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Abstract— This paper studies a novel control method for
networked control systems. This method is motivated by a
more efficient use of the packet structure. Use of multipoint
packets to reduce network traffic and computation time
is considered. A solution is obtained by first transforming
the sampled-data problem into a multirate sampling/control
setting. Upon which, the associated,H2-optimal, sampled-data
controller is derived. The paper concludes with a performance
comparison of this method to some more traditional ones.

I. I NTRODUCTION

The use of networks is becoming ubiquitous in control
systems. A key advantage of controlling a system over a
network is the absence of point to point wiring infras-
tructure. Thus, the implementation of complex systems is
greatly simplified. A node connected to the network auto-
matically shares information with all other nodes. Systems
become more configurable and can easily be expanded and
monitored. Furthermore, distributed control systems can be
realized without imposing any extra demands on the system
realization. Finally, new configurations become possible
through wireless technology.

There are several challenges, however, that arise when
a control system is networked. Most of these problems
can be attributed to either the sharing of the communi-
cation medium or the extra complexity associated with
data transmission. In traditional digital control systems
the quality of performance asymptotically approaches the
continuous time performance level as the sampling period
goes to zero. This is not the case with networked control
systems. In networked control systems discrete signals are
encoded into a packet, sent across the network, and then
decoded at the destination node. As a result, a tradeoff arises
between a performance gain associated with an increase in
sampling frequency and a performance degradation caused
by encoding/decoding and network traffic induced delays.

Traditionally, the synthesis problem for a networked con-
trol system is dealt with by first transforming the problem
into classical discrete or sampled data framework and then
designing the controller to deal with the network issues.
This paper considers the development of controllers that
fully utilize the packet structure of network communication.
These types of controllers will be referred to as packet-
based controllers. Since a Networked Control System’s per-
formance degradation can mainly be attributed to commu-
nication delays, one measure of the efficiency of individual
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packet use can be taken as the resulting delay if a fixed
amount of data is to be transmitted.

As was previously stated, delays are introduced into the
system as a result of network traffic and encoding/decoding
computations. In [1] the size and distribution of these
delays was studied. It was found that in network protocols
such as DeviceNet, ControlNet, and Ethernet, both compu-
tation and traffic related delays are significant. This implies
that in order to fully utilize the packet communication
structure one can either decrease the transmission frequency
or the packet size or both. Different methods of reducing the
transmission frequencies, such as the use of state estimators
or deadbands, were studied in [2], [3].

To address this problem we consider the following com-
munication protocol; store a finite number of output samples
at the digital encoder and then transmit them in one packet,
this will be referred to as theoutput packet. Moreover,
instead of calculating one constant control input to be
applied over the next control interval, divide the control
interval into several subintervals and calculate a vector of
control inputs whose elements will be consecutively applied
over the next control interval, and send this vector in a single
packet, this will be referred to as thecontrol packet. Fig. 1
illustrates the time instances at which the output is sampled
and the corresponding control inputs for the case where five
output measurements are included in theoutput packetand
the control interval is divided into five subintervals.
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Fig. 1. Typical Ethernet packet

The downside of this protocol is pretty clear. Mainly,
if the period between consecutive packet transmissions is



equal to ten sample periods, the first sample to be stored
will be delayed 9 sample periods by the time it reaches
the destination node. Less obvious are the advantages.
First, transmitting a finite number of samples together
in one packet decreases the network traffic by a factor
approximately equivalent to the number of samples per
packet. Second, depending on the network protocol, each
packet carries a significant amount of overhead. Figure 2
contains the structure of a typical Ethernet packet. There
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Fig. 2. Typical Ethernet packet

are several components only one of which can be associated
with the data. Furthermore, each packet contains a minimum
data size requirement of 46 bytes, while an average data
sample may consume only 2 bytes. Therefore, a traditional
packet, which would contain only one data point, carries a
total of 70 bytes of overhead. Finally, the division of the
control interval is closely related to multirate control, which
has been shown to improve the system performance in
many cases. In this paper, we evaluate the tradeoff between
the pros and cons mentioned above. More specifically, the
performance of a system using the above communication
strategy is compared to two other, more traditional, systems;
one operating solely at the sampling rate and the other
operating solely at the packet transmission rate.

II. PROBLEM STATEMENT

To permit a fair comparison of control mechanisms
operating at different sampling rates, we will approach the
problem in a sampled-data setting. TheH2 optimal, sampled
data problem has received many different treatments of
varying complexity, for example see [4], [5], [6]. In [5]
the problem is structured such that sampling of impulsive
signals is avoided, yetH2 problem remains well-posed.
For this reason, our sampled-data system configuration uses
many attributes from [5].

Consider the system whose interconnection is illustrated
in Fig. 3. The solid and dotted lines represent continuous
and discrete signals respectively. The signalsw, z, and
v are the continuous time inputs, outputs and discrete-
time measurement noise respectively.S represents an ideal
sampler andH represents a zero-order hold A/D converter
– both share the same sampling periodTs. Notice that the
measurement disturbance is placed after the sampler. This
allows for measurement disturbances to be included without
risking sampling of impulsive signals, which, as shown
in [4], causes the sampling operation to be unbounded.
The periodic delay operator,∆ : N×Rp2 → Rp2 defined
as∆(i,y(k)) = y(k−Np + i), represents the communication
constraint imposed on the output measurements. In Fig 3,

the arguments of∆ are the packet index and the measured
output. If the multipoint protocol described above calls for
Np output measurements to be collected before the packet
is transmitted, then the packet index represents the number
of samples collected since the last transmission instance.
Here,∆ will be absorbed into the controller and treated as
an extra causality constraint. This causality constraint will
be referred to aspacket-causality constraint.
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Fig. 3. Generalized plant with packet-causality delay

Let the plant in Fig. 3 represent a linear, time-invariant,
finite-dimensional, continuous-time, generalized plant with
the following state space representation.

G∼
ẋ(t) = Ax(t) +B1w(t) +B2u(t)
z(t) = C1x(t) +D12u(t)
y(t) = C2x(t)

(1)

wherex∈ Rn is the state of the system,w(t) ∈ Rm1 is the
continuous-time external input,u(t) ∈ Rm2 is the control
input, z(t) ∈Rp1 is the controlled output, andy(t) ∈Rp2 is
the measured output. The feedthrough matrices fromw(t)
to z(t),y(t) and fromu(t) to y(t) were excluded to ensure
the boundedness of theH2 norm and well posedness of the
feedback loop.

The controller in Fig. 3 is confined to the class of linear,
Np-periodically time-varying (commutes with theNp-delay
operator), finite-dimensional, discrete-time systems and has
the following state space representation.

K ∼ ξ (k+1) = Φkξ (k) +Γkη(k)
ψ(k) = Θkξ (k) +ϒkη(k) (2)

whereη(k) is the sampled output combined with the dis-
crete measurement disturbancevk ∈Rm3 and can be written
as

η(k) = C2x(kTs)+D21v(k) (3)

and ψ(k) is the control input before passing through the
zero-order hold and can be written as

u(t) = ψ(k), kTs < t ≤ (k+1)Ts

This explicit distinction between the discrete and continuous
signals is needed for the derivation of the closed loop model
which accepts the mixed continuous/discrete exogenous
inputs. Notice, that the closed loop system, resulting from
the linear fractional interconnection of the plant and the
controller, is periodically time-varying. In fact, the problem



has two underlying periods, the sampling period,Ts and the
period of the controller,Tp = NpTs.

It is also assumed that the plant in (1) together with
the discrete, measured output disturbance in (3) satisfy
the standard conditions for existence and uniqueness of
a single-rate, sampled-data,H2-optimal controller, see [5].
These conditions are defined below. It will be shown later
that they are also the necessary and sufficient conditions
for the existence and uniqueness of the packet-based,H2-
optimal controller.

Definition 1 (H2 solvability conditions). Consider the
plant in (1) with its measured output affected according
to (3). Then a unique, sampled-data,H2-optimal controller
exists if the following conditions are satisfied.

i) (A,B2) is stabilizable and(C2,A) is detectable;
ii) P , DT

12D12 andQ , D21DT
21 are nonsingular;

iii) The following matrices have, respectively, a full
column and row rank for allλ on the unit circle.[

A−λ B2

C1 D12

]
,

[
A−λ [ B1 0 ]

C2 [ 0 D21 ]

]

III. H2-OPTIMAL PACKET-BASED CONTROL

In this section, theH2-optimal packet-based controller
will be derived. First, the generalizedH2 measure for the
closed loop system is defined. Then, the periodically time-
varying problem is transformed into a time-invariant one via
the lifting method. Finally, the state space representation for
the optimal packet-based controller is presented.

A. Sampled-Data Formulation

Our sampled-data state space representation builds off
of the sampled-data, state space representation presented
in [5]. The derivation of this representation and some of
the formulas involved are not important in the context of
this paper therefore, our formulation will only summarize
the steps covered in [5] and present only the results that
are either unique to our problem or will be used in the
synthesis problem. The system is treated as follows. The
sampler and the zero-order-hold are absorbed into the
generalized plant model. As a result, the plant model itself
becomes periodically time varying (where period =Ts).
A discrete, time-invariant, operator-valued representation is
then obtained via continuous-time lifting. Next, we define
the generalizedH2 measure for the closed loop systemTzw

that takes into account the intersample impulse response
over the entire periodTp, as

J =

[
1
Tp

∫ Tp

0

(
m1

∑
i=1
||Tzwδτei ||22

)
dτ

]1/2

(4)

=

[
1

Np

Np−1

∑
j=0

1
Ts

∫ Ts

0

(
m1

∑
i=1
||Tzwδ(τ+ jTs)ei ||22

)
dτ

]1/2

whereTzw is the closed-loop system andδtei is an impulse
applied at timet at theith input. Finally, we can express the
generalized measure of (4) in terms of the Hilbert-Schmidt

norm and anH2 norm of an equivalent discrete-time plant
as

J =

[
||D11||2HS+

1
Np

Np−1

∑
j=0

m1

∑
i=1
||T̂zwδ(τ+ jTs)ei ||22

]1/2

(5)

where

||D11||2HS = trace

(
BT

1

∫ Ts

0

∫ t

0
eτAT

CT
1 C1eτAdτdtB1

)

and
T̂zw = F(Geq,K)

with F(Geq,K) representing the lower, linear fractional
transformation andGeq defined as

Geq∼




Ad [ B1d 0 ] B2d

C1d [ 0 0 ] D12d

C2 [ 0 D21 ] 0


 . (6)

Values of the matrices associated with the representation
for Geq are omitted here for the sake of brevity but are well
documented in [4], [5], or [6].

B. Lifting and the packet-causality constraint

Discrete-timelifting is a powerful tool in the analysis
of discrete, periodically time-varying systems. The idea
is to eliminate the time-varying nature of the system by
assembling orlifting the signal values over one period into
a single vector which then becomes the value of the lifted
signal. The lifting operatorLNp : l p→ l pNp, wherel p is the
space ofp-dimensional sequences, is defined as follows.
Let {yk} ∈ l p be expressed as

{yk}= {y(1), · · · ,y(Np),y(Np +1), · · ·}

then

LNp({yk}) =








y(1)
...

y(Np)


 ,




y(Np +1)
...

y(2Np)


 , · · ·





.

Furthermore, a representation of the equivalent plantGeq

operating on the lifted spaces can be written as

Geq = LNpGeqL
−1
Np
∼




A B1 B2

C1 D11 D12

C2 D21 D22


 (7)

A = A
Np
d

B2 =
[
A

Np−1
d B2d · · · B2d

]

C1 =
[
CT

1d · · · (C1dA
Np−1
d )T

]T

D12L =




D12d 0 · · · 0

C1dB2d
.. .

.. .
...

...
.. . D12d 0

C1dA
Np−2
d B2d · · · C1dB2d D12d






Where the definitions of the omitted matricesB1, C2, D11,
D21, and D22 follow immediately from the definitions of
B2, C1, andD12.

The lifting transformation is an isomorphism and there-
fore, it can be shown (see [4]) that theH2 norm of a
system is preserved under lifting, more precisely||Geq||22 =
1

Np
||LNpGeqL

−1
Np
||22. Stability is also preserved under lifting,

in other wordsLNpKL−1
Np

stabilizesLNpGeqL
−1
Np

iff K sta-
bilizes Geq. Moreover, stabilizability, observability and the
invariant-zero structure are all also preserved. The structure
of the lifted matrices also shows that the injective property
of D12 and the surjective property ofD21 imply that D12
andD21 are themselves injective and surjective respectively.
This leads to the following lemma which is a direct result
of the above properties and implications of the conditions
which were imposed on the plant in (1)

Lemma 1. A unique H2-optimal controller exists for the
lifted system if and only if conditions in Definition 1 are
satisfied.

Lastly, lifting also allows for a more compact represen-
tation of the packet-causality constraint and the generalized
H2 measure in (4).

In the lifted signal domains, the packet-causality con-
straint on the controller translates into a constraint on the
structure of the lifted controller’s feedthrough matrix,ϒ.

Theorem 1. Consider the signal valueη(k) ∈Rp2 and the
associated lifted valueη(k) ∈ Rp2Np and let Pp2 be the
projection operator ontoRp2 defined by simply setting the
last (Np−1)p2 elements ofη(k) to zero. Then a system,K,
satisfies the packet-causality constraint iff the feedthrough
matrix ϒ of its associated lifted state space representation
meets the following criteria

ϒη(k) = ϒPp2η(k), ∀ η(k) ∈ Rp2Np (8)

Proof. Result follows immediately from the structure of the
lifted signal and definition of matrix multiplication.

Next, we can express the generalized measure in (4) in
terms of the lifted closed loop system,Tzw = Fl (Geq,K) as

J =
[
||D11||2HS+

1
Np
||Tzw||22

]1/2

(9)

This result follows directly from the definition of the
multivariableH2 norm.

C. H2-optimal controller w/ generalized causality con-
straint

We are now ready to synthesize the packet-based con-
troller. It follows directly from (9) that a controller mini-
mizes the generalized measure in (4) of the sampled data
system if and only if it minimizes theH2 norm of the
equivalent, discrete, and lifted plant,Geq. Therefore, the

synthesis problem can be formally stated as the following
minimization problem

Kopt = argmin
K

{F(Geq,K)}

such that (8) is satisfied.
(10)

Notice that this problem is also unique in that it is not
necessary to inverse-lift the optimal controller obtained
for the lifted system, since the time instances of signal
updates (measurement/input) are compatible with the lifted
representation. In other words, thecontrol packetand the
output packetequalψ(k) andη(k) respectively.

Before solving theH2-optimal packet-based control prob-
lem which is characterized by the imposed packet-causality
constraint, we first solve the more generalH2-optimal
control problem with generalized causality constraint. A
controller is defined to be causal if the control input is
dependent on past measured outputs including the current
output. A controller is defined as being strictly causal if
it is only dependent on past measured outputs but not on
the current output. A controller for which the dependence
of the control input on the current measured output is
arbitrary will be referred to as being generally causal and
will be said to satisfy a generalized causality constraint.
To the best of the authors’ knowledge, this problem has
not been solved. Different versions of this problem have
been addressed in literature, for example see [7], [8], [9].
The most common version arises in the design of multirate
control systems, which, if solved via lifting, inherently
posses a causality constraint. This constraint requires the
feedthrough matrix to be lower-block triangular and is
therefore not general. Moreover, in most cases the solution
is obtained in the frequency domain. It is also interesting to
note that the solution to theH2-optimal control problem
with generalized causality constraint has a larger set of
possible applications besides the design of packet-based
control systems. For example, any system possessing some
type of one step delay pattern can incorporate this design
and avoid the higher dimensional controllers or complexity
of implementing reduced-order solution methods which
result from augmenting the plant dynamics with the delayed
measurement states.

Consider the system in (7). A generalized causality
constraint on a controller is equivalent to a null constraint
on individual elements of the controller feedthrough ma-
trix ϒ. It is immediately apparent that an expression for
the generalized causality constraint inRm2Np×p2Np will be
cumbersome. It would be more convenient if instead of
working with the matrix representation ofϒ we could work
with the vector representation. This can be done with the
introduction of two operators, the stack operator and the
matrix Kronecker product. The stack operator associates
ϒ ∈ Rm2Np×p2Np with ϒS ∈ Rm2p2N2

p in a natural way,ϒi j

– the element in theith row and j th column – translates
to ϒS

i+( j−1)m2Np
. In other words the columns are simply

stacked and for that reason the stack operator applied to



a matrix is signified with the superscriptS. We will also
use the notation(·)−S : Rm2p2N2

p → Rm2Np×p2Np to denote
the transformation back into the appropriate matrix space.
Although, the definition for(·)−S is somewhat vague if used
out of context, it will only be used here following a stack
operator and therefore the row and column dimensionality
of the image space will equal those of the original matrix
space to which the stack operator was applied. The matrix
Kronecker product⊗ : (Rl×k,Rr×s)→ Rlr×ks is defined as

A⊗B =




a11B · · · a1kB
...

...
al1B · · · alkB




For details on the Kronecker product we refer the reader
to [10]. Using thestackoperator, a clean representation of
the generalized causality constraint can be formed;ψ

i
(k) is

independent ofη
j
(k) if and only if ϒS

i+( j−1)m2Np
is equal

to zero. This simple relation can be further used to restate
the generalized causality constraint using an orthogonal pro-
jection operator. LetD ⊂ Rm2p2N2

p represent the allowable
subspace forϒS andPD be the associated orthogonal pro-
jection operator. ThenϒS satisfying the causality constraint
implies ϒS = PDϒS.

Consider the following pair of Riccati Equations.

X = ATXA−CT
x Dx(D

T
x Dx)

−1DT
x Cx +CT

1C1

Y = AYAT −ByD
T
y (DyD

T
y )−1DyB

T
y +B1BT

1

(11)

where

DT
x Dx = DT

12D12+BT
2 XB2

DT
x Cx = DT

12C1 +BT
2 XA

DyD
T
y = D21D

T
21+C2YCT

2

ByD
T
y = B1DT

21+AYCT
2

By Lemma 1 the above Riccati equations satisfy the neces-
sary conditions needed for the existence and uniqueness of
positive-semidefinite stabilizing solutions. For more on the
existence and uniqueness of stabilizing solutions to Discrete
Algebraic Riccati Equations, see for example [11]. Taking
X andY to be the positive-semidefinite stabilizing solutions
to (11), define

F =−(DT
x Dx)

−1DT
x Cx

L =−ByD
T
y (DyD

T
y )−1

R= DT
x CxYCT

2 +BT
2 XB1DT

21+DT
12D11D

T
21

ϒo =−[
(PD(DyD

T
y ⊗DT

x Dx)PD)†RS
]−S

wherePD is the generalized causality constraint orthogonal
projection operator defined above and(·)† symbolizes the
generalized inverse. Notice that thus far the approach has
been completely general – no assumptions besides those
in Definition 1 were made. In fact, the only assumption
that will need to be made concerns the structure ofD22.
A nonzero feedthrough matrix from the control input to

the measured output introduces an algebraic loop in the
feedback system. Therefore, if the feedback system is well
posed this algebraic loop can be eliminated. The same idea
applies here. The only exception is that the feedthrough
matrix also has to be well posed with respect to the causality
constraint. In other words, if theith control input is to be
independent of thej th measured output and thekth control
input is dependent on thej th measured output then all the
output measurements that theith control input is dependent
on have to be independent of thekth control input as well.
This condition can be easily checked explicitly by forming
the algebraic equation of the feedback loop.

The expression for theH2-optimal controller with a gen-
eralized causality constraint is now stated in the following
theorem.

Theorem 2. Let all terms be as defined above, and assume
that the feedback loop is well posed with respect to the gen-
eralized causality constraint. Then the uniqueH2-optimal
controller that satisfies the generalized causality constraint
– characterized by the orthogonal projection operatorPD

– is

Kopt = F

([
0 I

I −D22

]
, K̃

)
(12)

where

K̃ ∼

[
A+B2F +LC2−B2ϒoC2 L−B2ϒo

ϒoC2−F ϒo

]

Moreover,

min
K
||Tzw||22 = trace

(
BT

1 XB1

)
+ trace

(
DT

11D11

)
(13)

+ trace
(
(ATXA−X +CT

1C1)Y
)

− trace
(
(DT

x Dx)
−1ϒo(DyD

T
y )−1ϒT

o

)

Proof. Making the assumption that the matrixD22 is con-
sistent with the generalized causality constraint, we solve
the problem as ifD22 was identically zero and account
for it in the end by solving the algebraic equation of the
feedback loop explicitly. The first part of the proof is similar
to that of [11], the main differences being the inclusion of
the matrixD11 and the use of the stack operator. Applying
ideas from geometric control theory, it can be shown that
the infimum of theH2 norm of the closed loop system taken
over all proper controllers is a function of the plant state
space representation and the controller feedthrough matrix
only. This equation is

min
K
||Tzw||22 = trace

(
BT

1 XB1

)
+ trace

(
DT

11D11

)

+ trace
(
(ATXA−X +CT

1C1)Y
)
+Ω∗

where

Ω∗ , min
ϒ

Ω(ϒ) and

Ω(ϒ) = 2(RS)Tϒ+[(DT
y ⊗Dx)ϒS]T [(DT

y ⊗Dx)ϒS]



Next we proceed by completing the square. Using the
generalized inverse (see [12]) formulations of orthogonal
projection operators and after some algebraic simplification
of the resulting expressions,Ω(ϒ) becomes

Ω(ϒ) =
[
RS
∗ +(DT

y ⊗Dx)ϒS
]T [

RS
∗ +(DT

y ⊗Dx)ϒS
]

− (RS
∗ )

TRS
∗

where

RS
∗ = (DT

y ⊗Dx)(PD(DyD
T
y ⊗DT

x Dx)PD)†RS

which implies

Ω∗ =−(RS
∗ )

TRS
∗

and the unique value ofϒo is

ϒo =−[
(PD(DyD

T
y ⊗DT

x Dx)PD)†RS
]−S

The next few steps are fairly straightforward and therefore,
for the sake of brevity, will be merely summarized. First,
ϒo is absorbed into the plant to form a new plantGϒ

eq. Since
ϒo is unique, this reduces the problem to finding a strictly
proper controller for the new plantGϒ

eq. The solution to
this problem is readily available, see for example [4] or
[11]. The controller for the original system is then simply
obtained by absorbingϒo back into the controller equations.
This expression is then further simplified by making the
observation that the solutions to the Riccati equations in
(11) are invariant under feedback. Finally, matrixD22 is
accounted for by solving the algebraic equation of the
feedback loop explicitly.

Using the actual values of the matrices involved in (7)
and the the expression for the packet-causality constraint
presented in Theorem 1, a more compact expression for the
packet-based controller can be obtained.

Corollary 1 (H2-optimal packet-based controller).
The unique H2 optimal controller that satisfies the
packet-causality constraint is

Kp = F

([
0 I

I −D22

]
, K̃p

)
(14)

where

K̃p∼

[
A+B2F +LC2−B2ϒpC2 L−B2ϒp

ϒpC2−F ϒp

]

with

ϒp =
[
ϒp1 0

]

ϒp1 = (DT
x Dx)

−1DT
x CxYCT

2 (D21D
T
21+C2YCT

2 )−1

The rest of the terms are defined in the same way as before.

Proof. The uniqueness and existence conditions are auto-
matically satisfied for the lifted system as was stated in

Lemma 1. The structure ofD22 is well posed with respect to
the packet-causality constraint since all inputs are dependent
on the same current measured outputs. The remainder is a
direct result of Theorem 2 and the structure of the lifted
matrices described earlier.

D. Performance analysis

A direct relationship between the minimum achievable
generalizedH2 measure of the packet-based controller
and that of a single rate controller would be convenient
to evaluate suitability of the packet-based controller to
a specific problem. Since the packet-based controller is
periodic and does not have a nice representation in the
non-lifted domain this comparison has to be done in the
lifted domain. The structure of the packet-based controller is
most closely related to the lifted representation of the single
rate controller operating at the sampling periodTs. As was
pointed out in [13] the solutions of the Riccati equations in
(11) are invariant under the lifting operation. Moreover, the
H2 optimal periodic controller for a time-invariant system
is also time-invariant. Therefore, theH2-optimal generalized
causality constraint controller solution can be used to derive
a compact expression for the lifted single rate controller and,
since the generalized measure of the resulting plant will not
be affected, can be used to calculate the difference between
the generalized measure of the single rate controller and the
packet-based controller. The difference can be written as

J2
p−J2

Ts
=− 1

Np
trace

(
(DT

x Dx)
−1ϒp(DyD

T
y )−1ϒT

p

)

+
1

Np
trace

(
(DT

x Dx)
−1ϒTs

(DyD
T
y )−1ϒT

Ts

)

where Jp and JTs are the generalized measures for the
packet-based system and the lifted single-rate system re-
spectively andϒTs

is the lifted feedthrough matrix of the
single-rate system. Furthermore, in [14], it was shown that
the generalizedH2 measure for the sampled-data system
increases as the sampling period squared (for small sam-
pling periods). In the case where the network imposes a
communication constraint that forces a slower transmission
rate to be used, the relationship between the result in [14]
and the results presented here would be a useful measure in
determining the advantage of using the packet-based con-
troller over just simply down-sampling. Unfortunately, this
is not clear from our expression. Perhaps a more detailed,
element-wise analysis could provide some answers.

IV. EXAMPLE

In this section we compare theH2-optimal packet-based
controller with two differentH2-optimal single-rate con-
trollers via simulation. An interesting yet simple plant to
consider is a double integrator(1/s2). The state vector
[x1 x2 ]T is defined as the plant output (position) and its



derivative (velocity) respectively. The disturbance and con-
trolled output matrices are defined as

B1 =
[
0
1

]
, C1 =




10 0
0 2
0 0




D12 =




0
0

0.1


 , D21 =

[
0.1

]

The sampling periodTs and the packet sizeNp are left as
variables.

Fig. 4 and 5 contain the position and velocity impulse re-
sponses. Here the packet size,Np, is equal to 10 andTs=0.01
sec. In this figure, the packet-based controller is compared
against a single rate controller that purely operates at
sampling period equal toTs and a single rate controller
that purely operates at sampling period equal toTp. If we
qualitatively asses this figure by simply comparing the areas
under the impulse responses then it appears that the packet-
based controller recovers about 50% of the performance lost
due to down-sampling by the slow rate controller. Another
interesting feature is that the packet-based controller results
in a more continuous velocity response.
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Fig. 4. Impulse response – position vs. time:Ts=0.01secNp=10

Fig. 6 contains the control input corresponding to the
responses in Fig. 4 and 5. This figure illustrates how the
control input is redistributed over the transmission period.
The result is a larger control input in the first half and a
smaller control input in the second half of the transmission
period. Depending on the actuator, this apparently inherent
quality of the packet-based controller, may not be desirable.

Fig. 7 compares the increase of the generalizedH2

measure with increase in transmission period for the dou-
bled integrator plant. Again, the packet-based controller is
compared against the two single rate controllers. In this
figure Ts is held fixed and at each transmission period,Np

is adjusted to equal the number of samples collected during
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Fig. 5. Impulse response – velocity vs. time:Ts=0.01secNp=10
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Fig. 6. Impulse response – control input vs. time:Ts=0.01sec,Np=10

that transmission period. This figure provides a clearer
indication of the amount of performance recovered that was
lost by down-sampling.

Fig. 8 contains the plot of generalizedH2 measure vs.
transmission period for different fixed packet sizes. All
cases are compared with the continuous time case. Again,
this figure indicates that the system performance can be
significantly improved using packet-based control.

V. CONCLUSION

In this paper, we presented a new approach to networked
control system design. The synthesis problem was motivated
by traditional design criteria of most control networks
together with an efficient use of the packet structure. A
specific protocol, consisting of a multipoint packet structure,
was proposed. It was pointed out that the extra samples
in each packet come at no extra price, in that the size
of the packet remains the same, and therefore no extra
load on the network is introduced. Next, theH2-optimal
control problem with a generalized causality constraint was
defined. The solution to this problem was presented and
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then used to solve the packet-based control problem. The
methods developed were then used to design a packet-based
controller for a double integrator. The performance gained
using the packet-based approach appears to be significant
enough to be considered for some applications. Lastly, there
are many aspects left unanswered. For example: exactly how
much performance can be gained in general and how does
it depend on the plant dynamics, how do delay and lost
packets affect the performance and can more flexible control
structures be used to counter some of these effects.
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