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Abstract— The visual cortex of a freshwater turtle,
when stimulated by a pattern of light, produces waves
of activity that have been both recorded experimentally
and simulated using a model cortex. In this paper, the
goal is to predict the response of the model cortex
when the input pattern is a natural source. The basic
procedure is to encode both the input and the output
signals using a suitable choice of spatial and temporal
basis functions. The encoding process generates a vector
time series of coefficients (temporal strands) in a suitable
lower dimensional beta-space. Finally, a linear system is
identified that best fits the input strand to the output
strand.

I. INTRODUCTION TO THE CORTICAL WAVE

GENERATION

Extracellular recordings [7] and experiments with
voltage sensitive dyes [11], [10], [12] have established
the fact that the visual cortex of freshwater turtles
produces waves of activity as a result of an input
pattern of visual activity. Experimentally, these patterns
have been generated for inputs restricted to a stationary
flash of light localized at various parts of the visual
field or a moving flash with constant velocity. A large
scale model [9], [8] of the turtle visual cortex has
been constructed that has the ability to simulate cortical
waves with the same qualitative features as the cortical
waves seen in experimental preparations. The model
cortex can now be used to generate simulated output
to many and perhaps more complex input stimuli. In
an earlier paper, Joseph and Ghosh [5] used harmonic
inputs of the form

ur(t) = krcos(ωrt),

to record the model cortical output. The corresponding
beta strands were generated using principal component
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analysis. Application of Volterra theory of nonlinear
systems [5], with ur(t) as the input to the system,
enabled identification of the corresponding Volterra
kernels. This paper is an extension of [5], where the
input is now chosen as a natural stimulus. In so doing,
we are no longer able to use the harmonic probing
technique of Boyd et al [2]. The input to the cortex
is now distributed both in space and time. In order
to be consistent with the model cortex [9], the spatial
dimension of the input signal is chosen to be one.

II. ENCODING THE TURTLE’S VISUAL INPUT

A turtle’s visual field has a high level of acuity
along a horizontal axis, called the visual streak. In
this paper, we propose to restrict the visual input to
the visual streak by considering a horizontal cross
section of the field of view. Figure 1 illustrates an
example of a typical such cut. 201 contiguous positions
are chosen corresponding to the 201 lateral geniculate
nucleus (LGN) neurons in our model cortex. We com-
pute u(x, t), the appropriate intensity function at each
position. The function u(x, t) is smoothed in time and
we obtain ū(x, t). Samples of these functions are shown
in Figure 2, for a suitable natural video sequence. We
now expand ū(x, t) in terms of its principal components
as follows

ū(x, t) =
N

∑
i=1

αi(t)ψi(x).

We may further expand the αi(t) as

αi(t) =
q

∑
j=1

β jφ j(x),

where the φ j(x) are the ’principal temporal modes’ and
the β j(t) are the corresponding coeficients. These will
be addressed in greater detail in Section III. We propose
to use these q-dimensional β vectors as input to our
dynamic model.
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Fig. 1. An example of a natural scene used which illustrates
a typical horizontal cut. 201 contiguous spatial positions are
selected. The image intensity is observed, in time, from each
of these fixed locations.
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Fig. 2. Scaled image intensity, u(x, t), and its smoothed
counterpart, ū(x, t), corresponding to three different positions
along the same horizontal cut. Spatial positions chosen were
x = 170, x = 270, and x = 330, all at y = 53 based on the
coordinate system represented in Fig 1. The threshold at
which the model LGN neurons fire was experimentally found
to be approximately 6 picoamperes and is indicated by the
dashed line.
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Fig. 3. Block diagram of the overall scheme.

III. THE BETA STRAND REPRESENTATION OF THE

WAVES

The visual cortex of freshwater turtles contains three
layers. Our model [9] assumes that the three layers
are projected onto a single plane. Each neuron is
represented by a multicompartmental model based on
the anatomy of the turtle neurons. Each compartment
is modeled by a standard membrane equation and
implemented in GENESIS [1]. A set of 201 genicu-
late neurons are linearly arranged as described in [9].
Through the synaptic interactions between the genic-
ulate, pyramidal, stellate, and horizontal neurons, the
cortex is activated. We are primarily concerned with the
pyramidal neurons, and their responses are visualized
as a spatiotemporal signal I(x,y, t) and displayed as
a movie. Selected views from a few typical movies
are displayed in Figure 4. It should be noted here
that through the encoded signal, the model cortex not
only discriminates between inputs from different natu-
ral scenes, but also between inputs from neighboring
cuts of the same scene. In Figure 4, the first two
columns show the cortical response to inputs that are
only four pixels apart. Once the signal I(x,y, t) has
been obtained, it can be represented using principal
component analysis as

I(x,y, t) =
p

∑
i=1

αi(t) Mi(x,y), (1)

where Mi(x,y) are the ‘principal spatial modes’ ob-
tained by considering the response of the cortex to
50 different inputs each corresponding to a different
horizontal cut from the natural scene. In our model,
p = 679 is the number of pyramidal cells, and this is
the number of α(t) coefficients present. The coefficient
vector α(t) = (α1(t),α2(t), . . . ,αp(t)) can be further
expanded using ‘principal temporal modes’ φi(t) as



follows:

α(t) =
q

∑
i=1

βi φi(t). (2)

The q dimensional β-vector represents the spatio-
temporal signal I(x,y, t) over the entire spatial dimen-
sion of the cortex and over a time window. The time
window has been allowed to slide, leading to a sequence
of β-vectors called a ‘beta strand’ (see Figure 8). Note
that each strand is a lower dimensional representation
of the cortical response with respect to a set of spatial
and temporal basis functions and has already been
introduced by Du et al. [3]. Here, each time window
is chosen to be T = 10 ms in width and the time step
considered is dT = 2 ms.

IV. ON THE PROBLEM OF DYNAMIC MODELING

Our dynamic modeling approach involves treating
the β strands, obtained from the natural scenes, as
input to a linear time-invariant dynamical system. Of
particular interest is the model format discussed in [4]
and [6], in which the current output vector is expressed
as a linear combination of past outputs, y(t), and past
inputs, u(t). We consider the case where the input u(t)
is an m-dimensional vector and the output y(t) is a p-
dimensional vector. It is of the form

A(q−1)y(t) = B(q−1)u(t)+ e(t); t ≥ 0 (3)

where

A(q−1) = I +A1q−1 + · · ·+Anaq−na (4)

B(q−1) = B1q−1 + · · ·+Bnbq−nb (5)

Here, I and the Ai are p× p matrices and the Bi are
p×m matrices whose entries are polynomials in the
delay operator q−1. na represents the number of output
samples that are included in (4) and nb represents the
number of input samples that are included in (5). The
model may now be concisely expressed as

y(t) = ΘT φ(t)+ e(t) (6)

where
Θ = [A1 · · ·Ana B1 · · ·Bnb ]

T

is a [na · p+nb ·m]× p matrix, and

φ(t) = [−y(t −1) · · ·− y(t −na)u(t −1) · · ·u(t −nb)]
T

is a [na · p + nb ·m]-dimensional vector. The multivari-
able least squares algorithm can then be applied.
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Fig. 4. Selected views of turtle cortical waves which represent
the response to stimuli from three horizontal cuts. The first
two columns, (p) and (q), are from the same natural scene
with cuts made at y = 143 and at y = 147 respectively. The last
column, (r), is from a different movie with the cut made at y
= 62. Cortical discrimination is evident from these snapshots.

V. RESULTS

For this problem, input dimension m = 3 and output
dimension p = 3 were chosen. The significance here
is that almost all information contained in the input
and output β-vectors is retained if q = 3 in (2). As
a matter of fact, the fourth β component is typically
less that 10% of the first. The model parameters were
estimated from an input-output pair generated from
spatial location: x = [ 149,350 ] and y = 53 (see Figure 1
for reference). Figures 5, 6, and 7 show how the model
simulated output compares to the real output data. We
define the model’s goodness of fit, F as

F =

[

1−
‖ y− ŷ ‖
‖ y− ȳ ‖

]

×100
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Fig. 5. The most dominant beta component, β1. The model
was able to fit the true output to 87.7357 % accuracy.
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Fig. 6. The second most dominant beta component, β2. The
model was able to fit the true output to 52.1610 % accuracy.

and the figures indicate how good a job the model does
at predicting each output vector. Clearly, the impor-
tance of the accuracy of the model’s prediction ranges
from most important in Figure 5 to least important
in Figure 7 for reasons already mentioned. Figure 8
shows how the three-dimensional β strands compare.
The model does a very good job of prediction in this
scenario as evidenced by the 87.6479% goodness of fit.
Since model validation is of great importance, and we
follow some general methods mentioned in [6]. To see
how much of the data is unexplained by the model, we
analyze the residuals. We consider the autocorrelation
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Fig. 7. The third most dominant beta component, β3. The
model was able to fit the true output to 29.3179 % accuracy.
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Fig. 8. Strands corresponding to the first three most dominant
β components in time plotted as the time window of a given
width (T = 10 ms) is allowed to slide along the time axis
every dT = 2 ms. The model prediction was able to fit the
true output strand to 87.6479 % accuracy.
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Fig. 9. From top to bottom and then from left to right, this
figure shows the autocorrelation of the three ei vectors as well
as the cross-correlation between e1 and u1.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.1

−0.05

0

0.05

0.1
Cross corr. function between input u2 and residuals from output y1

lag

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Cross corr. function between input u3 and residuals from output y1

lag

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.1

−0.05

0

0.05

0.1
Cross corr. function between input u1 and residuals from output y2

lag

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.1

−0.05

0

0.05

0.1
Cross corr. function between input u2 and residuals from output y2

lag

Fig. 10. From top to bottom and then from left to right, this
figure shows the cross-correlation between e1 and u2, e1 and
u3, e2 and u1, and e2 and u2.
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Fig. 11. From top to bottom and then from left to right, this
figure shows the cross-correlation between e2 and u3, e3 and
u1, e3 and u2, and e3 and u3.

of the system disturbance, ei and the cross-correlation
between the ei and the inputs, uj from Equation 3.
Figures 9, 10, and 11 show the autocorrelation and
cross-correlation functions as well as 99% confidence
intervals for these functions. The system disturbance
is assumed to be white and independent of the uj. In
general, one rejects a model in which the correlation
functions range significantly outside of the confidence
interval. Thus, Figures 9, 10, and 11 clearly demon-
strate that the model gives a good representation of
the system. Shortly, we plan to advance the model to
predict unknown data within a given range reasonably
well, if at all possible.
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