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A Factorization Approach to the Analysis of Asynchronous
Inter connectedDiscrete-Time Systemswith Arbitrary Clock Ratios

Cédric LorAND and PeterH.BAUER

Abstract— This paper presents a model for distributed
feedback systemsthat operate at almost identical sampling
rates. A Toeplitz model approachis usedin order to capture
the effect of small synchronization errors. In previous works,
a similar model was usedto formulate necessaryand sufficient
stability conditions, under the simplifying assumptionthat the
frequency ratios of the subsystemsinvolved have a special
rational form. In this sequel this assumption is lifted, by
proposinga factorization of the feedbackmatrix that holds for
arbitrary clock frequencyratios. This factorization property
constitutesthe first necessarystep towards the generalization
of the previous stability resultsto the general caseof arbitrary
clock frequencyratios. Furthermor e, this generalization may
enablethe derivation of simple stability and robustnesscriteria
in the presenceof time-varying uncertain synchronization
errors. This paper presentsa model for distrib uted feedback
systemsthat operate at almost identical sampling rates. A
Toeplitz model approach is used in order to capture the
effect of small synchronization errors. In previous works, a
similar model was usedto formulate necessaryand sufficient
stability conditions, under the simplifying assumptionthat the
frequency ratios of the subsystemsinvolved have a special
rational form. In this sequel this assumption is lifted, by
proposinga factorization of the feedbackmatrix that holds for
arbitrary clock frequencyratios. This factorization property
constitutesthe first necessarystep towards the generalization
of the previous stability resultsto the general caseof arbitrary
clock frequencyratios. Furthermor e, this generalization may
enablethe derivation of simple stability and robustnesscriteria
in the presenceof time-varying uncertain synchronization
errors.

I. INTRODUCTION

In classicaldiscrete-timesystemsit is oftenassumedhat
all systemcomponent$ave the sameclock frequeng, and
areworking synchronoushy1], [2]. However, in distributed
andnetworked systemsdifferentcomputersalwaysoperate
at different clock frequencies,even though they might
only differ very slightly from eachother The problem of
synchronizatiorhasthereforereceved a lot of attentionbut
mostwork approacheshe problemfrom a communication
viewpoint [3], [4]. There have beena small number of
results that consider the synchronizationproblem from
a systemtheoretic viewpoint [5-9], but most results are
basedon the assumptionof a rational frequeng ratio.
This papertakes a Toeplitz matrix approachto the syn-
chronizationproblembetweertwo communicatingsystems.
The paperbuilds on previous results[7], [8] on Toeplitz
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matrix basedmodelsandlifts the unrealisticassumptiorof
clock frequeng ratios having a specialrational form. This
generalizatiorof the Toeplitz modelis a first steptowards
the derivation of stability conditionsfor distributedsystems
with uncertainnon-identicalclock frequencies.

This paperis structuredasfollows: section2 introducesa
modelfor the caseof two interconnectedliscrete-timesys-
temswith arbitrarynon-identicalclock frequenciesSection
3 presentsa timing modelfor the switchinginstantsof the
two systems. A Toeplitz matrix basedapproachto model
the overall systemdynamicsis introduced.In section4, a
factorization property of the Toeplitz model is proposed.
Finally someconcludingremarksare given in section5.

II. MODEL FOR ASYNCHRONOUS DISCRETE-TIME
FEEDBACK SYSTEMS

A. Notations

Figure 1 shavs a closedloop with two LTI discrete-time
systemsthat are working asynchronouslyThe systemin
the forward path hasthe clock period T}, while the onein
the feedbackpath operateswith a clock period 5.

U(z1 Y(z1
z1=e"

E(zl;j s

E*(z2) | ?Y*(ﬂ)
z2=e

Fig.1. Closedloop containingtwo asynchronouslyvorking discretetime
systems

Due to the different clock periodsit is necessaryto
introducetwo variablesz; andzs in the frequengy domain:
, @

(s: LaplaceTransformvariables).The transferfunctions
for theLTI systemin theforward pathandthefeedbackpath
are denotedby G(z1) and H(zy) respectiely. U(z;) and
Y (z) standfor the Z transformsof the input andoutputse-
quencesf theclosedloop respectiely. Y*(z2) and E*(z3)
correspondo the input and output sequencearansformsof

2z =¢€° 1=1,2
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systemH (z), respectiely. Finally we assumehattheratio
of the clock periodssatisfies:
T 1

=1-= 2
T . (2)
where ¢ is no longer an integer as it was the casefor
previous works [8], [9]. This paperextendstheseprevious
resultsto arbitraryreal parameterg > 1. Furthermordit is
assumedhat both clocksrun with an offsetat the origin of
0, which preventsthemfrom producingcoincidingsamples
att = 0. Thereforethe clocks in system1 and 2 tick at
time instantsdefinedby:
t1(k) = kT,

keZ 3)

tQ(k) =kTy+0, ke Z (4)

I1l. TOEPLITZ APPROACH TO SYNCHRONIZATION
A. Matrix Representation for the Forward Path

Uz )+E(z, ) Y@z,)

G(z,)

Fig. 2. Forward link: systeml

This sectionbriefly presentghe Toeplitzmodelapproach
introducedin [8]. It canbe shavn thatthe matrix represen-
tation of ary causaldiscretetime-variantlinear systemcan
be obtainedfrom its impulseresponseasfollows:

(®)

Gn = [9¢-1,-1]1<i,j<n

Vn > 0, whereg(k, ko), g(k.ko) =0 for k <k
representghe systemresponseo a unit pulseat & = k.
The input/outputrelationshipbetweenthe signalsU (21 ) +
E(z1) andY (z1) in Figure 2, canbe fully determinedby
a matrix representatiorasin (5). In this case,matrix G,
is in Toeplitz form, due to the fact that the input/output
relationshipis linear, time-invariant:

9o
g1 9 O
gn—-1 -~ g1 Go

where {g;};>¢ are the coeficients of the impulse re-
sponseof G(z1). G,, admitsa simplefactorizationinto two

Toeplitz matriceswith a few non-zeroentriesas follows:
= G, = NM(DM) = (DP) N )

with

NV =
n(()l) 0 0
ngl) n(()l) (0] :
i
0
nmi ngl) nél) 0
0 0 n%i . n(l) n(()l)
(8)
DV =
av o 0
av o qy 0
ds,ll) 9 (9)
0
1 1 1
' it (1) o déli o
0 0 dp, dy dy

wherenl(.l),i =0,...,m; and dl(.l),i =0,...,n1, arethe
coeficients of the transferfunction G(z~'):

o1 _nél)—k...—i—n?(ylbzz*ml
) =75 M,
o F o dp ™

(10)

B. Matrix Representation for the feedback path

In this sectionwe derive the matrix operatorthat repre-
sentsthe linear relationshiparisingin the feedbackink.

L clock ticks at: t= k I\
—_——— —_———
Ez,) | E@)
o7 0

Y(z,) Y*(z ,)
o7 0

Hz, )

clock ticks at: t=k T &

Fig. 3. FeedbackKink: serialconnectionof subsamplingnterface,system
2 and oversamplinginterface

H,, is definedasthe matrix thatrelateshefirst n samples
Y, = [yo---yn—1]T of the sequence{y;} to the first k
samplesof the sequencé/y,, Uy, = [ug...u,_1]T asfollows:
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where,
H, =
h(0,0) 0
h(n —1,0) h(n—1,7) h(n-1,n-1)
12)
j>i=h(i,j)=0, i,j€Z (13)

Due to the serial connectionof the sub-samplingin-
terface,system2, and over-samplinginterface, the overall
feedbacklink is linear, but no longer time-irvariant. This
meansthat the input/outputrelationshipcan no longer be
describedoy a transferfunction or a time-invariantimpulse
responseAs a replacemenfor the systemdescriptionwe
can use a matrix operatorthat is obtainedfrom the time-
varying impulseresponsesin equation(5). (In retrospect,
this motivates our introduction of a matrix operator for
the forward path.) Therefore we needto derive an explicit
formulationfor the feedbacklink time-varying impulsere-
sponseh(n, ng) |n,noez, Which relatessequencesy,, },.cz
to {e, }nez (seefigure 1). This is madepossiblethanksto
the following Theorem:

Theorem 1:

The time-varying discrete-time impulse response
h(n,no)|n,no>0, Which relates sequences{y,,},~o and
{en}n>0 throughthe feedbackink in figure 1, satisfies:

h(Z - 15.7 - 1) = hk(i,j)a VZ,_] S/ (14)

where

K -Loit (G- -f] =[x %]
g [G-0F - 4] - [~

and{h, }»>o is theimpulseresponsef the systemin the
feedbackpath H (25 ), with the corventionh,, = 0, Vn < 0.
O

Proof:

The proof of this theoremconsistsin two steps.Each
stepdistinguishesbetweentwo possiblecasesafter a unit
impulseis sentto the input of the feedbacklink at ty =
(j—1)T1 (i.e.y(t) = 6(t—tp)). Theimpulseeithergenerates
an output, or it is discardedby the system.The first step
consistsin identifying underwhich circumstancesamples
of thesequencdy,, } ,~o arediscardedy thefeedbackink.
In otherwords, it identifiesthe valuesof j for which the
samples{y;_1} do notcontritute to the sequencde,, } nez.

As a resultthe j** columnsof the H,, matrix will be all
zero-alued.Let’ sfirst assumeahattheimpulseis discarded
by the system.In that case,system1 must have switched
beforesystem2, erasingthe impulsethat was postedat ¢,
(this is only possiblebecauseof the assumptionl; < T5).
In other terms: the switching instantsof system1, ¢, and
to + 17 will be mostimmediatelyfollowed by the same
switchinginstantof system2. The switchinginstantt, (k) of
system2 thatmostimmediatelyfollows an arbitraryinstant
t canbe computedby:
) t—0

Now, we usethis equationto translatethe fact that two
consecutie switching instantsof system1, ¢;(j — 1) and
t1(j) will be immediatelyfollowed by the sameswitching
instantof system?2:

mints (K)[tz(k) > t1(j — 1)} = minfta(R)lta (k) > t1(j)}

. Tl 9 _T1 0
2oz — |2t 2
[(j )Tz T2—‘ o []Tz Tz—‘ o

Thereforesysteml will switch twice,att = (j — 1)T3
andt = jT3, beforesystem,2 if andonly if:

(15)

In that casethe responseto a pulse of the feedback
link at t¢c = (j — 1)71 will be identically zero, and
consequentlyhe j** columnof H,, will only containzeros.
As aconsequencef (15)is satisfiedfor a certainvalue of
j € N then:

hi—1,j—1)=0, Vi (16)

Therefore,we artificially assign—1 to the value of the
index functionk(%, j), to force the valueof thetime-varying
transferfunction to be zero, if condition (15) is satisfied.
(by doing so we rely on the corvention hy, = 0, Vk < 0.)
This completegthe first stepof the proof.

In a secondstep we derive the two-dimensionalindex

elsdunction k(i, j), which relatesthe time-irvariant impulse

responsef system2 {h,, }|.cz to the overall feedbackink

time-varying impulse responsethrough h(i — 1,5 — 1) =

hi(,5)- Let's nov assumehatthe impulseis not discarded,
but successfullyproducesan output.In that case Figure 4

shavs how the input of a unit pulseat t, = (j — 1)71,

causeghe systemin the feedbacklink to produceits first

outputafteravariableamountof delay This delayis simply
causedby the synchronizatiorerrors betweenthe clock of

the two systems.The first samplewill be producedat the
switchinginstantof system? thatmostimmediatelyfollows

the impulse.This is given by the following expression:

to— 0
{ T lTQﬂLe

t5(j) =
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—5- number of ticks for system 1

9| O clock ticking instants for system 1

—O— number of samples system 2 produced
<O clock ticking instants for system 2

unit pulse at t,=G-1)T,

number of ticks
@

-2
I
-0
I

2 F 1
| - .
| firstresponse at t,()=C(t,~6)/T, (1T, +6
1 o= 1
s N N s s 5 s Y

1 2 3 4 5 6 7 8 9 10
time t

Fig. 4. Incrementsof the numberof ticks for both systemsafter a unit
pulseatto = (j — 1)1

CRHLEL )

T —‘ T, + 0

Consequently during the time intenal t5(j) < ¢t <
t5(j) + T the signal samplevalue which will be posted
and available for readingon the feedbackoutpute*(¢5(5))
will be hg:

e (t) = ho, t5(j) <t <15(j) + T,

the first samplevalue in the impulseresponsef system
2. Sinceaftereachperiodof T3 theindex of the samplesn
theimpulseresponseés incrementedwe cangeneralizehe
expressiorfor theoutputsignalat ary time instantt > t4(5)
asfollows:

k(1) ; }[MJ

where k(t) is the continuous-timeinteger valued index
function plottedin Figure 4 (asthe dashedine staircase
function). Finally, the coeficients of the j* row in matrix
H,, areobtainedafter samplinge*(¢) with samplingperiod
T, andstoringthefirst n samplevaluesin a column-\ector
Sampling equation (18) at (i — 1)7y, ¢ > 0 yields by
identification:

(18)

e*((i = 1)T1) = hii-1)1) = Piang)s (19)

and since this should be true for ary impulse response
{hk}kZOv we have:

k(i,j) = k((i = 1)T1), (20)

id) = {

With (20), (18) and (17) we have:

o) - T4 o

V(#,7), suchthat

@ﬁﬁ@mﬂ%—wﬂ—ﬁw:%ﬁ_ﬁw}

I 1o I 1o
In thefollowing sectionswve will needthe completeindex

function £’ (¢, ) (without zeroedcolumns)which is defined
asfollows:

suchthat:

-1 if
K'(i.)

G-V -&1=Tif - %]
otherwise,
(23)

This completesthe secondstep of the proof of theorem
1.

IV. FACTORIZATION OF THE TOEPLITZ MODEL

In section 3.1 we have seenthat the Toeplitz matrix
operatorfor the forward path admits a factorizationwith
sparsematrix factors.In the following we will show that
suchafactorizationalsoexistsfor the feedbackpath.Unlike
in the caseof the forward path, the matrix factors here
no longer have a Toeplitz structure.Note that expression
( 23) doesnot requirethe assumptiorthat the ratio % be
a rational number Thereforematrix H,, can be computed
from expression( 5), with arbitraryvaluesof % (of ¢), and
only requiresthe knowledgeof Z- and .

Theorem 2:

If {h1}re(z) hasthe Z-transform

_ ng+ ...+ n,mz= "
H(zh =
) = e A e

(24)

then:

(25)
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where,
dir(2,1) di(2,5) di(2,n)
Dy, di(i1) di (4,) di (i)
dir(n1,1) Ak (ny1,5) Ak (n+1,n)
’ (26)
and
nk/(Ll) nk’(l,j) nk/(lm)
Np=| nw@n T (i,5) Tk (4,m)
Tk (n,1) Tk (n,j) Tk (n,n)

’ (27)
with the conventionny, = di, = 0 Vk £{0,1,...,m}O.
Proof:

In a first step, we showv that matricesD,, and N,, are

sparseln fact, D,, and N,, only have non zerovalueson a

Note that the zero coeficients of the row vector
[P(i,1)--i(any] Which correspondo the zero columnsin
matrix H,,, are multiplied with repeatedsamplesd,. ;)
satisfying dy1,;) = dir(1,5)- AS @ consequenceafter re-
moval of all null productsin (35), andre-indexation of the
coeficients we find that the row column productin (35)
equalsthe following corvolutional product:

(iR (i) [k 2,5) P (s 1,7)) - Z Pt (i) ks

(35)
and,

Z P (i.g) k= T (i 5) (36)
k=0

as can be shavn by taking the inverse Z-transform of
(24), which immediatelyyields the desiredresult (35).

H D
n n

diagonalbanddefinedby: % ‘ %
0 S ]Cl(l,j) S m (28) 50—~h_L 50
From (22), We ha/e' 10 20 30 40 50 10 20 30 40 50
.o T1 T1 9 10
k' (i > 71—7—71 71—7— 1
() 2 {1 A0 -t
Tl 30
> _ — —92 29 40
> (i ])T2 (29) -
Thereforeif the inequality: PR R a—
(7 _ J)Z >m 4+ 2, (30) Fig. 5. Pictureof Matrices H,,, D,, and Ny; zerois codedas white,

T,

is satisfied, after substitution into inequality (29) we
obtain:

K'(i,5) > m. (31)
Thereforein the in a diagonalbanddefinedby
0<i—j<2(m+2), (32)
T
we have
~1<K(i,5) <m (33)

andsincen; = dp = 0 Vk £{0,1,...,m}, ary matrix
entry outsidethat diagonalband must be zero. Finally, on
orderthe demonstratiomf theorem2, we needto prove that
the matrix product(25) yields. This is equivalentto prove
the following equalityfor i = 1,...,nandj =1,....,n

Nk (i,5) = [hk(i,l)---hk(i,n)][dk’(Q,j)---hk’(n+1,j)]T- (34)

anddark gray representdarge magnitudevalues.

Figure (5) shaws the pictures of non-zeroentries of
matricesH,,, D,, and N,, , for ¢ = 72, T% = 0.5, n=50

and H(= ') = r—rrros=

Remarks:

e Coinciding switching eventslead to non-zeroscoefi-
cientson the main diagonalof H,,. This is a consequence
of expression (22). Indeed,if ¢1(j — 1) coincideswith a
switchinginstantof system2 thenk’(j, j) = 0.

e If ¢ is aninteger all matricesH,,, D,, and N,, have a
block Toeplitz structure with block dimension(q x ¢). This
follows from (22) after observingthatin that case:

K'(i,j) =K (i+q,j+q)

e If ¢ is not an integer, the diagonalblocks alternatein
dimensionbetween|q| x |q] or [q] % [¢]-

e If ¢ is rational,the sequencef block dimensions|g|,
[¢] is periodic.
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e If ¢ is anarbitraryrealnumbey it canbe shavn that ¢
asymptoticallyequalsthe averagedimensionof the diagonal
blocks,if n becomesrbitrarylarge.

V. CONCLUSION

A Toeplitzapproachmodel,which wasintroducedearlier
in [8], hasbeenfurtherinvestigated.The factorizationprop-
erty, which was obtainedin that samepaperfor a special
case hasbeengeneralizedo the caseof arbitraryfrequeng
ratios. The extensionof this factorizationproperty consti-
tutes the first step towards the derivation of simple and
efficient stability criteria, for the caseof uncertainand/or
time-varying clock frequeng ratios.
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