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Packet-Based Control

D. Georgiev and D. M. Tilbury

Abstract—This paper studies a novel control method for packet use can be taken as the resulting delay if a fixed
networked control systems. This method is motivated by a amount of data is to be transmitted.
more efficient use of the packet structure. Use of multipoint As was previously stated, delays are introduced into the

packets to reduce network traffic and computation time It of K traff d dina/d di
is considered. A solution is obtained by first transforming system as a result of network traffic and encoding/decoding

the sampled-data problem into a multirate sampling/control ~Computations. In [1] the size and distribution of these
setting. Upon which, the associated,-optimal, sampled-data  delays was studied. It was found that in network protocols

controller is derived. The paper concludes with a performance  such as DeviceNet, ControlNet, and Ethernet, both compu-
comparison of this method to some more traditional ones.  yation and traffic related delays are significant. This implies
|. INTRODUCTION that in order to fully utilize the packet communication
The use of networks is becoming ubiquitous in controptructure one can either dec_rease the transmission frgquency
Qr the packet size or both. Different methods of reducing the

systems. A key advantage of controlling a system overt <cion f X h as th f stat timat
network is the absence of point to point wiring infras- ransmission frequencies, such as the Use of state estimators
r deadbands, were studied in [2], [3].

tructure. Thus, the implementation of complex systems g To add hi bi ider the followi
greatly simplified. A node connected to the network auto- 0 address this problem we consider the following com-

matically shares information with all other nodes. System'%]unic"’r{_ic’_n protacol; store a finite numl_aer of ogtput samples
become more configurable and can easily be expanded a&HOthe digital encoder and then transmit them in one packet,

monitored. Furthermore, distributed control systems can ﬁg's will be referred to as theutput packet Moreover,

realized without imposing any extra demands on the systelrrﬁSte,ad of calculating one cqnstant coptrol input to be
plied over the next control interval, divide the control

realization. Finally, new configurations become possiblép . )
through wireless technology. interval into several subintervals and calculate a vector of

There are several challenges, however, that arise Whgﬂntrol inputs whose elements will be consecutively applied
a control system is networked. Most of these problem?:ver the next control interval, and send this vector in a single

can be attributed to either the sharing of the communf—’aCket' this W'I,I be.referred to as tl_wntrol packet.Flg. 1
cation medium or the extra complexity associated WitHIustrates the time instances at which the output is sampled

data transmission. In traditional digital control system@"d the corresponding control inputs for the case where five
the quality of performance asymptotically approaches th utput mea;uremeqts are mcl_uded_ n de_Ut packeand
continuous time performance Ievel as the sampling peri e control interval is divided into five subintervals.

goes to zero. This is not the case with networked control
systems. In networked control systems discrete signals are
encoded into a packet, sent across the network, and then
decoded at the destination node. As a result, a tradeoff arises /_/%
between a performance gain associated with an increase in

sampling frequency and a performance degradation caused T
| | | | |
T T T | T T T T

measurement
set per packet

by encoding/decoding and network traffic induced delays.

Traditionally, the synthesis problem for a networked con- |
trol system is dealt with by first transforming the problem |
into classical discrete or sampled data framework and then transmission
designing the controller to deal with the network issues. instance :
This paper considers the development of controllers that [ P

i
fully utilize the packet structure of network communication. I N N N A N S N P %
These types of controllers will be referred to as packet- H—)
based controllers. Since a Networked Control System’s per- ) .
corresponding

formance degradation can mainly be attributed to commu- control input packet
nication delays, one measure of the efficiency of individual
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equal to ten sample periods, the first sample to be storg@ arguments of are the packet index and the measured
will be delayed 9 sample periods by the time it reachesitput. If the multipoint protocol described above calls for
the destination node. Less obvious are the advantagqs.output measurements to be collected before the packet
First, transmitting a finite number of samples togethes transmitted, then the packet index represents the number
in one packet decreases the network traffic by a facter samples collected since the last transmission instance.
approximately equivalent to the number of samples pekere,A will be absorbed into the controller and treated as
packet. Second, depending on the network protocol, eagh extra causality constraint. This causality constraint will
packet carries a significant amount of overhead. Figureb2 referred to apacket-causality constraint

contains the structure of a typical Ethernet packet. There
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Fig. 2. Typical Ethernet packet

are several components only one of which can be associated
with the data. Furthermore, each packet contains a minimum

data size requirement of 46 bytes, while an average dataLet the plant in Fig. 3 represent a linear, time-invariant,

sample may consume only_ 2 bytes. Thereforez a traOI'T“Onﬁllllite-dimensional, continuous-time, generalized plant with
packet, which would contain only one data point, carries fhe following state space representation

total of 70 bytes of overhead. Finally, the division of the

Fig. 3. Generalized plant with packet-causality delay

control interval is closely related to multirate control, which X(t) = Ax(t) +Biw(t) +Bau(t)
has been shown to improve the system performance in G~ z(t) = Cux(t) +Dgu(t) (1)
many cases. In this paper, we evaluate the tradeoff between y(t) = Cxx(t)

the pros and cons mentioned above. More specifically, the

n; m
performance of a system using the above communicatié’?‘lhetreXE Rt' Is the tstatel qf the fyst%mréz(t)_ Etlﬁ LIS tthel
strategy is compared to two other, more traditional, systemg?n inuous-time external input(t) € IS the contro

. . P1 P2 j
one operating solely at the sampling rate and the oth%ﬂpm’ 2(t) GRdl 'Stth? C;Jr?tr?llegtﬁutpu:], anyft_) €R™ Is
operating solely at the packet transmission rate. e measured output. The feedthrough matrices frafh)

to z(t),y(t) and fromu(t) to y(t) were excluded to ensure

Il. PROBLEM STATEMENT the boundedness of thé, norm and well posedness of the

To permit a fair comparison of control mechanismdéedback loop. . _
operating at different sampling rates, we will approach the The .corjtroller_ in Fig. 3 is confined to thg class of linear,
problem in a sampled-data setting. THgoptimal, sampled Np-Periodically time-varying (commutes with th,-delay
data problem has received many different treatments gperator), finite-dimensional, discrete-time systems and has
varying complexity, for example see [4], [5], [6]. In [5] the following state space representation.

the problem is structured such that sampling of impulsive Ek+1l) = DE(K) +Tn(K)

signals is avoided, yeH, problem remains well-posed. K~ Wk = OE® YK 2
For this reason, our sampled-data system configuration uses

many attributes from [5]. wheren (k) is the sampled output combined with the dis-

Consider the system whose interconnection is illustrategfete measurement disturbange= R™ and can be written
in Fig. 3. The solid and dotted lines represent continuougs
and discrete signals respectively. The signalsz, and n (k) = Cox(kTs) 4+ Dagv(k) 3)
v are the continuous time inputs, outputs and discrete- . . )
time measurement noise respectiveyrepresents an ideal and g(k) is the control input before passing through the
sampler ancH represents a zero-order hold A/D converte?€r0-0rder hold and can be written as
— both share the same sampling perizd Notice that the _
measurement disturbance is placed after the sampler. This ut) = ¢(k), ks <t < (k+1)T
allows for measurement disturbances to be included withoThis explicit distinction between the discrete and continuous
risking sampling of impulsive signals, which, as showrsignals is needed for the derivation of the closed loop model
in [4], causes the sampling operation to be unboundedihich accepts the mixed continuous/discrete exogenous
The periodic delay operatof) : N x RP2 — RP2 defined inputs. Notice, that the closed loop system, resulting from
asA(i,y(k)) =y(k—Np+i), represents the communicationthe linear fractional interconnection of the plant and the
constraint imposed on the output measurements. In Fig Sontroller, is periodically time-varying. In fact, the problem
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has two underlying periods, the sampling peridgand the norm and arH, norm of an equivalent discrete-time plant
period of the controllerT, = NpTs. as
It is also assumed that the plant in (1) together with Np—1 my 1/2
the discrete, meas_L_rred output_ disturbance in (3) satisfy j_ ||DllH%}IS+7 HTZ\N‘S(H]TS)QH% (5)
the standard conditions for existence and uniqueness of Np ==
a single-rate, sampled-datd,-optimal controller, see [5]. where
These conditions are defined below. It will be shown later
hat they are also the necessary and sufficient conditions 2 T[T [ AT T A
that they : ; y |IDy4[3s = trace 81/ /e CJ Cie™AdTdtB,
for the existence and uniqueness of the packet-bddgd, o Jo
optimal controller. and

Definition 1 (H, solvability conditions). Consider  the Tow = F(Geq K)

plant in (1) with its measured output affected accordingyith F(Geg,K) representing the lower, linear fractional
to (3). Then a unique, sampled-dakdp-optimal controller  tansformation an@eq defined as
exists if the following conditions are satisfied.

i) (A By) is stabilizable andCy,A) is detectable; Ad|[ B 0 ] By
iy P£DJ,D1, andQ £ D,;DJ, are nonsingular; Geg~ | Ca|[ O O | Diy |- (6)
iii) The following matrices have, respectively, a full C|[ 0 Dz ] 0
column and row rank for alk on the unit circle. Values of the matrices associated with the representation
{A’\ BZ} {A/\ [ Bt O ] for Geq are omitted here for the sake of brevity but are well
Gt D)’ [C [ O Dz | documented in [4], [5], or [6].

Il Hz-OPTIMAL PACKET-BASED CONTROL B. Lifting and the packet-causality constraint

In this section, theH,-optimal packet-based controller Discrete-timelifting is a powerful tool in the analysis

will be derived. First, the generalizdd, measure for the ; - . : .
: ' o . of discrete, periodically time-varying systems. The idea
closed loop system is defined. Then, the periodically time- L . i
: ) . . : : .Is to eliminate the time-varying nature of the system by
varying problem is transformed into a time-invariant one via . i~ . o
s : . assembling ofifting the signal values over one period into
the lifting method. Finally, the state space representation for _. : .
. . a single vector which then becomes the value of the lifted

the optimal packet-based controller is presented.

signal. The lifting operatoty, : 1P — IPNo wherel P is the

A. Sampled-Data Formulation space ofp-dimensional sequences, is defined as follows.
Our sampled-data state space representation builds bft {Yk} € 1P be expressed as
of the sampled-data, state space representation presented (¥} = {y(1),---,¥y(Np),y(Np+1),--- }

in [5]. The derivation of this representation and some of
the formulas involved are not important in the context othen
this paper therefore, our formulation will only summarize

the steps covered in [5] and present only the results that y(1) y(Np+1)
are either unique to our problem or will be used in the Ln, (1Y} = s :
synthesis problem. The system is treated as follows. The y(Np) y(2Np)

sampler and the zero-order-hold are absorbed into t
generalized plant model. As a result, the plant model itse
becomes periodically time varying (where periodTs).

A discrete, time-invariant, operator-valued representation is
then obtained via continuous-time lifting. Next, we define
the generalizedH, measure for the closed loop systa,

that takes into account the intersample impulse response
over the entire periodp, as

furthermore, a representation of the equivalent plagt
operating on the lifted spaces can be written as

)

1 (Tp (M 5 12 B, = [Agp 1BZd BZd}
== 3 [Tadre ) or () Ny 1,717
plo \ y C=[cly - (CuAP Y]
1 Np—1 1 /Ts my D ...
- lN 2, % <.Z|TZW5<T+JTS>Q||§> dT] =0 ’
p = . i= D B C1g9Bog . . :
where T, is the closed-loop system arkk is an impulse =i : b 0
applied at time at theith input. Finally, we can express the N,.)—Z 1
generalized measure of (4) in terms of the Hilbert-Schmidt CwAy" Bad -+ CiBad Dix
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Where the definitions of the omitted matridgg C,, D1;, synthesis problem can be formally stated as the following
D,,, and Dy, follow immediately from the definitions of minimization problem
By, C;, andDjj,. _ ;

The lifting transformation is an isomorphism and there- Kopt = argﬁmm{ff(geq,g)}
fore, it can be shown (see [4]) that tHé, norm of a such that (8) is satisfied

- . - - 2 _ .

system is preserved under lifting, more precisgBeq||5 =
N%H'—NpGeq'—Nle%- Stability is also preserved under lifting, Notice that this problem is also unique in that it is not
in other WOI’dSLNpKLﬁl StabiIiZeSLNpGeqLﬁ’} iff K sta- necessary to inverse-lift the optimal controller obtained

bilizes Geq. Moreover, stabilizability, observability and the for the lifted system, since the time |n§tance§ of S|gnal
invariant-zero structure are all also preserved. The structuf® dates (mgasurement/mput) are compatible with the lifted
of the lifted matrices also shows that the injective propertgepresentaﬂon. In Iothke ' wcc)irdsl,( teentrol 'pa::ketand the

of D12 and the surjective property dd,; imply that D;, utput pac e'gqua Y(k) an n(k) respectively.

andD,; are themselves injective and surjective respectivel Before solving thé,-optimal packet-based control prob-

This leads to the following lemma which is a direct resuli.em which is characterized by the imposed packet-causality

of the above properties and implications of the conditiongonsnamt' we flrs_t solve th? more gerjenaiz-opnm_al
which were imposed on the plant in (1) control problem with generalized causality constraint. A

controller is defined to be causal if the control input is
Lemma 1. A unique Hy-optimal controller exists for the dependent on past measured outputs including the current
lited system if and only if conditions in Definition 1 areoutput. A controller is defined as being strictly causal if
satisfied. it is only dependent on past measured outputs but not on
i the current output. A controller for which the dependence
Lastly, lifting also allows for a more compact represen- : :
. . . ._of the control input on the current measured output is
tation of the packet-causality constraint and the generalized, . . .
) arbitrary will be referred to as being generally causal and
Hz measure in (4). will be said to satisfy a generalized causality constraint
In the lifted signal domains, the packet-causality con- 9 y )

straint on the controller translates into a constraint on th-(go the best of the authors’ knowledge, this problem has

. ) not been solved. Different versions of this problem have
structure of the lifted controller's feedthrough matri, been addressed in literature, for example see [7], [8], [9].

Theorem 1. Consider the signal valug (k) € RP2 and the The most common version arises in the design of multirate
associated lifted value) (k) € RP2Ne and let P,, be the control systems, which, if solved via lifting, inherently
projection operator ontdRP2 defined by simply setting the posses a causality constraint. This constraint requires the
last (Np — 1) p2 elements of) (k) to zero. Then a syster,  feedthrough matrix to be lower-block triangular and is
satisfies the packet-causality constraint iff the feedthrougtherefore not general. Moreover, in most cases the solution
matrix Y of its associated lifted state space representatiois obtained in the frequency domain. It is also interesting to
meets the following criteria note that the solution to thel,-optimal control problem
with generalized causality constraint has a larger set of
possible applications besides the design of packet-based
control systems. For example, any system possessing some
type of one step delay pattern can incorporate this design
Proof. Result follows immediately from the structure of theand avoid the higher dimensional controllers or complexity
lifted signal and definition of matrix multiplication. [  of implementing reduced-order solution methods which

. . result from augmenting the plant dynamics with the delayed
Next, we can express the generalized measure in (4) r‘ﬂeasurementgstates g P y y

terms of the lifted closed loop systef,,, = F1(Geq, K) as Consider the system in (7). A generalized causality

1 1/2 constraint on a controller is equivalent to a null constraint
J={|ID1allEs + — T3 (9) on individual elements of the controller feedthrough ma-
Np trix Y. It is immediately apparent that an expression for
This result follows directly from the definition of the the generalized causality constrainti2NeP2Ne will be
multivariableH, norm. cumbersome. It would be more convenient if instead of
working with the matrix representation &fwe could work
C. Hp-optimal controller w/ generalized causality con-with the vector representation. This can be done with the
straint introduction of two operators, the stack operator and the
We are now ready to synthesize the packet-based cofatrix Kronecker product. The stack operator associates
troller. It follows directly from (9) that a controller mini- Y € RM™NoxP2No with Y8 ¢ R™P2N in a natural way.Y;
mizes the generalized measure in (4) of the sampled datathe element in thé™" row and j'" column — translates
system if and only if it minimizes thdd, norm of the to Xii(j—l)msz' In other words the columns are simply
equivalent, discrete, and lifted plar,, Therefore, the stacked and for that reason the stack operator applied to
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a matrix is signified with the superscrigt We will also the measured output introduces an algebraic loop in the
use the notatior(-)~% : RMPNG _, RMeNoxP2No to denote feedback system. Therefore, if the feedback system is well
the transformation back into the appropriate matrix spac@osed this algebraic loop can be eliminated. The same idea
Although, the definition for-)~® is somewhat vague if used applies here. The only exception is that the feedthrough
out of context, it will only be used here following a stackmatrix also has to be well posed with respect to the causality
operator and therefore the row and column dimensionalitgonstraint. In other words, if thé" control input is to be
of the image space will equal those of the original matrixndependent of thg'" measured output and thé&" control
space to which the stack operator was applied. The matrigput is dependent on thg" measured output then all the
Kronecker products : (R'*k R™*S) —, RI' ks js defined as output measurements that th control input is dependent
on have to be independent of tk€ control input as well.
This condition can be easily checked explicitly by forming

: : the algebraic equation of the feedback loop.
aB - alkB The expression for thel;-optimal controller with a gen-

) eralized causality constraint is now stated in the following
For details on the Kronecker product we refer the readgheorem.

to [10]. Using thestackoperator, a clean representation of ]

the generalized causality constraint can be formedk) is  1heorem 2. Let all terms be as defined above, and assume

independent of (k) if and only if YS g' equal that the feedback loop is well posed with respect to the gen-
=i

o ) —i+(j=1)mNp i i ; Fe At
to zero. This simple relation can be further used to restal ecr)arl:;fslijerC?huaStaslg)tlis(;i?anssiﬁelmér-:-:rzrl]iztet]de cl;rlljlg;?t Ogg?satlraint
the generalized causality constraint using an orthogonal prS- Y Y

o — characterized by the orthogonal projection opera
jection operator. LeD C RMP2N represent the allowable . y 9 pro) perars

subspace foi® andPp be the associated orthogonal pro-

a;iB -+ aB
A®B= :

jection operator. Thelv® satisfying the causality constraint Koot = F 0 ' K (12)
implies Y® = PpY®. —op | —Dg|’
Consider the following pair of Riccati Equations.
where
X =ATXA-CID,(DID,)'DIC, +CIC
ATXA fxfo(fx?x)ilfx,Txtlle (11) 7 o | A+BF+LC —BYCy | L—ByY,

Y = AYA - ByDy (Dygy ) Dyﬁy +Bl§l XOQZ _ E XO

where Moreover,
DyD, =Dj;,D;,+B)XB, mKin T owll5 = trace(BIXBl) +trace(QLQll) (13)

D;C, = D1,C; +BI XA
D,DJ = D;1D3; +C,Y G
B,Dy =B;D}; +AYG]

+trace((ATXA—X+C{C))Y)
—trace((Dy D) 1Y, (D,Dy) YY)

By Lemma 1 the above Riccati equations satisfy the neces;qof. Making the assumption that the matiDy, is con-

sary conditions needed for the existence and uniqueness@lient with the generalized causality constraint, we solve
positive-semidefinite stabilizing solutions. For more on th

; , - , N Néhe problem as ifD,, was identically zero and account
existence and uniqueness of stabilizing solutions to Discrefg, it in the end by solving the algebraic equation of the

Algebraic Riccati Equations, see for example [11]. Takinggeypack 10op explicitly. The first part of the proof is similar

X andY to pe the positive-semidefinite stabilizing solutionsto that of [11], the main differences being the inclusion of
to (11), define the matrixD;; and the use of the stack operator. Applying

F =—(DID,) 'DyC, ideas from geometric control theory, it can be shown that
I B 7D? 5 DiT 1 the infimum of theH, norm of the closed loop system taken
L=-B,Dy (D,Dy) over all proper controllers is a function of the plant state
R=DJC,YCl +BJXB,DJ, +DI,D,,DJ, space representation and the controller feedthrough matrix
s . o
Y, =— [(pD (QyD; ®D3(—DX)P'D)TBS] only. This equation is

min||T /|3 = trace(BI XB, ) +trace(D},D
wherePy, is the generalized causality constraint orthogonal K [Lallz (*1 *l) (*11*11)

projection operator defined above afdl symbolizes the +trace((ATXA—X+QIQ1)Y) +Q,
generalized inverse. Notice that thus far the approach ha%
. . where
been completely general — no assumptions besides those
in Definition 1 were made. In fact, the only assumption Q, £ minQ(Y) and
that will need to be made concerns the structureDgj.
A nonzero feedthrough matrix from the control input to
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Next we proceed by completing the square. Using theemma 1. The structure @, is well posed with respect to
generalized inverse (see [12]) formulations of orthogondhe packet-causality constraint since all inputs are dependent
projection operators and after some algebraic simplificatioon the same current measured outputs. The remainder is a

of the resulting expression§(Y) becomes direct result of Theorem 2 and the structure of the lifted
() = [&S N @)T/ ®DX)X§]T [&S N (D)T, ®DX)X§} matrices described earlier. O
_(&S)T&S D. Performance analysis
where A direct relationship between the minimum achievable

generalizedH, measure of the packet-based controller
and that of a single rate controller would be convenient
to evaluate suitability of the packet-based controller to
a specific problem. Since the packet-based controller is

R’ = (Dy ®D,)(Pp(D,Dy ®DyD,)Pp)'R®

which implies

Q,=—RHTRS periodic and does not have a nice representation in the
non-lifted domain this comparison has to be done in the
and the unique value ofj is lifted domain. The structure of the packet-based controller is
s most closely related to the lifted representation of the single

Yo = — [(Pp(DyDy ®DID,)Pn)'R] rate controller operating at the sampling periid As was

. . ointed out in [13] the solutions of the Riccati equations in
Th t f t fairly straightf d and theref . . o .
e next few sieps are falrly straightiorward and thereror 11) are invariant under the lifting operation. Moreover, the

for the sake of brevity, will be merely summarized. First, . - . . .
H, optimal periodic controller for a time-invariant system

Y, is absorbed into the plant to form a new pl&j, Since . Lo b . ; )
P P P @ﬁq is also time-invariant. Therefore, th&-optimal generalized

Yo is unique, this reduces the problem to finding a StriCtI¥:ausa|it constraint controller solution can be used to derive
proper controller for the new pla@gq. The solution to y

this problem is readily available, see for example [4] oft compact expression for the lifted single rate controller and,

[11]. The controller for the original system is then simpl since the generalized measure of the resulting plant will not

y .
obtained by absorbiny, back into the controller equations. be affectedi can be used to calcu_late the difference between
the generalized measure of the single rate controller and the

This expression is then further simplified by making the . .
observation that the solutions to the Riccati equations iHacket-based controller. The difference can be written as
(11) are invariant under feedback. Finally, matfy, is by 1 . 1 1T
accounted for by solving the algebraic equation of the Jp—JTSZ—N*UaCG((QxQxY Y,(DyDy ) "Yy)
feedback loop explicitly. O 1 P

+ 5 trace((DFDy) Y, (D,DF) 1Y)

Using the actual values of the matrices involved in (7) p

and the the expression for the packet-causality constraint

presented in Theorem 1, a more compact expression for tiere J, and Jr, are the generalized measures for the
packet-based controller can be obtained. packet-based system and the lifted single-rate system re-
spectively andY, is the lifted feedthrough matrix of the
single-rate system. Furthermore, in [14], it was shown that
the generalizedH, measure for the sampled-data system
increases as the sampling period squared (for small sam-
- ) pling periods). In the case where the network imposes a

Corollary 1 (Hy-optimal packet-based controller).
The unique H, optimal controller that satisfies the

packet-causality constraint is

0 I
Ko=F11, _p.|Ke (14)  communication constraint that forces a slower transmission
=22 rate to be used, the relationship between the result in [14]

where and the results presented here would be a useful measure in

determining the advantage of using the packet-based con-

R A+ByF +LC, — B Y,,C, ‘ L-ByY, troller over just simply down-sampling. Unfortunately, this
P Y,C,—F Y, is not clear from our expression. Perhaps a more detailed,
) element-wise analysis could provide some answers.
with
_ IV. EXAMPLE
Xp - _Xpl 0
Yp1 = (DyDy) 'DXC,YC (D21Dy; +CoY G )t In this section we compare thé,-optimal packet-based

controller with two differentH,-optimal single-rate con-
[fllers via simulation. An interesting yet simple plant to
Proof. The uniqueness and existence conditions are autoensider is a double integratdl/s?). The state vector
matically satisfied for the lifted system as was stated ifr %|" is defined as the plant output (position) and its
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derivative (velocity) respectively. The disturbance and con- ..
trolled output matrices are defined as

T T T T
—— Single-Rate w/ T = Ts

* Packet Based
+. Single-Rate w/ T = Tp

o 10 O
By = M , CG=|0 2
0 0 Bt

0
D= | 0], Do = [0.1} <
0.1

The sampling periods and the packet sizBl, are left as i
variables. -
Fig. 4 and 5 contain the position and velocity impulse re-
sponses. Here the packet sikl, is equal to 10 ands=0.01
sec. In this figure, the packet-based controller is compared ™ o1 o0z o0s o0i o5 o8 07 08 o5 1
against a single rate controller that purely operates at e (eec)
sampling period equal tds and a single rate controller  Fig. 5. Impulse response — velocity vs. tin¥&=0.01sedN,=10
that purely operates at sampling period equalfolf we
gualitatively asses this figure by simply comparing the areas oo
under the impulse responses then it appears that the packet- B T
based controller recovers about 50% of the performance lost o
due to down-sampling by the slow rate controller. Another
interesting feature is that the packet-based controller results
in a more continuous velocity response.

x10°

16 T T ;i T T T
f‘%& — Single-Rate w/ T=T_
* Packet Based -0.2\- * B
L4 f u + Single-Ratew/ T=T [l
+ H -
12 + ++ 4 -0.25- — Single-Ratew/ T=T_ ||
e, *; * Packet Based
- m + Single-Ratew/ T=T
1+ B H - ~03 i L L L L T T T T
“++ +H 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
++ t‘; time (sec)
" 081~ : +H —
#* *
; . Fig. 6. Impulse response — control input vs. tirie=0.01secNp=10
06 ‘. B
04+ -
", that transmission period. This figure provides a clearer
ol ", ] indication of the amount of performance recovered that was
L T I lost by down-sampling.
o1 0z 03 os 05 06 07 08 09 1 Fig. 8 contains the plot of generalizédh measure vs.
me sec) transmission period for different fixed packet sizes. All
Fig. 4. Impulse response — position vs. tinTe=0.01secNp=10 cases are compared with the continuous time case. Again,

this figure indicates that the system performance can be

Fig. 6 contains the control input corresponding to th&ignificantly improved using packet-based control.

responses in Fig. 4 and 5. This figure illustrates how the V. CONCLUSION
control input is redistributed over the transmission period.
The result is a larger control input in the first half and a
smaller control input in the second half of the transmissiog
period. Depending on the actuator, this apparently inhere

quality of the packet-based controller, may not be desirabl

In this paper, we presented a new approach to networked
ontrol system design. The synthesis problem was motivated
Y traditional design criteria of most control networks
gogether with an efficient use of the packet structure. A
specific protocol, consisting of a multipoint packet structure,

. . . was proposed. It was pointed out that the extra samples
Fig. 7' compares the increase of the generalitéd in each packet come at no extra price, in that the size

measure with increase in transmission period for the douo-f the packet remains the same, and therefore no extra

bled mtegrator_plant. Again, the packet-based controller Bad on the network is introduced. Next, thé-optimal
compared against the two single rate controllers. In th

Bontrol problem with a generalized causality constraint was

figu”? Ts is held fixed and at each transmission peritig, . defined. The solution to this problem was presented and
is adjusted to equal the number of samples collected during
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based controller is compared against a single rate controll@rwiTs and . . . . .
a single rate controller wl' =T, Fig. 8. Generalized measure vs. transmission period for different packet

sizes, herdls is adjusted to equalp/Np

then used to solve the paCket'based ConFrOI prObIem' Th ] T. Chen and B. FrancisQptimal Sampled-Data Control Systems
methods developed were then used to design a packet-based springer-verlag, 1995.
controller for a double integrator. The performance gained5] P. Khargonekar and N. Sivashankafi;“optimal control for sampled-

: g N data systems,Systems Control Leftvol. 17, pp. 425-436, 1991.
using the packet-based approach appears to be Slgnlflcafg T. Chen, “A simple derivation of theH,-optimal sampled-data

enough to be considered for some applications. Lastly, there  controllers;” Systems Control Leftvol. 20, pp. 49-56, 1993.
are many aspects left unanswered. For example: exactly hol@! L. Qiu and T. Chen, My-optimal design of multirate sampled-data

much performance can be gained in general and how does %Sétfms' IEEE Trans. Automat. Contrvol. 39, pp. 2506-2511,

it depend on the plant dynamics, how do delay and losts] H. Shu and T. Chen, “State-space approach to discretetime
packets affect the performance and can more flexible control ~ optimal control with a causality constraint,” Rroc. 34th IEEE Conf.

Decision & Contro] 1995, pp. 1927-1932.
structures be used to counter some of these effects. [9] P. G. Voulgaris, M. A. Dahleh, and L. S. Valavanils and Hs
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