heat flow between
in Figure 1 involving energy exchange betwegmtercon- gubslysiegl? dt‘f]e to cpupllng,tand thetyattla °1f_ e?ert%y (h?at)

T ™ issipated to the environment, respectively. To further elu-
?::(;eﬂei%%S%Str?&?]'elg_)ggﬁvéRqEa_n)tiqcl% g]? rt;géeshhbesgsntggy cidate that (3) is essentially the statement of the principle of
let s; : R, — R denote the external power (heat flu’x)the conservation of energy let the total energy in the large-

. . —q
supplled 0 (or extracted from) thigh subsystem, letr;; : Scale dynamical systegbe given byl =e'V, V, e Ry,

| |
S11 G1 } o11(E) implies that the energy stored in thid subsystem is equal
l /‘—'\ | to the external energy supplied to (or extracted from) the
| ; ith subsystem plus the energy gained by itte subsys-
} | tem from all other subsystems due to subsystem coupling
| | minus the energy dissipated from tkth subsystem to the
! environment. Equivalently, (2) can be rewritten as
S; : \’—‘/ : oii(E) q
? |
1 ; i) = D [ou (V) = osu(Va®)] = oa(Va(t)
: 0i;(E) ai(E) ! g=1,7#1
} : +si(t), vsi(to) = vsio, t > to, %)
5 | G; iaff(E) or, in vector form,
1 / ) ! Vi(t) = w(Vi(t)) —d(Vi(t)) + S(t), Vi(te) = Vio,
|
| | t > to, (6)
|
3 \ ; where Vo = [vs10, - quo] , yielding a power balance
5¢ | T‘/ : 04q(E) equation that characterizes energy flow between subsystems
|
| I
|

Fig. 1. Large-scale dynamical syste¢h

R, — Ry, i#j.ij=1,..4q, denote the mstantaneousWhere el £ [1,..,1], and let the energy received by
rate of energy (heat) flow from try&h subsystem to théth the large-scale dynamlcal systeghover the time interval
subsystem, and let;; : R. — R, i =1,...,q, denote the [f1,?2] be given by@ £ f — d(Vs(t))]dt, where

instantaneous rate of energy (heat) d|SS|pat|on fromittne Vi(t), t > to, is the solution tO (6) Then, premultiplying
subsystem to the environment. Hence, earergy balance (3) by el and using the fact that"w (Vs) = 0, it follows

equation for theith subsystem yields that
vi(T) = %%) AU = Q, (7
where AU £ U(ty) — U(t;) denotes the variation in
+ Z / 0i;(Vs(t)) — 0j:(Vs(t))]dt energy of the large-scale dynamical systgmover the
=1, j#i time interval [t1,;]. This is a statement of the first law
T T of thermodynamics for the large-scale dynamical system
_/ 0 (Vi(t))dt +/ s;(t)dt, T >ty, (2) and gives a precise formulation of the equivalence between
to to variation in system internal energy and heat. It is important
. . to note that our large-scale dynamical system model does
or, equivalently, in vector form, not consider work done by the system on the environment
T T nor work done by the environment on the system. Hence,
_ _ Q@ can be interpreted physically as the amount of energy
Vo(T) Vlto) + /to w(Vs(t))dt /to d(Vs(1))dt that is received by the system in forms other than work.

T The extension of addressing work performed by and on the
+/ S(t)dt, T >ty (3) System can be easily handeled by including an additional

’ - state equation, coupled to the power balance equation (6),
involving volume states for each subsystem with exogenous
where Vi(t) £ [va(t),....,v5q®)]T, d(Vs(t)) £ pressure variables. Since this slight extension does not alter
(011 (Va(t))s ooy g (Ve ()], S(t ) é [51(t),..., sq(t)]T, any of the results of the paper, it is not considered here for

t > to, andw = [w1, ..., wy|T .Ri — RY is such that simplicity of exposition. .
If the total energy of the large-scale dynamical system

q — G at the initial and the final states is fixed, then it follows
Z loi;(Vs) —05:(V5)], Vs eRL. (4) from (7) that the variationd) of the energy supplied to the
G=1, i large-scale dynamical systefis zero; that is,6QQ = 0.
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This implies that during a transformation between two fixeghotential Vi;(—7') = 0 to a given statel(ty) =

end points the large-scale dynamical systémeceives a

0, it
follows from (9) that the large-scale dynamical systém

fixed amount of energy. In other words, for any two pathsan deliver to its surroundings all of its stored subsystem
connecting the initial and final states of the dynamicaénergies and can store all of the work done to all of its
systemG the amount of energy supplied to the system isubsystems. In the case whef@) = 0 it follows from (8)

the same.
If 0;(Vs) = 0,V, € R}, wheneverv,; = 0,i,j =
1,...,q, thenw(Vy) — d(V), V; € RY, is essentially non-

negative. The above constraint implies that if the energy
the jth subsystem o is zero, then this subsystem canno

and the fact thav;;(Vz) > 0, Vi € R}, i = 1,...,¢q, that
the zero solutionV,(¢) = 0 of the large-scale dynamical
systemg with the power balance equation (6) is Lyapunov

able with Lyapunov functio®/ (V;) corresponding to the
otal energy in the system.

supply any energy to its surroundings nor dissipate energy to The nonlinear power balance equation (6) can exhibit a
the environment. Moreover, for the remainder of the papdull range of nonlinear behavior including bifurcations, limit

we assume that;(t) > 0 wheneverug;(t) = 0, ¢ > to,
i =1,...,q, which implies that when the energy of tlih

cycles, and even chaos. However, a thermodynamically con-
sistent energy flow model should ensure that the evolution

subsystem is zero, then no energy can be extracted fraoh the system energy is diffusive (parabolic) in character
this subsystem. The following proposition is needed for thevith convergent subsystem energies. Hence, to ensure a

main results of this paper.

Proposition 3.1: Consider the large-scale dynamical sys
tem G with power balance equation given by (6). Suppos

0;(Vs) = 0, Vi € R}, wheneverv; = 0,i,5 = 1,...,q,
and s;(t) > 0 whenevervg;(t) = 0, t > 9, i = 1,...,q.
Then the solutionV(t), t > to, to (6) is nonnegative for
all nonnegative initial condition¥,, € Ri.

Proof. First note thatw(Vi) — d(V.), V. € RY, is
essentially nonnegative. Next, sineg(t) > 0 whenever
vi(t) = 0, t > tg, i = 1,...,q, it follows that 0g;(t) > 0
for all t > to andi = 1,...,q whenevery,(t) = 0 and
vs;(t) > 0 for all j # i andt > ¢,. This implies that for all

nonnegative initial condition¥,, € R”. the trajectory ofg

thermodynamically consistent energy flow model we require
the following axioms. For the statement of these axioms we

first recall the following graph theoretic notions.

Definition 3.1 ( [37]): A directed graphG(C) associ-
ated with theconnectivity matrixC € R?*¢ has vertices
{1,2,...,q} and anarc from vertexi to vertexj, i # j,
if and only if C(;; # 0. A graph G(C) associated with
the connectivity matrixC € R?*? is a directed graph for
which thearc setis symmetric; that isC = C*. We say
that G(C) is strongly connectedf for any ordered pair of
vertices(i, j), @ # j, there exists gath (i.e., sequence of
arcs) leading from to j.

Recall thatC € R?*? is irreducible that is, there does
not exist a permutation matrix such th@étis cogredient

is directed towards the interior of the nonnegative orthany a lower block triangular matrix, if and only i€(C)
]Ri wheneverug;(t) = 0,7 = 1,...,¢, and hence remains is strongly connected (see Theorem 2.7 of [37]). Let

nonnegative for alt > ¢. O

Next, premultiplying (3) bye”, using Proposition 3.1,
and using the fact tha™w(V;) = 0, it follows that

e Vi(to) + /T e’ S(t)dt

to

e'V(T) =

T
- [ e Tzw. @
to
Now, for the large-scale dynamical systeindefine the
inputu(t) = S(t) and the outpuy(t) £ d(Vi(t)). Hence, it
follows from (8) that the large-scale dynamical systéris
lossless [27] with respect to tseipply ratee™» — ey and
with the storage function/ (V) £ €'V;, V, € Ei. This
implies that (see [27] for details)

0<Ua(Va) =UV) =T:(Vi) <00, VieRL, (9)
where

T

.00 £ - [ u) - ey, (10)
u(+), T>to0 Jy,
to

2 ; T T
Ue(Vs) = u(_)}%_tu /_T(e u(t) —e y(t))dt. (11)

¢i;(Vy) £ 04;(Vy)—0;i(Va), Vi € RY, define the net energy
flow from the jth subsysteny; to the ith subsysteng;
of the large-scale dynamical systefn Axiom 4): For the
connectivity matrixC € R?*? associated with the large-
scale dynamical systei defined by

C(i,j) - { 1’ otherwise, ? 7é 7 )= 1, - 4, (12)
and
q
C(z,z) = - Z C(k1)7 i = j7 i=1,.., q, (13)

k=1, ki

rankC = ¢ — 1 and forC; ;y = 1,i # 7, ¢;(Vs) = 0

if and only if vs; = wvy;. Axiom ii): Fori,j = 1,...,4¢,

(Usi _Usj)¢ij(‘/s) <0,V e Ri The fact that(bm(Vb) =0

if and only if vy; = vg;, ¢ # j, implies that subsystems
G; and G; of G are connected alternatively, ¢;; (V) = 0
implies thatG; andg; aredisconnectedAxiom i) implies
that if the energies in the connected subsystémandg;

are equal, then energy exchange between these subsystems
is not possible. This statement is consistent withzbmth
law of thermodynamicsvhich postulates that temperature
equality is a necessary and sufficient condition for thermal
e(%uilibrium. Furthermore, it follows from the fact thét=

C* and rankC = ¢ — 1 that the connectivity matrix is

Since U,(V;) is the maximum amount of stored energyirreducible which implies that for any pair of subsystems
which can be extracted from the large-scale dynamicd@; andgG;, i # j, of G there exists a sequence of connectors

systemG at any timeT and U,(V;) is the minimum

(arcs) of G that connectg; and G;. Axiom i) implies

amount of energy which can be delivered to the large-scatbat energy flows from more energetic subsystems to less
dynamical systeng to transfer it from a state of minimum energetic subsystems and is consistent withséond law
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of thermodynamicwhich states that heat (energy) must flow Z log, ¢+ vgi(t )
in the direction of lower temperatures Furthermore, note - +v<1( 0)

that¢l]( ) ¢gz( s) Vs € R+72 #4545)=1..,q

which |mpI|es conservation of energy between lossless b q ¢ij(Vs(t))d

subsystems. Wittt (t) = 0, Axioms ) and i7) along with ¢+ vgi (1) t

the fact thate;; (V) = —¢;i(Vs), Vs € Ry, i # j,i,j = foi= 13 1’37“ )

1, ..., ¢, imply that at a given instant of time energy can only b q 6ii (Vs()) i (Vs(2))

be transported, stored, or dissipated but not created and the / ( Fou(t) ot -(t)) de

maximum amount of energy that can be transported and/or to G=1 j= z+1 €7 Usi €T Usj

dissipated from a subsystem cannot exceed the energy in

the subsystem. gy / 5 Z 013 (Va(0) [y (1) = v (0)]
Next, we establish that the classical Clausius inequality to =1 j=it1 (e + s (1)) (e + vs5 (1))

for reversible and irreversible thermodynamics is satisfied (15)

for our thermodynamically consistent energy flow model. -

For the remainder of the paper we assume that the Iargdhlch proves the result. O

scale dynamical systeg with the power balance equat|on

(6) is reachablefrom andcontrollableto the origin inR’, Inequality (14) is Clausius’ inequality for reversible and

Recall that the large-scale dynamical systgnwith the  irreversible thermodynamics as applied to large-scale dy-
power balance equation (6) is reachable from the origin inamical systems. It follows from Axiom) and (6) that
+ if, for all Vyo = Vi(to) € +, there exists a finite for the isolated large-scale dynamical systeg that is,
time t; < ¢, and a square integrable inp§tt) defined on S(t) = 0 and d(Vi(t)) = 0, the energy states given by
[ti, o] such that the statef( ), t > t;, can be driven from Vie = a€, a > 0, correSpond to the equilibrium energy
Vs(t;) =0 to V( 0) = = V. Alternau\/ely,g is controllable states ofg Thus, as in classical thermodynamics, we can
to the origin inR% if, for all Vi, = Vi(to) € R+v there define areversible procesas a process where the trajectory

exists a finite timet; > o and a square integrable input©f the large-scale dynamical systeéh moves along the
S(t) defined onlty, #] such that the statd,(¢), ¢ > t,, St of equilibria of the isolated systeldi. The power
can be driven fromV,(tg) = Vi to Vi(t;) = 0. We Iet input that can generate such a trajectory can be given by
U, C R? denote the set of all admissible power inputs (heaf (!) = d(Vs(t)) + u(t), t > to, whereu() € R is such
flux) to the large-scale dynamical systeinsuch that for that ui(t) = u;(t), © # j,i,j = 1,..,q. Alternatively,

any T > —t, the system energy state can be driven fron@h irreversible processs a process that is not reversible.
Vi(-T )*_ 0 to Vi(to) = Vio € R. by S() € U, and we Hence, it follows from Axiomi) that for a reversible process
S - S <|’—

g (Ve(t) = 0, ¢ > to, i # j, i,j = 1,...,q, and thus, by
l(?]tezé{t fﬁ»% tod?hngﬁgrélesscgleogiéa?rirgélsssl)?é?@g)l\féﬁtwgtm roposmon 3.2, inequality (14) is satisfied as an equality.
for anvT > . the system energy state can be driven fro Iternatively, for an irreversible process it follows from
Vi(t )y v Oe K %lo VAT — %yby S() € U.. For the xioms i) andii) that (14) is satisfied as a strict inequality.

0) = Vs0 = . . .
next result§ denotes a cyclic mtegral evaluated along an_'N€Xt, we give a deterministic definition of entropy for
the Iarge -scale dynamical systanthat is consistent with
arbitrary closed path of (6) iR, that is, § £ [;" with the classical thermodynamic definition of entropy.

L = to and S(-) € R? such thatV; (i) = Vi(to) = Voo € Definition 3.2: For the large-scale dynamical systefn

R} with the power balance equation (6), a functiSn R —
Proposition 3.2: Consider the large-scale dynamical sysR satisfying
tem G with the power balance equation (6) and assume that

Axiom i) holds. Then for allV,, € R , tr > to, and SViltz)) = S(Vi(t))

S(t), t € [to,t¢], such thatV(ts) = Vio, ta 9o (4) _ g
(t), t € [to, t] (tr) = Vio +/ si(t) U“(Vs(t))dt’ (16)
r I si(t) — a t=1 ¢+ vsi(t)
Sq Un b
/ > et o j{Z < 0,(14) for anyt, > t; > to and S(t), t € [t1,ts], is called the
to =1 si entropyof G.

N Next, we show that (14) guarantees the existence of an
wherec > 0, dQ;(t) = [si(t) — 04(Vs(t))]dt, i = 1,...,q,  entropy function forG. For this result define
is the amount of energy received by thk subsystem over
the infinitesimal time intervallt, and V,(¢), t > to, is the  Sa(Vs0)

solution to (6) with initial conditionV;(to) = Vio. R T 4 si(t) — o (Va(t)

Proof. Since, by Proposmon 3. (t) >> 0, > tq, = —S(_);bl[lPDto/t 2 ct va(®) dt, (17)
and ¢;;(Vs) = —¢,:(Vs), Vs 6]&_,1#],2]—1 g, it e =R =1
follows from (6) and Axiomi:) that whereV(to) = Vi € Ri andV,(T) = 0, and define

Sr(‘[sO)

dQ;
fzcﬂm 2 sup /t Zsl C+”“ V() g, (18)

S()eU,, T>—to 'sz t

/tfzvsz j= 1J75Z¢1J( ())dt B B
¢+ vgi(t) whereVy(—=T) = 0 and Vi(tg) = Vi € R+.

to =1
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Theorem 3.1:Consider the large-scale dynamical systenNote that withV,(¢y) = Vi(T)) = 0 it follows from (14)

G with the power balance equation (6) and assume th#tat supremum in (17) is taken over the set of nonpositive

Axiom i) holds. Then there exists an entropy functlon fovalues with one of the values being zero &jt) = 0. Thus
G. Moreover,S,(Vs), Vs € R+, andS,(Vy), Vi € R+, are  S,(0) = 0. Similarly, it can be shown tha, (V5), V; ER

possible entropy functions faf with S,(0) = S,(0) = 0.
Finally, all entropy functionsS(Vy), Vi € Ri, for G satisfy

S (Vi) <S(V2) = 8(0) < Sa(Ve), VeeRL.  (19)

given by (18) satisfies (16) and hence is a pOSSIble entropy
function for the systeng/ with S,(0) = 0.

Next, suppose there exists an entropy funct‘&on@i —
R for G and letV,(¢2) = 0 in (16). Then it follows from

Proof. Slnceg is controllable to and reachable from the(16) that

origin in R+ it follows from (17) and (18) thatS, (Vi) <
o0, Vs € R+, andS; (Vi) > —oo, Vi € R+, respectively.
Next, let Vio € R} and letS(t), t € [t;,t], wheret; <
tg < tf, be such thav(ti) = Vi(tr) = 0 and Vi(to) = Vio.
In this case, it follows from (14) that

T 31 Uu ())
/ Z cﬂsz 5 dt <0, (20)

or, equivalently,

/.tozsz C+0“ Vi) 4,

Usz )

ty 4 si(t)—Uii(VS(t))
= 7/ ¢+ vsi(t) ar. &

to j=1

Now, taking the supremum on both sides of (21) over all

S(-) € U, andt; < tq yields

to 4 ) _ N
S:(Vao) = sup / silt) = ou(V(1)) o,
61/[ t;<to Jt i—1 c+ vsi(t)
te q
< / %(())dt o2
to =1 c+ USZ

Next, taking the infimum on both sides of (22) over all

SS) € U, andt; > to we obtainS; (Vi) < Sa(Vio), Vo €
R, which |mpI|es that—oo < S, ( Vao) < Sa(Vi) <
oo, Vo € R+ Hence, the functionss,(-) and S,(-) are
weII defined. Next, it follows from the definition Qfﬁ;))
that, for anyZ” > ¢; and S(:) € U. such thatV;(t;) € R},
andVy(T) =0,

to q -
t1 = 1 c + USl
si(t) — oii(Vs())
<ty <
/2 121 c+ Usl(t) dt, h=h= T7 (23)
and hence
ta q -
1 Z 1 & + USl
T 4q
si(t) — Uu‘(Vs(t))
+ su / dt
S(')Eucl»)TZh to l:ZI c+ Usi(t)
t q
_ [P Nmsit) —oa(Va(t)
= [y e a5, ). 29

1 =1

which implies thatS,(V;), Vs € R+, satisfies (16). Thus,

Sa(Vy), Vs € Ri, is a possible entropy function fof.

c—t—vsZ

S(Vi(ty) / si(t) = ol “)dt, (25)
1 i=1

for all t; > t; and S(:) € U, which implies that
S(Vs(t1)) — S(0)

) ta 4 Oii V;
R %/§:<> i(»

T S()EUe, ta >t 6 = ¢+ vg(t)
= — sup /tQ q Si( ) Uu(‘/s(t))
S()EUc, ta >ty St 7 c+ vsz( )

= Sa(Vi(t1))- (26)
Since V4(t1) is arbltrary, it follows thatS(V;) — S(0) <

S.(V.), Vs € RL. Alternatively, let Vi(¢1) = 0 in (16).
Then it follows ?Lrom (16) that

t2 31 Jn s(t))
dt 27
S(Vilts /Z} o @)
for all t; <t and S(-) € U,. Hence,
S(Vs(t2)) — S(0)

ta 4 N
> sup / 54(t) UH(VS(t))dt
S()eUr, t1<ta Jt, S ¢+ vgi(t)
= S (Vs(t2)), (28)

which, since V;(t2) |s arbltrary, implies thatS, (V) <

S(Vs) — S8(0), Vi € + Thus, all entropy functions for
G satisfy (19). O

Remark 3.1:1t is important to note that inequality (14)
is equivalent to the existence of an entropy function for
G. Sufficiency is simply a statement of Theorem 3.1 while
necessity follows from (16) withVi(t2) = Vi(t1). For
irreversible thermodynamics with power balance equation
(6), Definition 3.2 does not provide enough information to
define the entropy uniquely. This difficulty has long been
pointed out in [39]. For reversible thermodynamics this
ambiguity is not an issue as (14) holds as an equality for
a reversible process sineg;(Vi(t)) = 0,4 # j,4,j =
1,...,q, and in this case it can be shown th&f(V;) =
S (Ve) = S8(Vi) — 8(0) = ellog,(ce + Vi) — qlog, c,
where V; = V,. and log,(ce + V) denotes the vector
natural logarithm given bjlog, (c+vs1), ..., log, (c+vsg)] T
This definition of entropy leads to the second law of
thermodynamics being viewed as an axiom in the context
of (anti)cyclo-dissipative dynamical systems [27], [40]. A
similar remark holds for the definition of ectropy introduced
below.

The next result shows that all entropy functions §oare

continuous oriRJr First, however, the following lemma is
required.
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Lemma 3.1:Consider the large-scale dynamical systend :A[O,T] — R? such that|[S(t) — Se| < e, t € [0,{), and
G with power balanE% equation (6). Then for every equif(i) = Ep. In addition, it follows from Lemma 3.1 that
librium state £, € R} and everye > 0 andT > 0, §:[0,7] — RY is such thatE(t) >> 0, t € [0,7]. Next,

there existsS. € RY, o > 0, and7 e [0,7] such that sinceo;(-),i=1,...,q, is continuous it follows that there

for every £ € R with |E — E.| < oT, there exists €XistsM & (0, o) such that

S :10,7] — R? such that]|S(t) — S.|| < e, t € [0,7], and a .

E(t) = B+ BBy ¢ € [0,7] sup s oull) _ (32)
e T o |E—Ee|<5, [S—Scl|l<e i C¢téi

Proof. Note that withS. = d(E.) — w(E.), the state .
E. € R% is an equilibrium state of (6). Lef > 0 and Hence, it follows that

T>0 and define
; ; ) / - mE(a))dU
M@, T) £ BeB, (0),t€l0.7] lw(E +6tE) - d(E, + 6tE) ¢+ ei(o)
+Se]|- 29 9 s(0) — 00
| (29) < / Z si(0) — 0ii(E(0)) do
Note that for everyT’ > 0, limy_ o+ M(0,T) = 0 and for 0 i3 c+ei(o)

every > 0, limy_,o+ M(0,T) = 0. Next, lete > 0 and . - 1
T > 0 be given and letv > 0 be such thad/ (o, T')+a < e. < Mt < MT <~ (|| Bo — Eel)- (33)
(Note thata < ¢; the existence of such amis guaranteed pNow if S(-) is an entropy function of, then
sinceM (o, T) — 0 asa — 07.) Now, let £ € R be such

that [| £ — E,|| < o With 7" 2 1E=El < 1 and S(B() / Z si(0) — 0i(E(0)) , - (34)
(B B i
S(t) = —w(E(t) + d(E(t) + a-=——, t € [0, T,
1B — B or, equivalently,
. t q
it follows that Z Oii (E(a))da > S(E.) — S(E(D)). (35)
(E _E ) ~ — c -|— €; 0’)
Et)=FE.+-——+at, te][0,T], (30)
|1E — Ee If S(E.) > S(E(f)), then combining (33) and (35) yields
is a solution to (6). The result is now immediate by noting _ M| <41 _
that B(T) = & and [S(E) =SB <77 (1o — Eell).  (36)
(B—E.) Alternatively, if S(E(t)) > S(Ee), then (36) can be derived
[S(t) = Sell < ||w( 55 Hat) by reversing the roles of? and E(f). In particular, using
(B—F.) the fact thatG is locally controllable from and taoF.,
—d (Ee+ ‘|E—Ee\|at> + Sl + similar arguments can be used to show that the set of

. points which can be steered in small timefp contains a
< M(@T)+a<e t€[0,7]. (31) neighborhood off(Z). Hence, sincey(-) is continuous and
0 E(t) is arbitrary, it follows thatS(-) is continuous orRi.

|
Theorem 3.2:Consider the large-scale dynamlcal system
G with the power balance equation (6) and&tR —R The next proposition shows that if (16) holds as an
be an entropy function of. ThenS(-) is contlnuous on equality for some transformation starting and ending at
RrRY. an equilibrium point of the isolated systeg then this
* transformation must be reversible.

Proof. Let JFe € R’ and Se € R? be such that,; = Proposition 3.3: Consider the large-scale dynamical sys-
0ii(Be) — 351 2 ¢u( Ee),i=1,...,q. Note that with  tom ¢'\yith the power balance equation (6) and assume that
S(t) = Se, Ee is an equilibrium point of the power balance Axioms i) andii) hold. LetS( ) denote an entropy of
equation (6). Next, it follows from Lemma 3.1 thétis 5.4 jetE - [to, t1] — R denote the solution to (6) with

locally controllable; that is, for every” > 0 ande > 0 _
the set of points which can be reached from andztoin E(to) = ave and E(t1) = aye, whereao, oy > 0. Then,

time T using admissible input§ : [0, 7] — R?, satisfying t, 4 () = 0ss(E())

|S(t) — Sell < &, contains a neighborhood @f.. Next, let  S(E(t,)) = S(E(ty)) Jr/ Z Silt) = 9i\=AL)) 4, (37)
6 > 0 and note that it follows from the continuity af(-) c+e(t)

andd(-) that there exisT’ > 0 ande > 0 such that for every -

S:10,T) — R4 anng(t) - Seg <e¢, ||[E(t) - E.|| <4, if and only if there existsa : [to,t;] — R, such that
t €[0,T), whereE(t), t € [0,T), denotes the solution to a(ty) = ag, a(ty) = aq, and E(t) = a(t)e, t € [to, t1]-

(6) with the initial condit_ionEe Furthermore, it follows Proof. Since E(to) and E(t,) are equilibrium states of
from the local controllability oy that for everyl” € (0,T]  he isolated systers it follows from Remark 3.1 that
there exists a strictly increasing, continuous functfpn

R — R such thaty(0) = 0 and for everyE, € E such S(E(t1)) —S(E(to)) = qlog.(c+a1)
that || Ey — E.|| < ~(T), there existd € [0, 7] and an input —qlog.(c+ ap). (38)
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Furthermore, it follows from (6) that

[ 3 s =aueo,,
Pt c Jr €;

_ [ . éi(t) — 2=y 9if (B(1))

- /t 2 et eilt) dt

0 =1

1 c+ o
=qlo
qlog, CJrOéo

t b (B () (e5(t) — ex(t))
/ >3 c+ezt e oo

to ;= 1 j5=i+1

(39)

Now, it follows from Axiomsi) andii) that (37) holds if

and only ife;(t) = e;(t), t € [to,t1], 4 # 4,4, =1,...,q,
or equivalently, there exista : [to,t1] — R, such that
E(t) = a(t)e, te [to,tl]. [}

The entropy expression given by (40) is identical in form
to the Boltzmann entropy for statistical thermodynamics.
Due to the fact that the entropy is indeterminate to the
extent of an additive constant, we can place the constant
of integrationg log, c to zero by taking: = 1. SinceS(V5)
given by (40) achieves a maximum when all the subsystem
energiesug;, 1 = 1, ..., ¢, are equal, entropy can be thought
of as a measure of the tendency of a system to lose the
ability to do useful work and lose order and to settle to a
more homogenous state.

[si(t)

Recalling thatdQ;(t) = — 0 (Vs(t)]dt, @ =
1,...,q, is the |nf|n|te5|mal amount of heat received or
d|SS|pated by théth subsystem of over the infinitesimal
time intervaldt, it follows from (16) that

as(n) > 3 Q0 42)

Inequality (42) is analogous to the classical thermodynamic

The next proposition gives a closed-form expression fonequality for the variation of entropy during an infinitesi-

the entropy ofG.

Proposition 3.4: Consider the large-scale dynamical sys;
tem G with the power balance equation (6) and assume th

R% — R given by
(40)

Axiom i) holds. Then the functios :
S(Vs) = Tloge(ce+ Vi) —qlog,c, Vi€ Ri,
wherec > 0, is an entropy function of.
Proof. Since, by Proposition 3.1V;(t) >> 0, t > t,

and é;; (V) = —¢;i(Va), Vs € RY, i £ j,ij =1,..,q, it
follows that
. e (D)
_ < sl(t) — 04 (Vs(t))
o ; ¢+ v ( )
- ¢ (
+
;j 1,541 +U% )
e sit) = oa(Va(t)
o ; ¢+ vg(t)
- 0ii(Vs(t) ¢4 (Vs(1))
+;j§1(c+vsi(t) c—&—vsj(t))
e sit) = oa(Va(t)
- ; ¢+ vgi(t)
L i (V) (v (1) — vsi(t))
*Z; (c+ vmi(6) (e + vy (1))
L si(t) — ou(Vi(h)
> SR TS >t (41)
; ¢+ vg(t) 0
Now, integrating (41) ovefty, to] yields (16). O

Remark 3.2:Note that it follows from the last equality in
(41) that the entropy function given by (40) satisfies (16) as

mal irreversible transformation with the shifted subsystem
energiesc + vs; playing the role of theith subsystem
(Lﬂermodynamlc (absolute) temperatures.

Next, we introduce anew and dual notion to entropy;
namely ectropy, describing the status quo of the large-
scale dynamical systerg. First, however, we present a
dual to inequality (14) that holds for our thermodynamically
consistent energy flow model.

Proposition 3.5: Consider the large-scale dynamical sys-
tem G with the power balance equation (6) and assume that

Axiom ii) holds. Then for allV,, € Ei, ty > to, and
S(t), t € [to, t¢], such thatVs(t¢) = Vo,

/ f Z Ui (8)[5:(t) — 03 (Vs ()] dt

to =1
q
_ }{ 3 v (HdQi(t) > 0,
=1

where V,(t), t > tg, is the solution to (6) with initial
condition V;(tg) = Vio.

Proof. Since, by Proposmon 3.4V, (t) >> 0, t > to,

and(bij(v) ¢jz( Vi), V€R+,z§ﬁj,2]—l »q, it
follows from (6) and Axiomi:) that

fi%wm@
- /t N Z s () [0 (2) —

0 =1

(43)

¢ij (Vs(t))]dt
j=1, j#i
Vi(tr) — 3 V3" (t0) Va(to)

-

l\)\»—t

()i (Vs(t))dt

MQ

i (Vs (1)) [vsi(t) — vs; (£)]dt

(44)

/
/

i MQ i MQ

| \
Jr

an equality for a reversible process and as a strict inequality

for an irreversible process.

which proves the result. O
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Note that inequality (43) is satisfied as an equalityarge-scale dynamical systems; while inequality (45) is an
for a reversible process and as a strict inequality for aanti Clausius inequality. Moreover, for the ectropy function
irreversible process. Next, we present definition of ectropgtefined by (49), it follows from Proposition 3.6 that a
for the large-scale dynamical systeim thermodynamically consistent large-scale dynamical system

Definition 3.3: For the large-scale dynamical systegn Model is dissipative with respect to the supply réfes and

: ; e with storage function corresponding to the system ectropy.
\év;ltt?sggiengower balance equation (6), a functionR . — R For the entropy function given by (40) note th&f0) = 0

which is consistent with th¢hird law of thermodynamics
E(Vi(ty)) < EVi(th)) (Nernst's theorem) which states that the entropy of every
- 4 system at absolute zero can always be taken to be equal to
_ AN zero. For the isolated large-scale dynamical sysfen(i6)
+/tl Z;Usz(t)[sz(t) o (Vs(t))]dt,  (45) yields the fundamental (universal) inequality
for anyty > t; > to and S(t), t € [t1,1o], is called the S(Vs(t2)) > S(Vs(t1)), t2 >t (50)
ectropyof G.

For the next result define Inequality (50) implies that, for any dynamical change in

an isolated large-scale dynamical systéirthe entropy of

E.(Veo) the final state can never be less than the entropy of the
T q initial state. It is important to stress that this result holds for
a . 4 4 - an isolated dynamical system. It is however possible with
- S(')EZIJIE‘T>150 /t Z vsi(t)[si(t) — 0ui(Vs(2))]dt, (46) power (heat flux) supplied from an external system to reduce
T =l the entropy of the dynamical systeth The entropy of
_ w4 _ both systems taken together however cannot decrease. The
whereVs(to) = Vo € Ry and V(T) =0, and above observations imply that when the isolated large-scale
& (Vi) dynamical systemg with thermodynamically consistent
to 4 energy flow characteristics (i.e., Axiom$ and i) hold)
N ; _ () — is at a state of maximum entropy consistent with its energy,
S(.)eul,.r,lng—to /4r Z;Um(t) [3:(8) = i (Ve(®)))d, (47) it cannot be subject to any further dynamical change since

any such change would result in a decrease of entropy. This
whereV;(—T) = 0 and Vi (to) = Vi € R’ of course implies that the state nfaximum entropys the
] . + . stable state of an isolated system and this equilibrium state
Theorem 3.3:Consider the large-scale dynamical systempag 1o he semistable. Analogously, it follows from (45) that

g with the power balance equation (6) and assume thgle isolated large-scale dynamical systémsatisfies the
Axiom i) holds. Then there exists an ectropy function fok,ngamental inequality

G. Moreover,&,(Va), Vi € RY, and&,(Va), Vi € RY, are
possible ectropy functions fa@ with £,(0) = £,(0) = 0. E(Vs(ta)) < E(Vi(t1)), t2 >ty (51)
Finally, all ectropy functiong (V;), Vi € ]Ri, for G satisfy o ) .
which implies that the ectropy of the final state @fis
Ea(Va) S E(VL) — £(0) < &(V2), Vi eRY, (48) always less than the ectropy of the initial statejoHence,
Proof. Th fis similar to th f of Th 31 for the isolated large-scale dynamical syst@rthe entropy
root. 1he proof is simiiar {o the proot of Theorem 3.1.jcreases if and only if the ectropy decreases. Thus, the
O state ofminimum ectropyis the stable state of an isolated
system and this equilibrium state has to be semistable. The

The next proposition gives a closed-form expression fdiext theorem concretizes the above observations.
the ectropy ofG. Theorem 3.4:Consider the large-scale dynamical system

Proposition 3.6: Consider the large-scale dynamical sys¥ With power balance equation (6) Witﬁ.%’f) = 0_and
tem g with the power balance equation () and assume thdf %) = 9 and sesime Ingt O S RO Fren
Axiom i7) holds. Then the functiod : R, — R given by (6). Furtherrﬁore,VS(t) _ %eeTVS(tO) ast — oo and

E(Ve) =3V, Vi eRY, (49) e€"Vi(to) is a semistable equilibrium state. Finally, if

=9
is an ectropy function of. for somek € {1,...q}, ow(Vs) = 0, Vi € R}, and
orx(Ve) = 0 if and only if vy, = 0%, then the zero
solutionV;(¢) = 0 to (6) is a globally asymptotically stable
equilibrium state of (6).

. . —q .
Remark 3.3:Note that the ectropy function given by (49) _Proof. It follows from Axiom i) thatae € R,, a > 0, is

satisfies (45) as an equality for a reversible process and &8 equilibrium state for (6). To show Lyapunov stability of
a strict inequality for an irreversible process. the equilibrium stateve consider the system shifted ectropy

It follows from (49) that ectropy is a measure of the;unction Es(Ve) = %(Vs —ag)"(V: — a€) as a Lyapunov
extent to which the system energy deviates from a homaznetion candidate. Now, since;;(Vs) = —¢;i(Vs), Vs €
geneous state. Thus, ectropy is the dual of entropy and is a _ . _

measure of the tendency of the large-scale dynamical systeniThe assumptiorx (Vs) > 0, Vs € RY, andoyx(Vs) = 0 if and

G to do useful work and grow more organized. only if vg, = 0 for somek € {1_, ...,q} implies that if th(_ekt_h subsystem
possesses no energy, then this subsystem cannot dissipate energy to the

Inequality (16) is precisely Clausius’ inequality fO_T re-environment. Conversely, if theth subsystem does not dissipate energy
versible and irreversible thermodynamics as applied t® the environment, then this subsystem has no energy.

Proof. The proof is similar to the proof of Proposition
3.4.
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RY,i# 4,45 =1,..,q, and e'w(V) = 0, V. € R}, it  Lyapunov stable. To show gIobaI asymptot|c stability of the
follows from Axiom i) that zero equmbrlum state leR 2 {V; ¢ ]R €V =0} =

EWVY) = (Vi—ae)TV, {‘; € Ry : vgowm(Vs) = 0 k e {1 7‘1}}0 Vs €
T R} - (vsz vs)9i;(Vs) = 0,1 =1,...,q, 7 € K;}. Now,

= (Vs —ag) w(V) since Axiom i) holds andoy, (Vi) = 0 if and only if

= VoS w(Vs) ver = 0 it follows thatR ={V; €R} : vy =0,k €

(1,0, @3N {Ve €RY 2 w1 = 02 = - - = vy} = {0}
and the Iargest invariant seé¥! contained inR is given

Usi
by M = {0}. Hence, it follows from the Krasovskii-

[
MQ

Z @i (Ve

1? . i LaSalle invariant set theorem that for any initial condition
_ Vi(t )eR Vi(t) — M = {0} ast — oo which proves
- Z Z Usi = 0sj) bij (Vs) global asymptotlc stability of the zero equilibrium state of
i=1 j=i+1 (6) |
q
= Z Z Usi — Usj) ¢35 (V) In Theorem 3.4 we used the shifted ectropy function to
i=1jeK; show that for the isolated (i.eS(t) = 0 and d(Vs) = 0)
< 0, Vie RJH (52) large-scale dynamical systeg, Vi(t) — eeTV(to) as

t — oo and = eeTV(to) is a semistable equmbrlum state.
where IC; £ N; \ Ui_{{l} and \; £ {J € {4} © This result can also be arrived at using the system entropy.

¢i;(Vs) = 0 if and only if vy, =g}, 1 =1,...,q, WhICh
esjtabllshes Lyapunov stability of the equmbrlum stag |© See this note that since"w(V;) = 0, V; € R+’ it

= T
To show thatae is semlstable letR £ {v, ¢ R? . follows thate Vi(t) = 0,¢ > to. Hence,e'V(t) =
£.(V,) = 0} a{v c ]R : (vsi — vs;) ({ V) = < 0 z'+— e'Vi(to), t > to. Furthermore, sincd/(t) >> 0, t > t,,
s = = . st sj ) Pij = U, =

) si g it follows that 0 << V(¢) << ee'V,(ty), t > to, which
1,...q,j € K;}. Now, by Axiom ¢) the directed graph i jjies that all solutions to (6) are bounded. Next, since by
associated with the connectivity mat@xfor the large-scale (50) the entropyS(Va()), t > to, of G is monotonically

dynamical systeny |s strongly connected which implies increasing and/. (t), ¢ > fo, is bounded, the result follows
that R = {V, € R} : vy = --- = uy,}. Since the ysing similar arguments as in Theorem 3.4.

set R consists of the equmbrlum states of (6), it follows
that the largest invariant sé¢ contained inR is given by Theorem 3.4 implies that the steady-state value of the

M = R. Hence, it follows from the Krasovskii-LaSalle €N€rgy in each subsyste@y of the isolated large-scale
invariant set theorem [41] that for any initial conditiondynamical systeng is equal; that is, the steady-state energy
Vito) € R Vi(t) — M ast — oo and henceae of the isolated large-scale dynamical systéimgiven by

is a semistable equilibrium state of (6). Next, note thaVeco = ce€'Vi(ty) = [1 >oi_1 usi(to) | € is uniformly

emce etVi(t) = eTV(tO) and Vy(t) - M ast — oo, dlstrlbuted over all subsystems @f. This phenomenon

it follows that Vi(t) — feeTV(to) ast — oo. Hence, is known asequipartition of energy [23], [26], [29],

with o = EeTV(tO) ae = —eeTV(to) is a semistable [42], [43] and is an emergent behavior in thermodynamic

eqU|I|br|um state of (6). systems. The next proposition shows that among all possible

energy distributions in the large-scale dynamical sysem

Finally, to show that in the case where for somes  energy equipartition corresponds to the minimum Vvalue of

{1,...,q}, or(V5) 20, Vs € Ry, andoyi(Vs) = 0 if and  the system’s ectropy and the maximum value of the system’s

only if v, = 0, the zero solutioV;(t) = 0 to (6) is globally  entropy (see Figure 2).

?sy;nptotlcallx§table consider the system ectr6py;) = Proposition 3.7: Consider the large-scale dynamical sys-

5Vy Vs, Vs € R, as a candidate Lyapunov function. Noteygm, G W|th power balance equation (6), I6t: R ‘1 — R,

that £(0) = 0, E(V;) > 0, V, € R,V # 0, and€(Vi)  ands - R} — R denote the ectropy and entropy@fglven

is radially unbounded. Now the Lyapunov derivative alon
the system energy trajectories of (6) is given by By (49) and (40), respectively, and defifle £ {V; € R}
e'Vi = 3}, wheres > 0. Then,

EVe) = Vw(V) —d(Vy)] P
= VTw(V,) — vgorr (Ve arg min(& = arg max(S =V'=—-e 54
s w(Vs) = vskorr(V5) rg I, g max(S (V) PR
q
- Zv% Z 6i; (Vo) | — varorr (Ve) Furthermore £in 2 £(V) = %% and Spax 2 S(V¥) =
i=1 J=1,j7i qlog,(c+ g) —qlog, c.

q . .
Proof. The existence and uniqueness Bf* follows

(vsi = 05935 (Vs) — vsrown(Vs) from the fact that (V) and —S(V;) are strictly convex

continuous functions defined on the compact Bet To

l minimize £(V;) = V'V, Vi € R}, subject toV; € D,

= Z Z Usi = Usj)0i (Vs) = vskokr(Vs) form the Lagrang|anC(Vs,)\) VIV, + A€V — ),
Ki where ) € R is the Lagrange muIt|pI|er IV.* solves this

S Oa ‘/S € R+7 (53)
) ) ] 3The phenomenon of equipartition of energy is closely related to the
which shows that the zero solutioV(t) = 0 to (6) iS notion of amonotemperaturisystem discussed in [25].

1=1j=1+1

s
Il

—
<.

m
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Fig. 2. Thermodynamic equilibria- (- -), constant energy
), constant ectropy surfaces{ —), and

surfaces (
constant entropy surfaces ( — - —)

minimization problem, then

oL
a‘/s Vo=V

0= :‘/;*T+)\eT

and henceV* = —JXe. Now, it follows from eTV
that \ = —5 which implies thatV}* = ge € R . The fact
that V;* minimizes the ectropy on the compact det can

dynamical systeny all the energy, though always con-
served, will eventually be degraded (diluted) to the point
where it cannot produce any useful work. Hence, all motion
would cease and the large-scale dynamical system would
be fated to a state of eternal rest (semistability) wherein all
subsystems will posses identical energies (energy equiparti-
tion). Ectropy would be a minimum and entropy would be
a maximum giving rise to a state of absolute disorder. This
is precisely what is known in theoretical physics ashbat
death of the universe

Next, we show that our thermodynamically consistent
large-scale systerg satisfiesGibbs’ principle[44, p. 56].
Gibbs’ version of the second law of thermodynamics can
be stated as follows:

Gibbs’ Principle. For an equilibrium of any isolated
system it is necessary and sufficient that in all possible
variations of the state of the system which do not
alter its energy, the variation of its entropy shall either
vanish or be negative

To establish Gibb’s principle for our thermodynamically
consistent energy flow model, suppoBe = ae, a > 0,
is an equilibrium point for the isolated systeth Now, it
follows from Proposition 3.7 that the entropy @fachieves
its maximum atFE, subject to the constant energy level
e'E = aq, E € R Hence, any variation of the state
of the system Wh|ch does not alter its energy leads to a
zero or negative variation of the system entropy. Conversely,
suppose at some poit* € R the variation of the system
entropy is either zero or negatlve for all possible variations
in the state of the system which do not alter the system’s
total energy. Furthermoread absurdum let the isolated
systemg undergo an irreversible transformation starting at

be shown by computing the Hessian of the ectropy for th&™. Then it follows from Proposition 3.4 that the entropy

constrained parameter optimization problem and 2shOW|
that the Hessian is positive definite &t Epin = %% is

now immediate.

Analogously, to maximizeS(V;) = e'log,(ce + Vi) —
glog, c on the compact se®D., form the Lagrangian
L(Ve, A) £ 37 log,(c+vs;) + A(€TVi— B), wherel € R
is a Largange muIt|pI|er IfV* solves this maximization

problem, then

0 — oL
a‘/s V;;:V~*
1 1
= { + A, + A
c+vy c+ oy
Thus, A = —W,i =1,...,q. If A = 0, then the only

value of V* that satlsfles (56) i, = oo, which does not

G given by (40) strictly increases which contradicts the
above assumption. Hence, the syst@ronannot undergo an
irreversible transformation starting &t*. Alternatively, if
the isolated systeri undergoes a reversible transformation
starting atE*, then E* has to be an equilibrium state 6f

In the preceding discussion it was assumed that our large-
scale dynamical system model is such that energy flows
from more energetic subsystems to less energetic subsys-
tems; that is, heat (energy) flows in the direction of lower
temperatures. Although this universal phenomenon can be
predicted with virtual certainty, it follows as a manifestation
of entropy and ectropy nonconservation for the case of two
subsystems. To see this, consider the isolated large-scale
dynamical systeng with power balance equation (6) (with
S(t) = 0 and d(V;) = 0) and assume that the system
entropy given by (40) is monotonically increasing and hence
S(Vi(t)) > 0, t > to. Now, since

satisfy the constraint equatlchV g for finite 5 > 0.
Hence,A # 0 and v}, = —(5 +¢), i = 1,...,q, which
implies V; = —(5 + c)e Now it follows from e'Vv, =4
that —(+ +¢) = '2 and henceV;* = Ze € RY. The fact
that V* maximizes the entropy on the compact getcan

be shown by computing the Hessian and showing that it is
negative definite at*. Spax = qlog,(c + q) —qlog,cis
now immediate. O

It follows from (50), (51), and Proposition 3.7 that
conservation of energy necessarily implies nonconservation
of ectropy and entropy. Hence, in an isolated large-scale

$ij (Vs(t))
+ vsz(t

%
M)Q

)
i=1 j=1, j#i )

S (9u(Va(t)  di(Va(D)
;j;l <c+v%(t) chij(t))
- ij (Vs(1)) (vs5(£) — vsi(t))

;jem (¢4 vsi(t))(c + vg;(1))
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> 0, t>t, (57) hence the system entrog( V) is an additive quantity over
_ . all subsystemsiv) For the systeng, S(V;) > 0 for all
it follows that forg = 2, (vs1 — vs2)d12(Vs) <0, Vs €R., ¢ RY. ) It follows from Proposition 3.7 that for a
which implies that energy (heat) flows naturally from aﬂiven value3 > 0 of the total energy of the systei,
e

more energetic subsystem (hot object) to a less energ . x _ B
subsystem (cooler object). The universality of this emer-ﬁe and only one state; namely,” = ¢& corresponds

gent behavior thus follows from the fact that entropy (rel0 the largest value ofS(V5). vi) It follows from (40)
spectively, ectropy) transfer, accompanying energy transfépat for the systemg, graph of entropy versus energy
always increases (respectively, decreases). In the case whir&oncave and smoothiii) For a composite large-scale
we have multiple subsystems, it is clear from (57) thagynamical systengic of two dynamical systemg, andys
entropy and ectropy nonconservation does not necessarifig expression for the composite entrofly = Sa + Ss,
imply Axiom 4i). However, if we invoke the additional WhereSa andSg are entropies ofx and¢g, respectively,
condition (Axiom 4ii)) that if for any pair of connected IS Such that the expression for the equilibrium state where
subsystemg;, andG;, k # 1, with vy, > vy (respectively, the composite maximum entropy is achieved is identical to
ver < vg) and for any other pair of connected subsystemi10se obtained fogs and G individually. Specifically, if

Gm and Gy, m # n, With vgn > vs, (rESpectivelyps, <  9A andgg denote the number of subsystemgjin and g,

V) the inequalityeyy (V) dmn (Va) > 0, Vi € Riv holds, respectively, an@s andgg denote the total energies Gf

then nonconservation of entropy and ectropy in the isolat d.gB.’ _respect_wely, t_hen the Tax”}}fm entrogy@iﬁznd
large-scale dynamical systeg implies Axiom ii). The B individually is achieved at"y = teandV’p = (e,
above inequality postulates that the direction of energy flofgspectively, while the maximum entropy of the composite
for any pair ofenergy similarsubsystems is consistent; thatsystemgGc is achieved at/, = %e viid) It follows
is, if for a given pair of connected subsystems at a givefitom Theorem 3.4 that for a stable equilibrium state—
for Aty other pair of connecied Subsystoms with the sanjec, "ere 2 0 is the total energy of the systegh and
energ))// level, Ec)he energy flow directign is consistent witty, '> the number 9f supsystems of the e””gpy is totally
the original pair of subsystems. Note that this assumptiof€fined bys andg; thatis,5(V;) = glog, (c+ ) —qlog, c.
does not specify the direction of energy flow betweenDual criteria to the eight criteria outlined above can also be
subsystems. To see th&(V,(t)) > 0, t > to, along with established for an analytic expression representing system
Axiom i) implies Axiom i) note that since (57) holds for €CtrOPY-
all t > to and Vi(to) € R is arbitrary, (57) implies

q IV. TEMPERATUREEQUIPARTITION AND BOLTZMANN'S

S ?;Ji%)()ie;rjw)) >0, V,eRL.  (58) KINETIC THEORY OF GASES
i=1jeK; 5 & The thermodynamic axioms introduced in Section Ill pos-

Now, it follows from (58) that for any fixed system energy; J20 B8, B 0S/ER SAELES B8 SO mae O B o
level V. € R, there exists at least one pair of connecte ection Ill to the case where the subsystem energies are
subsystems;;, andg;, k 7 [, such that (V;)(vs —vsk) > proportional to the subsystem temperatures with the propor-
0. Thus, if vy, > vy (respectively, vy, < wa), then snaiiny constants representing the subsyssgecific heats
dr(Vs) < 0 (respectively, ¢ (Vs) > 0). Furthermore, |5'4he case where the specific heats of all the subsystems
it follows from Axiom i) that for any other pair of e equal the results of this section specialize to those of
connected subsystends, andg,, m # n, With vs, 2 vsn Section III. To include temperature notions in our large-
(respectively,vs,, < wvs,) the inequality ¢,,, (Vi) < 0

: SO Py = scale dynamical system model we replace Axioinsind
(respectivelynn, (Vs) > 0) holds which implies that ii) of Section Ill by the following axioms. Lef3; > 0,

Grrn (V) (Vsn — Vsm) =0, m # n. (59) @ =1,...,q, denote the reciprocal of the specific heat of
- the ith subsystemg; so that the (empirical) temperature

Thus, it follows from (59) that energy (heat) flows naturallyj, ;th subsystem is given b§f; = B;vs. Axiom 4): For
from more energetic subsystems (hot objects) to less engfe connectivity matrixC € R7<4¢ associated with the
getic subsystems (cooler objects). Of course, since in ﬂl‘&rge—scale dynamical systegh defined by (12) and (13)
isolated large-scale dynamical systgnactropy decreases if (sqkc — g—1and forC, = 1,0 # j, ¢s;(Va) = 0 '
and only if entropy increases, the same result can be arriVﬂ%gnd only if Bivg — g;g))_ Axiom Z) Eor SZ. o
at by considering the ectropy ¢f Since Axiomi:) holds, it y iYst = [jUsye n). blo=
follows from the conservation of energy and the fact that thés - @ (Bivsi — Bjvs;)¢i;(Vs) < 0, Vi € R, . Axiom i)
large-scale dynamical systeghis strongly connected that Implies that if the temperatures in the connected subsystems

nonconservation of entropy and ectropy necessarily impli¢s and G; are equal, then heat exchange between these
energy equipartition. subsystems is not possible. This is a statement of the zeroth

. . . . law of thermodynamics which postulates that temperature
__Finally, we close this section by showing that our defuqyality is a necessary and sufficient condition treermal
inition of entropy given by (40) satisfies the eight crite-gqyilibrium Axiom i) implies that heat (energy) must flow
ria_established in [45] for the acceptance of an analytif, the direction of lower temperatures. This is a statement
expression for representing a system entropy function. b the second law of thermodynamics which states that a
particular, note that for a dynamical systegn i) S(Vs)  transformation whose only final result is to transfer heat
is well defined for every staté; € R, as long asc > from a body at a given temperature to a body at a higher
0. #) If G is isolated, thenS(V4(t)) is a nondecreasing temperature is impossible. Next, in light of our modified
function of time. i) If S;(vs;) = log,(c + vs;) — log, ¢ axioms we present a generalized definition for the entropy
is the entropy of theth subsystem of the systef) then and ectropy ofG. The following proposition is needed for
S(Vi) = 31 Si(vs;) = €eTlog, (ce + Vi) — qlog, c and  the statement of the main results of this section.
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Proposition 4.1: Consider the large-scale dynamical sys- £,(Vy) 2
tem G with the power balance equation (6) and assume that

Axiom i) holds. Then for allVy, € Ri, ty > to, and  — inf / Bivsi(t)[si(t) — 04 (Vs(t))]dt, (65)
S(t), t € [to, t¢], such thatV;(t¢) = Vo, S()eUe, T2t0 Sy, Z;
L si(t) — g“(vs(t))d where Vi (to) = Vio € R and V4(T) = 0, and define the
t . —qg Vs s
/to pat ¢+ Bivgi(t) functionsS, : R, — R and&, : R, — R by
dQ; S:(Vao) =
fratme e O SR
i sup / Z UASA dt, (66)
S()EUs, T>—to C+/81Usz( )
and
tr A
Zﬂwm [s:(t) — o3 (Va(t))]dt &E(Ve) 2
to =1
o / Zmz [54(0) — 03 Va0, (67)
- 74 S Buw(t)AQi(t) > 0, (61)
=1 whereV,(~T) = 0 and Vi(tg) = Vi € R7.
where Vi(t), t > to, is the solution to (6) with initial Theorem 4.1:Consider the large-scale dynamical system
condition Vs(tg) = Vio. G with the power balance equation (6) and assume that
Proof. The proof is identical to the proof of PropositionsAXiom i) holds. Then there exists an entropy and an
3.2 and 3.5. g ectropy function forG. Moreover, S, (V;), Vs € R+, and

S:(Ve), Vs € R+, are possible entropy functions f@
Note that with the modified Axiom) the isolated large- with S,(0) = Sr(O) = 0, and &,(V;), Vi € R+, and
scale dynamical systerg has equrllbrlum energy stateSg( .), V. € R%, are possible ectropy functions faf

given byV,. = ap, fora > 0, wherep = [1/31,....1/8,]".  with £,(0) = &.(0) = 0. Finally, all entropy functions
As in Section Ill, we define a reversible process as a proce§§V V. e Ri for G satisfy

where the trajectory of the systeéh moves along the set
of equilibria for the isolated syster and an irreversible _ =q
process as a process that is not reversible. Thus, it follows Si(15) < 8(Vs) = S(0) < Su(Ve), Vs €RY, (68)

from Axioms i) andii) that inequalities (60) and (61) are : =q :

satisfied as equalities for a reversible process and as str"i’&d all ectropy functiong(V;), Vs € R, for G satisfy

inequalities for for an irreversible process. E.(V) < E(VL) —E(0) < &(V), Vi€ R (69)
Definition 4.1: For the large-scale dynamical systeg‘n o Voo e *

with the power balance equation (6), a functiSn R - 3 fg)r?é' ;’ge proof is identical to the proof of TheorDems

R satisfying ' "

L

S(Vi(t2)) > S(Vi(tr)) For the statement of the next result defipe
ta Si(t)*o'”(‘/é(t)) [1/ﬂ17"'a1/5q}T andpédiag[ﬁlv”'aﬁq]'
+/ Z T Brvw () dt, (62) Proposition 4.2: Consider the large-scale dynamical sys-
tioj=p T Pilsi tem G with the power balance equation (6) and assume that
Axiom i) holds. Then the functios : Ri — R given by

for any to > t; > to and S(t), t € [t1,t2], is called the

entropyof G. S(Vi) = pTlog,(ce + PV;) — €"plog,c, Vi €RY, (70)
Definition 4.2: For the large-scale dynamical syst@n ]
with the power balance equation (6), a functibn R} — R~ Wherelog, (ce+ PV;) denotes the vector natural logarithm

satisfying given by[log, (c+f1vs1), -, log. (c+B4vsq)] ", is an entropy
function ofG. Furthermore the functioé : R’ 4+ — Rgiven
EWVs(t2)) < E(Vi(tr)) by
to 4 —
+/ Zﬁivsi(t)[si(t) — o (Vi(t)]dt, (63) E(Ve) = VPV, V,eRY, (71)
t1 =1

is an ectropy function of.

for any to > t1 > to and S(t), t € [t1,t2], is called the Proof. The proof is identical to the proof of Propositions
ectropyof G. 3.4 and 3.6. O

For the next result define

N Remark 4.1:As in Section lll, it can be shown that
Sa(Veo) = the entropy and ectropy functions f¢r defined by (70)
T 4 si(t) — ou(Va(1)) and (71) satisfy, respectively, (62) and (63) as equalities
~  su / l “ dt, (64) for a reversible process and as strict inequalities for an
S()eUe, T>to Jto 53 ¢+ Bivs(t) irreversible process.
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Once again, inequality (62) is Clausius’ inequality forand be given by (71) and (70), respectively, and define
reversible and irreversible thermodynamics; while inequalp_ £ {V, e Ei . e'V, = 8}, where$ > 0. Then,
ity (63) is an anti Clausius inequality. Moreover, for the h 5
ectropy function given by (71) inequality (63) shows that a . o e
thermodynamically consistent large-scale dynamical systerr?%gr%cn(g(vs)) = arég%pax(s(%>) =V = erpt” (73)
model is dissipative with respect to the supply r&t€PS ,
and with storage function corresponding to the systerRurthermoref,, = £(V,*) = %e@— andSpay = S(V) =
ectropy £(V4). In addition, if we letdQ;(t) = [si(t) — P

T B\ _ T ?
oo (Vo(t)]dt. i = 1,....q, denote the infinitesimal amount & P108¢(¢  &r;) — €' plog.c.

of heat received or dissipated by tlhi#h subsystem ofj Proof. The proof is identical to the proof of Proposition
over the infinitesimal time intervadit at the absoluteith 3.7 and hence is omitted. O
subsystem temperatuf@ £ ¢ + Bivsi, then it follows from

(62) that the system entropy varies by an amount Proposition 4.3 shows that when all the energy of a

large-scale dynamical system is transformed into heat at
72) a uniform temperature, entropy is a maximum and ectropy
is a minimum.

Next, we provide a kinetic theory interpretation of the
Finally, note that the nonconservation of entropy and edsteady-state) expressions for entropy and ectropy presented
tropy equations (50) and (51), respectively, for isolate¢h this section. Specifically, we assume that each subsystem
large-scale dynamical systems also hold for the more geg; of the large-scale dynamical syst&his a simple system
eral definitions of entropy and ectropy given in Definitionsconsisting of an ideal gas with rigid walls. Furthermore, we
4.1 and 4.2. The following theorem is a generalization chssume that all subsystergs are divided bydiathermal
Theorem 3.4. walls (i.e., walls that permit energy flow) and the overall

Theorem 4.2:Consider the large-scale dynamical systenflynamical system is a closed system; that is, the system is
G with power balance equation (6) with(t) = 0 and separated from the environment by a rigid adiabatic wall. In

d(V,) = 0 and assume that Axiomg and:) hold. Then ;hishcase,@i-): k{”l IZ = |1, : ._.,qﬁgqvhergni, i =1, G
for everya > 0, ap is a semistable equilibrium state of IS the number of molecules in thiéh subsystem and > 0

1 AT is the Boltzmann constari.e., gas constant per molecule).
(61)' Fgrthermgre,vs(t) - e Pe ‘./%(t(_)) ast — > and . Without loss of generality and for simplicity of exposition
g Pe Vi(to) is a semistable equilibrium state. Finally, ifjet 1 = 1. In addition, we assume that the molecules in
for somek € {1,...,q}, o (Vs) > 0 and oy, (Vs) = 0 if  the ideal gas are hard elastic spheres; that is, there are
and only ifvy, = 0, then the zero solutiof(¢) = 0 to (6) no forces between the molecules except during collisions
is a globally asymptotically stable equilibrium state of (6)and the molecules are not deformed by collisions. Thus,
. . —q there is no internal potential energy and the system internal
__Proof. It follows from Axiom i) thatap € Ry, o > 0, energy of the ideal gas is entirely kinetic. Hence, in this
is an equilibrium state for (6). To show Lyapunov stabilitycage “the temperature of each subsysgenis the average
of the equmbrlur{w stateap Tcon3|der the system shifted {5 gational kinetic energy per molecule which is consistent
ectropy &(Vs) = 5(Vs — ap) " P(Vs — ap) as a Lyapunov yith the kinetic theory of ideal gases.
function candidate. Now, the proof follows as in the proo - ) . . .
of Theorem 3.4 by invoking Axiomii) and noting that Definition 4.3: For a given isolated large-scale dynami-

t>to.

dS(Vi(t)) > Z%

6, (V)) = —6su(V), Ve € RL, & # jiij = 1,..q cal systeng in thermal equilibriumgefine theequilibrium
Pyjy = g and e]Tw(X/"S) =0, VJ;r c RY. ’Al7ternativ£aly,’ in entropyof G by S, = nlog,(c + £ ) — ”102gec and
the case where for some ¢ {1, ...,q}, o1 (Vz) > 0 and the equilibrium ectropyof G by & = %% where

ore(Vs) = 0 if and only if vy = 0, global asymptotic eV, denotes the total steady-state energy of the large-
stability of the zero solutior¥(¢) = 0 to (6) follows from scale dynamical syster§ and n denotes the number of
standard Lyapunov arguments using the system ectropyolecules inG.

1 : .
£(Vi) = 5V, PV; as a candidate Lyapunov function. (] Note that the equilibrium entropy and ectropy in Defi-
nition 4.3 is entirely consistent with the equilibrium (max-
It follows from Theorem 4.2 that the steady-state valuémum) entropy and equilibrium (minimum) ectropy given
of the energy in each subsystefa of the isolated large- by Proposition 4.3. Next, assume that each subsysgieis
scale dynamical systeghis given byV ., = erippeTVS(to) initially irll therma:jl| equilibrlium. Fudrthermo;]e, for (Iaach sutl)-
ik il . _ 1 T ; system, letog; andn;, i = 1, ..., q, denote the total interna
VthCh implies thatus; oo = = Vi(to) or, equivalently, energy and the number of molecules, respectively, in the
Tioo = Bivsico = @ry€' Vi(to). Hence, the steady stateith subsystem. Hence, the entropy and ectropy ofithe
temperature of the isolated large-scale dynamical systeshbsystem are given kYy; = n;log,(c+vsi/ni) —n;log, c

G given by Ti,, = e%peTVs(to)e is uniformly distributed andé&; = 2, respectively. Next, note that the entropy and

over all the subsystems @. This phenomenon is known the ectropy of the overall system (after reaching a thermal
astemperature equipartitiom which all the system energy equilibrium) are given by, = nlog, (c+ &%= )—nlog, c

is eventually transformed into heat at a uniform temperature L6V, )2 ) n )

and hence all natural processes (system motions) wouddld & = 5-—=—==>~. Now, it follows from the convexity

cease. of —log,(-) and conservation of energy that the entropy of
G at thermal equilibrium is given by

Proposition 4.3: Consider the large-scale dynamical sys
tem G with power balance equation (6), 16t: R} — R
and S : @‘i — R denote the ectropy and entropy &f

etV
S. = nloge<c+ nsoo)—nlogec
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q q .
n; Usi (77) that for each subsystem the power balance equation
= nl il R N i1 )
108, [; <C+ T )] E_;” 08¢ € satisfies
— = .
q q .
> 0 log, <c + v“) ~ Y " nilog, ¢ Osi() + oivsi() + Y oig[vsi(t) — vy ()] = 5:(1)(79)
=1 " i ‘ =1, j#i
=1 i=1

for all ¢ > 0. Note that@(Vb) £ 3:1,#1‘ oij[vsi —

q
— 74 —q
le (74) vsj], Vs € Ri, i = 1,...,q, represents the energy flow
= from the ith subsystem to all other subsystems and is
Furthermore, the ectropy of at thermal equilibrium is given by the sum of the individual energy flows from the

given by ith subsystem to thegth subsystem. Furthermore, these
energy flows are proportional to the energy differences
1(e"Vo0)? of the subsystems; that isy; — vs;. Hence, (79) is a
& = 3 power balance equation that governs the energy exchange
4 ) e q ) among coupled subsystems and is completely analogous to
_ Z log 1 Z (njvsi — nivg;) the equations of thermal transfer with subsystem energies
—~ 2 n, — nin; playing the role of temperatures. Furthermore, note that
i=1 =1 j=it+l sinces;; >0, i # j, i, = 1, ..., q, energy flows from more

energetic subsystems to less energetic subsystems which is
consistent with the second law of thermodynamics which
requires that heat (energyhustflow in the direction of
lower temperatures.

. (75) The next proposition is needed for developing expres-
1 sions for steady-state energy distributions of the large-scale

It follows from (74) (respectively, (75)) that the equilib- dynamical systemj with linear power balance equation

rium entropy (respectively, ectropy) of the system (gas /1) N _

G is always greater (respectively, less) than the sum of Proposition 5.1 ( [24]): Consider the large-scale dy-
entropies (respectively, ectropies) of the individual subsyglamical systemg with power balance equation given by
temsG;. Hence, the entropy (respectively, ectropy) of thd77). Supposé/o >> 0 and S(t) >> 0, ¢ > 0. Then the
gas increases (respectively, decreases) as a more evesfjutionVi(t), t > 0, to (77) is nonnegative for atl > 0 if
distributed (disordered) state is reached. Finally, note thand only if W is essentially nonnegative.

it follows from (74) and (75) thaS. = > iz Si and Next, we develop expressions for the steady-state energy

Ee=2 i &ifandonlyif %t = 22, i i,j=1,..,q distribution for the large-scale dynamical systegnfor

that is, the initial temperatures of all subsystems are equalne cases where supplied system power) is a periodic
function with periodr > 0; that is,S(t+7) = S(¢), t > 0,

and S(t) is constant; that isS(t) = S. Define e(t) =
V. THERMODYNAMIC SYSTEMS WITH LINEAR ENERGY  Vs(t) — Vs(t +7), t > 0, and note that
EXCHANGE é(t) = We(t), e(0)=Vs(0)—Vi(r), t>0. (80)

In this section we specialize the results of Section IIHence, since
to the case of linear energy exchange between subsystems;
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_ Wt
that is, o (Vi) = 040, 01 > 0,4, = 1,...,q. In this e(t) =e""[V5(0) = Vi(7)], t=>0, (81)
case, the vector form of the energy balance equation (Qnd 1 is semistable, it follows fromv) of Lemma 2 of
with ¢, = 0, is given by [23] that
T T lim e(t) = lim [V4(t) — Vi(t +
VAT) = Vi) + [ WViydt+ [ Sty A ety = g = e )

0 0
=0, (76)

(I, = WIW#)[V4(0) — Vi(7)], (82)

which represents a constant offset to the steady-state error
or, in power balance form, energy distribution in the large-scale dynamical system
. For the case wher&(t) = S, 7 — oo and hence the
Va(t) = WV(t) + S(t), Vi(0)=Vy, t>0, (77) following result is immediate. This result first appeared in

_ [23].
whereW € R7* is such that Proposition 5.2: Consider the large-scale dynamical sys-
S g, 0=, tem G with power balance equation given by (77). Suppose
Wi = { ngl S ) ﬁ (78) that Vio >> 0 and S(t) = S >> 0. Then Vi, 2
R lim;_, o Vi(t) exists if and only ifS € R(W). In this case,
Note that (78) implieszgzl W(L i) = —0jj <0, = Vioo = (Iq _ WW#)‘/SQ _W#*s9 (83)

1,...,q, and hencéV is a semistable compartmental matrix.

If o;i > 0,4 = 1,...,q, then W is an asymptotically andV;., >> 0. If, in addition, W is nonsingular, the,
stable compartmental matrix. An important special case @xists for all.S >> 0 and is given by

(77) is the case wher&l is symmetric or, equivalently, .

0ij = 0jiy i # J, i,§ = 1,...,q. In this case, it follows from View =—W7'S. (84)
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Proof. Note that it follows from Lagrange’s formula that the pointz £ [z1, ..., z,,]T € V and time instant > t,, let
the solutionV(t), t > 0, to (77) is given by $:V xRy x R* — R denote the system energy flow
" within the continuumy; that is, (;S(xm(x,t),Vu(%Tt)) =
(1) = e, W(e-s) > 0. (61 (2, 0(x, ), Vo, 1)), ..oy (2, 0(x, ), Vo, ))]T,
Volt) = e VbO+/0 c S(s)ds, ¢20 (85) where ¢;(-,-,-) denotes the energy flow through a unit
rea per unit time in the; direction for alli = 1,...,n
dVu(z,t) £ [Div(a,t),..., Dyo(z,t)], = € V, t > tg,
denotes the gradient of(-,¢) with respect to the spatial
. . variable z, and lets : V x Ry — R, denote the energy
Next, we specialize the result of Proposition 5.2 t%Pheat) flow into a unit volume per unit time from sources
the case where there is no energy dissipation from eagiformly distributed overV. Hence, a power balance
SU_bSyStef%@i of G; thatis,o;; = 0, i = 1,...,q. Note thatin - equation over a unit volume within the continuum
this casee” W = 0 and hence rank’ < g—1. Furthermore, inyolving the rate of energy density change, the external
if S =0 it follows from (77) thate"V;(¢t) = e"WV,(t) = supplied power (heat flux), and the energy (heat) flow
0, ¢ > 0, and hence the total energy of the isolated largewithin the continuum yields
scale dynamical systeif is conserved.

Now, the result is a direct consequence of Proposition 5,
andiv), vii), viii), andixz) of Lemma 2 of [23]. O

ov(x,t
Proposition 5.3: Consider the large-scale dynamical sys- (3 LU o(x,v(z,t), Vo(z,t)) + s(z,1),
tem G with power balance equation given by (77). Assume ¢ > 89
rankWW =g —1,0; = 0,7 =1,....,q, and We = 0. If t>to, (89)
Vio >> 0 andS = 0, then the steady-state energy distribu- v(z,t0) = wvo(z), © €V,

tion V; , of the isolated large-scale dynamical systéns o(z,v(x,t), Vo(z,t) - a(z) >0, =€ dV, t>tg, (90)
given by B R B
where V denotes the nabla operatai(z) denotes the
14 outward normal vector to the bounda®y (at x) of the set
Vioo = | = szio e. (86) Vv, “.” denotes the dot product iR™, andwvy(-) € X is a
i given initial energy density distribution. The power balance
Proof. The proof is similar to the proof of Theorem 3.4 (Conservation) equation (89) describes the time evolution
with w(V;) = WV,  of the energy density(z,t) over the region) while the
boundary condition in (90) involving the dot product implies
, i ... that the energy of the syste can either be stored or
Finally, we examine the steady-state energy distributiogjssipated but not supplied through the boundary)of
for the large-scale dynamical systeghin case of strong Fyrthermore, we denote the energy density distribution over
coupling between subsystems; thatds;, — oo, i # j. FOr  the set) at timet > t, by v; € X so that for each
this analysis we assume thiat given by (78) is symmetric; ; > ¢ the set of mappings generated by(z) = v(z, t)
that is,oy; = 0y, @ # j, i,j = 1,....q, andai; > 0,1 = for everyz € V gives the flow ofG. We assume that the
1,...,q. Thus,—W is a nonsingulan/-matrix for all values  fynction'¢(-, -, -) is continuously differentiable so that (89),
of 0yj, i # j, 4,j =1,...,q. Moreover, in this case it can (90) admits a unique solution(z,t), = € V, t > t,, and
be shown that if > — 1 aso;; — 00,4 # j, andow —  v(-,t) € X, t > tg, is continuously dependent on initial

oo, k # 1, then " energy density distributiomg (), € V. It is well known
1 that if (89) is strictly parabolic, andy(-) is a C function

lim W !=_-———eé€". (87) with compact support and its derivative is sufficiently small

04500, i#] Do i on [tg, 00), then the classical solution to (89), (90) breaks

H in the limit of st ling the steadv-st tdown at a finite time. As a consequence of this, one may
ence, dl'nt 'bet' 'rrg} of s rong cgzpt;ng € steady-stalgnly hope to find generalized (or weak) solutions to (89),
energy distributionV; .. given by (84) becomes (90) over the semi-infinite intervalty, co), that is, L

el functionsu(-, -) that satisfy (89) in the sense of distributions.

qg} € (88) As in Section lll, to ensure a thermodynamically con-
=1 sistent energy flow infinite dimensional model we require
which implies energy equipartition. This result first apthe following axioms analogous to Axioms and ii).
peared in [23]. Axiom i)’: For everyz € )V and unit vectoru € R",
¢(z,ve(x), Voe(z)) - u = 0 if and only if Vu,(z)u = 0.
Axiom iz)": For everyxz € V and unit vectoru € R",
VI. CONTINUUM THERMODYNAMICS d(z,vi(x), Vo (z)) - u > 0 if and only if Vv (z)u < 0,
i ) _ and¢(z, v¢(x), Vo (z))-u < 0 if and only if Vo, (z)u > 0.

In this section we extend the results of Section Il to theNote that Axiomi)’ implies thate;(z, v; (), Vi (x)) = 0
case of continuous thermodynamic systems wherein theand only if Dvi(z) = 0,2 € V,i = 1,...,n, while
subsystems are uniformly distributed overradimensional Axiom ii)" implies that ¢;(z, vi(z), Vv (z)) Dive(z) <
space. Since these systems involve distributed subsystemys: < V,i = 1,..,n, which further implies that
they are described by partial differential equations an@o,(x)¢(x, vi(z), Vui(z)) < 0,2 € V; that is, energy
hence are infinite dimensional systems. Specifically, wgheat) flows from regions of higher to lower energy densi-
consider continuous dynamical systegisdefined over a ties. If s(x,t) = 0, then Axioms:)’ andii)’ along with the
compact connected setC R™ with a smooth (at least'§  fact thate(z, v(z, t), Vo(x, t)) - A(z) > 0, z € OV, t > to,
boundarydy and volumeV,,,. Furthermore, lett’ denote imply that at a given instant of time the energy of the
a space of two-times continuously differentiable scalagynamical systemG can only be transported, stored, or
functions defined o, letv(x,t), wherev : VxR, — Ry, dissipated but not created. Next, we establish the classical
denote the energy density of the dynamical systgmt Clausius inequality for our thermodynamically consistent
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infinite dimensional energy flow model given by (89),andc > 0, is called theentropyof G.

(90). For the remainder of this sectiolV’ represents an  Thaorem 6.1:Consider the dynamical systeghwith the

infinitesimal volume element of, S, denotes the surface power balance equation (89), (90) and assume that Axiom
enclosing) and dSy denotes an infinitesimal boundary ;; )’ holds. Then the functios : X — R given by

element.

Proposition 6.1: Consider the dynamical syste¢hwith _ _
the power balance equation (89), (90) and assume that S(or) vloge(c+”t(l‘))dV Vyol log,, c, (95)

Axiom i:)" holds. Then, for every initial energy density )
d|str|but|on 10(+) € X, tr > to, and's(t), ¢ € [to, %], such " IS an entropy function fog.

that vy, (z) = vo(x), Proof. It follows from the Green-Gauss theorem, Axiom
11)’, and (95) that
/ /Vc—f—v( o Sy — / L o
te . v c+o(x,t ot
/ oz, v(z,t), Vo(z,t)) (x)dsv dt < 0,(91) v (_VF¢($) o) et + s(0.0)
tg JOV C+U(Ivt) — / y s U)y ) 5 dy
c+v(x,t)

wherec > 0 andv(z,t), © € V,t > tg, is the solution to
(89), (90). B Vo(z,t)é(z,v(x,t), Vo(z,t))
dy
925

Proof. It follows from the Green-Gauss theorem and (c+v(z,t))?

Axiom )" that (z,v(z,t), Vo(z,t)) - 7(x)
te oV ¢+ v(z,t) dSv
/ / ————dvdt s(x, t)
to % C+U €T, t +/ mdv
d(z,v(z,t), Vo(x,t)) - n(zx) 4 ’
/o oV c+o(z,t) dovdr _ = q(_t)' _ (26)
/ / v a;t) YV b, 0(t), Vv(xyt))dth Now, integrating (96) oveft;, t2] yields (93). O
cto(@,1) Next, we establish a dual inequality to inequality (91)
B /tf d(z,v(z,t), Vo(z,t)) - n(x) dSudt that is satisfied for our thermodynamically consistent energy
v Jov c+v(z, t) v flow model.
¢+ v(z, t) Proposition 6.2: Consider the dynamical syste¢hwith
:/1 . () the power balance equation (89), (90) and assume that
¢+ vo() Axiom i)’ holds. Then, for every initial energy density
/ o(z,v(z,t), Vo(z,t)) -ﬁ(x)ds d&t g:sttrlbutmn vo(+) € X, tr > to, ands(t), ¢ € [to, t¢], such
o Jov C+M%0 Y Atvy (z) = vo(),
te
/ / Volz, )élz, v(@, 1), Volz, ) g, / / (. £)s(z, £)dVdt
t (c+v(z,t))?
te LA te
_/ ¢(z,v(z, 1), Vo(z, 1)) n(x)dsvdt _/ / o(z, )z, v(x, 1), Vo(z, b)) - Alz)dSydt
to Jov c+v(z,t) to Jov
/ / Vou(z, t)p(z,v(z,t), Vv(x,t))dth 20, (97)
(c+v(z,t))? wherew(z,t), x € V,t > tg, is the solution to (89), (90).
(92) Proof. It follows from the Green-Gauss theorem and
which proves the result. o Axiom i)’ that

te
Next, we give the entropy definition for continuous / / v(z,t)s(x,t)dVdt
dynamical systems. to

te
Definition 6.1: For the dynamical systeng with the _ / / B
power balance equation (89), (90), the functidn X — R oy v(z, )¢z, v(z,t), Vo(z,t)) - i(z)dSydt
satisfying te
to / / dth
Stou) 2 Sw) + [ a(o), ) I
ty
for all s(t), t > to, andty > t1 > to, where /to / v(@, )V - §(z, v(,t), Vo(z, 1))dVde
t) 2 /Mdv - tf/ oz, ) (z, v(z, 1), Vo(z, b)) - i(z)dSydt
q - v C + v(x,t) " oy P ) s b))y ) \%
ng(xw(xJ),Vu(%t)) ﬁ(x) _/ 1,2 X 1,27,
- et o D) dSy (94) =/, [20%(z, te) — ()] AV

413



A that infinitesimal increment in the entropy ¢f over the
+/to /avv d(@,v(@, 1), Vo(z, 1)) - 2(@)dSydt infinitesimal time intervaldt satisfies

. Vo( t), Vo(z, t))dVdt dS(v,) > U s(@,?) dv} at
v _AHY
/t /v v( o(z,v(z,t), Vo(z,t)) ) =2 b et o(@, )
Qb(xa U(xﬂ t)a VU(I, t)) i ﬁ(x)
/ / ¢z, v(z,t), Vo(z,t)) - n(z)dSydt - { . e+ o(z,1) dSy | dt, (103)
where the shifted energy density- v;(x) plays the role of
= —/ / Vo(z, t)d(x,v(z,t), Vo(z,t))dVdt (absolute) temperature at the spatial coordinatnd time
t. For an isolated dynamical systefh that is, s(x,t) =0
>0, (98)  and ¢(z, v(z,t), Vo(x,t)) - n(z) = 0, = € 9V, (93) and
which proves the result. 0O (99) yield the fundamental inequalities
S(vi,) 2 S(vy,), t2 >ty (104)
Definition 6.2: For the dynamical systeng with the and
power balance equation (89), (90), the functfon X’ — R
satisfying E(ve,) < E(vyy), ta >t1. (105)
. Hence, for an isolated infinite dimensional systéhthe
Evr,) < E(viy) + VV“/ g(t)dt, (99) entropy increases if and only if the ectropy decreases. It is
. important to note that (105) also holds in the case where
for all s(t), t > to, andty > ¢, > to, where o(z,v(z,t), Vu(z,t)) - n(z) £ 0, z € IV, whereas (104)
does not necessarily hold in that case.
qt) = /Vv(a?vt)s(%t)dv The next theorem shows that the infinite dimensional

thermodynamic energy flow model has convergent flows
_ n " ) - A(z)dSy.(100) to Lyapunov stable uniform equilibrium energy density
/av v(x, t)p(z,v(z,t), Vo(z,t)) - n(z)dSy,(100) distributions determined by the system initial energy den-
. sity distribution. However, since our continuous dynamical
is called theectropyof g. ) ) systemg is defined on the infinite dimensional spagg
Theorem 6.2:Consider the dynamical systeghwith the  bounded orbits off may not lie in a compact subset of
power balance equation (89), (90) and assume that Axiormd which is crucial to being able to invoke the invariance

1)’ holds. Then the functiod : X — R given by principle for infinite dimensional dynamical systems [46].
v This is in contrast to the dynamical systghtonsidered in
E(vy) = vol / U% (z)dV, (101) the previous sections arising from a power balance (ordinary
2 Sy d|fferent|al) equation defined on a finite dimensional space
is an ectropy function fog. R wherein local boundedness of an orbit @fensures
Proof. It follows from the Green-Gauss theorem, AX|omthat the orbit belongs to a compact subsefRdf. Hence,
i)', (90), and (101) that to ensure that bounded orbits Gflie in compact sets we

construct a larger spacH O X as a Sobolev space so

£( _ d that by the Sobolev embedding theorem [47], [48] there
(v) = Vvol 4 exists a Banach spad8 > H such that the unit ball in
‘H belongs to a compact set ifi; that is, H is compactly
S Vol/ v(a:,t)V~¢(z,v(x,t),Vu(z,t))dV embeddedn B. In this case, it follows from Lemma 3
of [46] that a bounded orbit of the dynamical syst&m

v
defined onH has a nonempty compact, connected invariant
+Vvol | v(z,t)s(z,t)dV omega limit set inB3. For the next result, the JLoperator
v norm || - ||, on X is used for the definitions of Lyapunov,
— —Vvol/ o(z, (2, v(z, 1), Vo(z, 1) - a(z)dS, ~ Semi, and asymptotic stabiIiAty. Furthermore, we introduce
oV the Sobolev space¥Vi(V) £ {v; : V — R : v €

Cl(V) N LQ(V), (V”Ut)T S L2( )}co and WO(V) £ {’Ut :
Vo [ Vel 06,0020, Vol )0V VLR SO 0 Lo S L) where e
denotes completion of-} in Lo in the sense of [48], with
—|—VVO1/ v(x,t)s(x, t)dV norms
% 1
< Vvarg(t). (202) iyl 2 { / (vf(x) + V() (Vvt(x))T) dV] ,
Now, integrating (102) ovefty, t2] yields (99). O v

(106)
Inequality (93) is precisely Clausius’ inequality for re- A 9 2
versibcfe ar)(d( irr)everFs)ibIe th}érmodynamicsqas gpplied tlvellwg = el = [/ U (x)dv} ’ (107)
infinite dimensional systems; while inequality (99) is an v
anti Clausius inequality that shows that a thermodynamiefined onWj (V) and W3(V), respectively, where the
cally consistent infinite dimensional dynamical system igradient Vu,(z) in (106) is interpreted in the sense of
dissipative with storage function corresponding to the sys generalized gradient [48]. Note that since the solutions
tem ectropy. In addition, note that it follows from (93)to (89), (90) are assumed to be two-times continuously
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differentiable functions on a compact 3¢t it follows that x € 9V, that
v (), t > to, belongs to bothVi (V) and W9 (V).

. Ov(z,t
Theorem 6.3:Consider the dynamical systeg with $&(v) = /v(x,t)MdV
power balance equation (89), (90) witliz,¢) = 0 and % 5 ot
oz, v(z, 1), Vu(z,t)) - n(x) = 0, x € JV. Assume that T
Axiomsi)), ii)’ hold and + Vvv(x’t)ﬁ (Vo(z,1))" dV
8 =
Vo)V ), ) < 0 | 9ot 06w vt 0). Vo(a)av
zeV, v eW,(V), (108) - / v(z, t)(x,v(x,t), Vo(z, 1)) - d(x) dSy
oV
whereV? £ V.V denotes the Laplacian operator. Then for ov(z,t)
everya > 0, v(z,t) = « is a semistable equilibrium state +/ ot Dj(ayv(z,t) dSy
of (89), (90). Furthermorey(z,t) — = [, vo(z)dV as av
t — oo for every initial energy density distributiony(-) € +/ V2u(z, )V - ¢(x,v(x, t), Vo(z,t))dV
W; (V) and everyz € V; moreover, ;- [, vo(z)dV is Jv
a semistable equilibrium distribution State of (89), (90). :/ ¢ " Md
Finally, if s(x,t) = 0 and there exists at least one point VVv(x, Jo(@, v(z, ), Vo, t))dV
xp € 0V such thate(zp, vi(xy), Vor(zp)) - i(zp) > 0 v (x,t)
and ¢(zp, ve(zp), Vo (xp)) - n(zp,) = 0 If and only if +/ 5 Dy zyv(z,t) dSy
ve(zp) = 0, then the zero solutiow(z,t) = 0 to (89), oV
Eggg |?9%)globally asymptotically stable equilibrium state of +/ V20(2, )V - bz, v(z, t), Vo(z, t))dV,
L . V
Proof. It follows from Axiom i)’ thatv(z,t) = «, a > 0, (112)

is an equilibrium state for (89), (90). To show Lyapunov . . o
stability of the equilibrium state(z,t) = « consider the whereD;,)v(z,t) = Vo(z, t)i(x) denotes the directional
system shifted ectropy¥(v;) = %fv(vt(z) — a)?dy = derivative ofv(x,t) along (xz) at z € JV. Next, note
Lllve — |7, as a Lyapunov function candidate. Now, itthat for the isolated dynamical systegnwith the boundary

i condition ¢(z, v(x,t), Vo(z,t)) - n(z) = 0,z € 9V, it
follows from the Green-Gauss theorem and Axiaiy that follows from Axiom )", with U = (), that Dy, v (x, £) =

. 0,z € 9V. Hence, it follows from Axiomiz)’, (108),
ov(zx,t) .
&) = | (v(@,t) —a)—p—dV and (112) that&(v;) < 0,t > to, for any vo(-) €
v W3 (V). Furthermore, since the functiodis(v;) and&y(vy)
- . are nonincreasing and bounded from below by zero, it
/v(x’t)v ¢(@,v(z,t), Volz,1))dV follows that & (v¢) and &y(v,) are bounded functions for

every vo(-) € Wi (V). This implies that the positive orbit
+a/ V- o(z,v(z,t), Vo(z,t)dV vyt (vg) & {v(x,t) : © € V, t € [ty,00)} of G is bounded

v in W3 (V) for all vo(-) € Wi (V). Hence, sinceVs (V) is

= / Vou(z, t)(x,v(z,t), Vo(z,t))dV compactly embedded g (V), it follows from Sobolev’s
% embedding theorem [(4)1(7],) [48] that' (vg) is contained in

] . a compact subset 0fV; (V). Next, define the set®y,; =

Avv(x’t)¢(x’”(x’t)’w(l’t)) ) ASy e WHV) : E4(u) < n} and Doy = {u € WE(V) -

Eo(vt) < n} for some arbitraryn > 0. Note thatD,,:

+a . ¢z, v(x, 1), Vo(z, 1)) - a(r) dSy and Dy, are invariant sets with respect to the dynamical
systemG. Moreover, it follows from the definition of; (v;)
= / Vo(x, t)(z,v(z,t), Vo(x,t))dV and&y(v;) that Dyy; and D, are bounded sets W, (V)
< OV (109) and W9 (V), respectively. Next, lelR = {v; € 5W3 :

Eo(ve) = 0} = {vr € Dyyy : Vr(z)d(z, ve(2), Vor(z)) =

which establishes Lyapunov stability of the equilibrium0, = € V}. Now, it follows from Axioms i)’ and i)’
statev(z,t) = a. that R = {v; € 51,\;3 i Vu(x) = 0,z € V} or
Next, to show semistability of this equilibrium state,p _ {v, € WO(V) : w(z) = 0,0 < o < )

consider the following (scaled) ectropy and ectropy-like Vvol
Lyapunov functions 9 ( ) Py Py that is, R is the set of uniform energy density distributions

which are the equilibrium states of (89), (90). Since the set

_ 2 0 ‘R consists of only the equilibrium states of (89), (90), it
Eo(vr) el ve € Wa V), (110)  Siows that the largest invariant sg¢! contained inR is
Ei(vy) = ||Ut||)2/v2lv v € Wa (V). (111) given by M = R. Hence, noting that belongs to the set

of generalized (or weak) solutions to (89), (90) defined on
It follows from (99) with s(z,t) = 0 that &(v;) is a R it follows from Theorem 3 of [46] that for any initial
nonincreasing function of time for allg(-) € W9(v). €nergy density distribution(-) € Dy, v(z,t) — M
Furthermore, it follows from the Green-Gauss theorem am@s ¢t — oo with respect to the nornjl - [0 and hence
the boundary conditioR(z,v(x,t), Vu(z,t)) - i(xz) =0, wv(x,t) = « is a semistable equilibrium state of (89), (90).
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Moreover, sincen > 0 can be arbitrarily large but finite  Remark 6.1:Condition (108) physically implies that for
and & (v;) is radially unbounded, the previous statemenan energy density distribution;(x), = € V, the energy
holds for allv(-) € W3(V). Next, note that since, by the flow ¢(x,v(z), Voi(z)) atz € V is proportional to the
divergence theorem, energy density at this point. Note that for a linear energy
P flow model; that is,¢(z, v, (), Vo () = —k [V (z)]”,
/ v(z,t) dy = _/ V- ¢(z,v(z,t), Vo(z,t))dy ~ Wherek > 0is a conductivity constant, condition (108) is
y Ot v e ’ automatically satisfied with-£[V2v,(x)]? <0, z € V.
_ s Finally, we give an analogous proposition to Proposition
— Jav oz, v, 1), Volz, 1)) - i(z) dSy 3.7 for infinite dimensional systems.
=0, (113) Proposition 6.3: Consider the dynamical systeghwith
. . power balance equation (89), (90), et X — R andS :
it follows that [, v(z,¢)dV = [, vo(z)dV, t > to, which ¥ R denote the ectropy and entropy @fand be given

implies thatv(z,t) — 3= [, vo(2)dV ast — oco. by (95) and (101), respectively, and defife 2 {v, € X :
Finally, we show that ifs(x,#) = 0 and there exists at Jy v+(z)dV = B}, wheref > 0. Then,

least one point:;, € 9V such thatp(zp, vi(zp), Vue(zp)) - 3

ﬁ(xp) > 0 and (,ZS(IP,’Ut(Ip),V’Ut(pr)S) . ﬁ(xp) =0 if and argmin((‘:(vt)) = arg InaX(S(vt)) = Uz‘ = . (115)

only if v,(z,) = 0, then the zero solutiom(z,t) = 0 to vt€De vt €D Vvol

(89), (90) is a globally asymptotically stable equilibrium . 2 )
state. Note that it follows from the above analysis witturthermore &min 2 E(vy) = % and Spax = S(vf) =
a = 0 that the zero solutionv(z,t) = 0 is semistable V,,[log,(c+ vi) —log, .
and hence a Lyapunov stable equilibrium state of (89), Proof. Th vl f is similar to th fof P i
(90). Furthermore, it follows from Axiomi:)’ that if 37r00d'h € proot IS S|(rjn| ar to the proot of Froposition
Djyz,yv(wp,t) > 0 for z, € 0V and somet > ty, > and hence 1 om|.tte ' _ o
then the energy density decreases at this point; that is,We close this section by noting that the results of this
‘“’”(gf*“ < 0 and Dy (g, v(xp, t) 9v(pit) o Alterna- Section can be easily generalized to the case where the
t n(zp ) .

3‘*8,“(%7t) energy density at a point € V is proportional to the

tively, if Dﬁ(w5)v($tr”t) < 0, then === > 0 and  (emperature; that i€ (z, t) = 5(z)v(z, t), whereT'(z, t) is
Diy(zyv(2p, t) vizpt) Thus, it follows from Axiom the (empirical) temperature distribution over the continuum

i), (P108), and (112) thaf, (v;) is a nonincreasing function and3(z) is the reciprocal of the specific heat at the spatial
of time for all vy(-) € Wi (V) and since; (v;) is bounded coordinatez. In this case, analogous results to the results of
from below by zero, the positive orbi1/+(v0) of G is Section IV can be easily derived for the infinite dimensional
bounded inW.(V). Hence, sinceW:(V) is compactly thermodynamic model. Finally, it is important to note
embedded itV (V) it follows from Sobolev’s embedding that the results of this section apply to an arbitrary (not
theorem [47], [48] thaty* (v,) is contained in a compact necessarily Cartisiany-dimensional space. In particular,
subset of9(V). Next, consider the (scaled) ectropy Lya—We could consider a coordinate transformatipr- Y (z),

: 2 o - whereY(0) =0andY : V — R” is a diffeomorphism in
punov functioréy (v;) and note that the Lyapunov denvatlvethe neighborhood of the origin, so thatis defined on the

is given by image ofV C R™ underY'. In this case however, the nabla
L dv(x, t) and gradient operators need to be redefined appropriately.
R R
1%
=~ [ w07 o v(a.0), Vol )V ViI. Conetusion
v In this paper we have attempted to outline a general sys-
= / Vo(z, t)o(z, v(z, t), Vo(z,t))dV tem theory framework for thermodynamics. The proposed
) macroscopic mathematical model is based on a nonlinear

R (finite and infinite dimensional) compartmental dynamical
—/ v(z, t)p(x,v(z,t), Vo(z,t)) - 2(z)dSy  system model that is characterized by energy conservation
v laws capturing the exchange of energy between coupled
<0. (114) macroscopic subsystems. Specifically, using a large-scale
N = .5 P systems perspective, we developed some of the fundamental
Eurthermore, leR = {v, € Dwyg : Eo(ve) = 0} = {v; € properties of irreversible thermodynamic systems involving
Dyyg © Vu(z)g(z,vi(z), Vur(z)) = 0, @ € VEN{v: € conservation of energy, nonconservation of entropy and
ﬁwg o o(x,ve(z), Vo () - n(x) = 0, = € OV}. Now, ectropy, and energy equipartition. This model is formulated

; ; N . _ = . in the language of dynamical systems and control theory
since Axiomsi)’ and i)’ hold, R = {v; € Dyy and it is argued that it offers conceptual advantages for
Vul(z) = 0, 2 € V}n{u € Dyy : w(zy) = describing general thermodynamic systems.

0 for somezx, € 9V} = {0} and the largest invariant set
M contained inR is given by M = {0}. Hence, it follows

from Theorem 3 of [46] that for any initial energy densitygcjence in the language of dynamical systems theory. The
distribution vy () € Dy, v(x,t) — M = {0} @8t — o0 |]aus of thermodynamics reign supreme among the laws of
with respect to the nornf - ||,ye which, sincen > 0 is  Nature and it is hoped that this paper will help to stimulate
arbitrary and¢&; (v;) is radially unbounded, proves global increased interaction between physicists and dynamical sys-
asymptotic stability of the zero equilibrium state of (89)tems and control theorists. Besides the fact that irreversible
(90). 0O thermodynamics plays a critical role in the understanding of

416

The underlying intension of this paper has been to present
ne of the most useful and general physical branch of



our expanding universe, it forms the underpinning of severgi]
fundamental life science and engineering disciplines includ-

ing biological, physiological, and pharmocological systemd22]
chemical reaction systems, queuing systems, ecological

systems, demographic systems, telecommunication systers!
transportation systems, network systems, and power systems
to cite but a few examples. [24]

Finally, future work will involve system-theoretic formu-
lations of microscopic theories of irreversible thermody-
namics and nonequilibrium statistical mechanics and st o
tistical quantum mechanics. The newly developed notio 1
of ectropy proposed in this paper involving an analytical
description of an objective property of matter can potentially.g;
offer a conceptual advantage over the several subjective
guantum expressions for entropy proposed in the literature
(e.g., Dabczy entropy, Hartley entropy,&Ryi entropy, von [27]
Neumann entropy, infinite-norm entropy) involving a mea-
sure of information. An even more important benefit of thé28l
dynamical system representation of thermodynamics is t@%
potential of developing a unified classical or quantum theo 1
which encompasses both mechanics and thermodynam'g@
without the need for statistical (subjective or informationaIJ
probabilities.

[31]
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