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Abstract— We present an approach that links non-
linear model reduction techniques with control vector
parametrization-based schemes to efficiently solvedynamic
constraint optimization problems arising in the context of
spatially-distributed processes governed by highly-dissipative
nonlinear partial differential equations (PDEs). The proposed
approach is applied to a Metal-Organic Vapor-Phase Epitaxy
process for the production of GaN thin films, with the objective
to minimize the spatial non-uniformity of the deposited film
across the substrate surface.

I. I NTRODUCTION

The traditional assumption towards the design of indus-
trially important chemical processes has been the consider-
ation of steady-state operating conditions. However, there
are instances where more efficient process operation can be
accomplished through time-varying operation. The increase
of available computational power has prompted the use of
direct search methods for the computation of optimal, with
respect to a specific cost function, time-varying operating
conditions.

To address the issue of optimal operation for dynamically
evolving processes, computational approaches have been
proposed that may involve the discretization of both the
control and process variables in the temporal domain, solved
using sparse linear algebra techniques [24], [5], [3], [10],
[6], or formulations necessitating direct integration of the
model equations in time, keeping track of possible parame-
ter and path constraint violations and temporal discretization
of the operating variables [5], [7], [9], [25], [20]; the control
vector parametrization method.

Contrary to the wealth of results on optimization of
dynamically evolving lumped parameter processes, only
recently the computation of optimal strategies for processes
that involve coupling of complex chemical reactions with
significant mass and energy transport mechanisms was
addressed [4], [2]. Mathematical descriptions of transport-
reaction processes can be derived from dynamic conserva-
tion equations and usually involve highly dissipative (typi-
cally parabolic) partial differential equation (PDE) systems
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that hinder the use of standard search algorithms due to the
large number of ordinary differential equations (ODEs) in
the formulation, necessary to accurately capture the spatial
variation of the process. Motivated by this, computationally
tractable programs for spatially distributed processes at
steady state were recently formulated [4], using nonlinear
model reduction techniques. In [2], a computationally ef-
ficient procedure was developed for dynamically evolving
highly dissipative systems, using nonlinear model reduction
techniques to map them as low-order differential-algebraic
equations (DAEs).

In this work, we present an approach that links
nonlinear model reduction techniques with control vec-
tor parametrization-based schemes to efficiently solve
dynamic constraint optimization problems arising in the
context of spatially-distributed processes governed by
highly-dissipative nonlinear partial differential equations
(PDEs). The approach is based on combination of the
method of weighted residuals with spatially-global em-
pirical eigenfunctions as basis functions (constructed by
applying Karhunen-Lòeve expansion [16], [21] to appro-
priately composed ensembles of process data) to spatially
discretize the PDEs and derive greatly reduced in order,
yet highly accurate, ODE models. We apply the proposed
approach to achieve uniform radial thickness of GaN films
in a vertical MOVPE reactor. Based on the observation
that a change in precursor distribution across the reactor
inlet results in an altered GaN deposition rate profile over
the substrate, we solve a constraint dynamic optimization
problem that determines the optimal precursor concentration
spatiotemporal profiles at the inlet to grow films which have
a high degree of spatial uniformity.

II. PRELIMINARIES

We focus on spatially-distributed processes modeled by
highly dissipative PDE systems with the following state-
space description:

∂x

∂t
= A(x) + f(t, x, d), x(z, 0) = x0(z)

g(x,
dx

dη
, . . . ,

dno−1x

dηno−1
) = 0, on Γ

(1)



wherex(z, t) ∈ IRn denotes the vector of state variables,
t ∈ [0, tf ] is the time (tf is the terminal time),z =
[z1, z2, z3]∈ Ω ⊂ IR3 is the vector of spatial coordinates,Ω
is the domain of definition of the process andΓ its boundary.
A(x) is a dissipative, possibly nonlinear, spatial differential
operator which includes higher-order spatial derivatives,
f(t, x, d) is a nonlinear, possibly time-varying, vector func-
tion which is assumed to be sufficiently smooth with respect
to its arguments,d(t) ∈ IRp is the vector of design variables
which are assumed to be piecewise continuous functions of

time, g(x,
dx

dη
, . . . ,

dno−1x

dηno−1
) is a nonlinear vector function

which is assumed to be sufficiently smooth (no is the order

of the PDE of Eq.1),
dx

dη

∣∣∣∣
Γ

denotes the derivative in the

direction perpendicular to the boundary andx0(z) is a
smooth vector function ofz.

The system of Eq.1 is applicable to a wide range
of dynamic spatially distributed processes including both
transport-reaction processes and several classes of dissipa-
tive fluid dynamic systems [8]. The nonlinear structure of
the spatial differential operator,A(x), allows accounting for
the explicit dependence of diffusivity and thermal conduc-
tivity on temperature and concentration in certain transport-
reaction processes, while the nonlinear termf(t, x, d) al-
lows modeling complex reaction mechanisms, as we will
present in section VI.

A general optimization problem for the system of Eq.1
can be formulated as follows:

min

∫ tf

0

∫

Ω

G(x(z, t), d(t))dzdt

s.t

−∂x

∂t
+A(x) + f(t, x, d) = 0,

x(z, 0) = x0(z), g(x,
dx

dη
, . . . ,
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dηno−1
) = 0 on Γ

g(x, d) ≤ 0, ∀ z ∈ Ω, t ∈ [0, tf ]
(2)

where
∫ tf

0

∫

Ω

G(x, d)dzdt is the objective function and

g(x, d) is the vector of inequality constraints which may
include bounds on the state and design variables. Both
G(x, d) and g(x, d) are assumed to be sufficiently smooth
functions of their arguments.

III. SPATIAL DISCRETIZATION

A. Method of weighted residuals

We derive finite-dimensional approximations of the
infinite-dimensional nonlinear program of Eq.2 by using the
method of weighted residuals. To simplify the notation, we
consider the optimization program of Eq.2 withn = 1. In
principle,x(z, t) can be represented as an infinite series in
terms of a complete set of basis functionsφk(z). We can
obtain an approximationxN (z, t), by truncating the series

expansion ofx(z, t) up to orderN , as follows:

xN (z, t) =
∞∑

k=1

akN (t)φk(z) N→∞−→ x(z, t) =
∞∑

k=1

ak(t)φk(z)

(3)
whereakN (t) ak(t) are time-varying coefficients.

Substituting the expansion of Eq.3 into Eq.2, multiplying
the PDE and the inequality constraints with the weighting
functions, ψν(z), and integrating over the entire spatial
domain, the following finite-dimensional dynamic nonlinear
program with ODE equality constraints, where the optimiza-
tion parameters are the design variablesd(t) and the time
varying coefficientsakN (t):

min

∫ tf

0

∫

Ω

G(
N∑

k=1

akN (t)φk(z), d)dzdt

s.t

−
N∑
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ȧkN (
∫

Ω

ψν(z)φk(z)dz)

+
∫

Ω

ψν(z)A(
N∑

k=1

akN (t)φk(z))dz

+
∫

Ω

ψν(z)f(t,
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k=1

akN (t)φk(z), d)dz = 0

∫

Ω

ψν(z)g(
N∑

k=1

akNφk(z), d)dz ≤ 0

(4)

where akN (t) is the approximation ofak(t) obtained by
an N -th order truncation. From Eq.4, it is clear that the
form of the algebraic equality and inequality depends on
the choice of the weighting functions, as well as onN .
Owing to the smoothness of the functionsG(x, d), A(x),
f(t, x, d), g(x, d) and the completeness of the set of basis
functions,φk(z), the nonlinear program of Eq.4 is a well-
defined approximation of the infinite-dimensional program
of Eq.2 in the sense that the optimal solution of the program
of Eq.4 converges to the optimal solution of the program
of Eq.2 asN →∞.

B. Computation of empirical eigenfunctions via Karhunen-
Loève expansion

To perform spatial discretization of the nonlinear program
of Eq.2, we use solution data of the system of Eq.1 to
construct global basis functions via Karhunen-Loève (K-
L) expansion. The motivation for following this approach
is provided by the occurrence of dominant spatial patterns
in the solution of several dissipative PDEs and the presence
of actuation (external influence) and the need to account
for those in the shape of the global basis functions. The
ensemble of solutions is constructed by computing the
solutions of the PDE system of Eq.1 for different values
of d(t), and different initial conditions. Specifically, we
construct a representative ensemble using the following



procedure (see also [12], [4], [2] for more discussion on
ensemble construction):

• First, we create a set of different initial conditions.
• We then discretize the interval in which each design

variabledm (m = 1, . . . , p) is constrained to be into
mdm

(not necessarily equispaced) subintervals. The
values ofdm in each one of those intervals are denoted
by dm,j , j = 1, . . . , mdm

.
• We also discretize the time-interval intondm time

subintervals (also not necessarily equispaced).
• Subsequently, we compute a set of time profiles for

each of the design variablesdm(t) by assigning values
for dm(t) at different time instantstj , saydm,j , and
subsequently computingdm(t) for the entire time
interval of process operation using linear interpolation.

• Finally, we compute a set of PDE solution data (ensem-
ble) for all possible combinations of initial conditions
and profiles ofd(t).

Application of K-L expansion to the ensemble of data
provides an orthogonal set of basis functions (known as
empirical eigenfunctions) for the representation of the en-
semble, as well as a measure of the relative contribution
of each basis function to the total energy (mean square
fluctuation) of the ensemble (empirical eigenfunctions); the
reader may refer to [11], [13], [2] for a detailed presentation
of the method. A truncated series representation of the
ensemble data in terms of the dominant basis functions has a
smaller mean square error than a representation by any other
basis of the same dimension. This implies that the projection
on the subspace spanned by the empirical eigenfunctions
will on average contain the most energy possible compared
to all other linear decompositions, for any number of modes
L. Therefore, the K-L expansion yields the most efficient
way for computing the basis functions (corresponding to
the largest empirical eigenvalues) capturing the dominant
patterns of the ensemble.

Remark 1: We note that the basis that we compute using
K-L decomposition is independent of the functional that
we try to minimize. Therefore, the same basis can be used
to perform computationally efficient optimizations with
respect to different functionals associated with the same
underlying set of partial differential equations.

Remark 2: We note that the value ofmdm should be
determined based on the effect of the design variabledm on
the solution of the system of Eq.1 (if, for example, the effect
of the variabled1 is larger that the effect of the variabled2,
thenmd1 should be larger thanmd2 ).

Remark 3: As a practical implementation note, we point
out that even though it is expected that the use of more basis
functions in the series expansion of Eq.3 would improve the
accuracy of the computed approximate model of Eq.4, the
use of empirical eigenfunctions corresponding to very small
eigenvalues should be avoided because such eigenfunctions
are contaminated with significant round-off errors.

IV. T EMPORAL DISCRETIZATION

The computational solution of semi-infinite optimization
problems usually involves a reformulation step, discretiz-
ing the infinite variable domain (with the exception of
approaches based on calculus of variations). In the cur-
rent section, we discretize the infinite temporal domain of
the dynamic nonlinear program, to obtain a finite num-
ber of variables for the subsequent numerical solution.
Specifically, we use control vector parametrization (CVP)
scheme to reformulate the dynamic program of Eq.4 as
an algebraic nonlinear one. CVP (also known as shooting
method) involves the temporal discretization of the control
parameter vector only, and the solution of the dynamic
equality constrains through direct integration, keeping track
of constraint violations during the process evolution [25],
[9].

We discretize the temporal domain intomt intervals
and define the temporal discretization step asδti = ti −
ti−1, ∀i = 1, ...,mt. The vector functiond(t) is then
expressed as a series of the form

d(t) =
mt−1∑

i=0

di+1[H(t− ti)−H(ti+1 − t)] (5)

where H(·) is the standard Heaviside function. Applying
the above approximation to the dynamic nonlinear program
of Eq.4, we obtain an algebraic nonlinear program of
dimensionp × mt + N , which has the following general
form:

minF (x)
s.t

h(x) = 0
g(x) ≤ 0

(6)

where the explicit form of the functionsF (x), h(x), g(x) is
omitted for brevity. Note that in the above formulation the
integrated ODEs appear inh(x).

V. COMPUTATION OF OPTIMAL SOLUTION

In this section we propose a computationally efficient
procedure for the computation of an accurate optimal
solution of the infinite dimensional nonlinear program
of Eq.1, using standard optimal search algorithms, such
as Successive Quadratic Programming (SQP), Broyden,
Fletcher, Goldfarb, Shanno (BFGS), and Luus-Jakkola (LJ)
algorithms [14], [17]. The validity of the optimal solution
computed is investigated by checking convergence to a
specific optimum asN andmt increase.

We formulate the procedure used for the computation of
the optimal solution of the infinite-dimensional program (P)
in following algorithm:

• Step 1: Compute an initial guess forN , sayN̂ , based
on the magnitude of the eigenvalues corresponding to
the eigenfunctions.

• Step 2: Use the spatial and temporal discretization
procedures of sections 3 and 4, respectively, to derive
a finite-dimensional program of the form of Eq.6.



• Step 3: Solve the resulting finite-dimensional program
using standard search algorithms to compute an opti-
mal solution.

• Step 4: Derive and solve a new finite-dimensional
program of the form of Eq.6 by performing spatial
discretization withN = N̂ + 1.

• Step 5: Compare the two optimal solutions forN =
N̂ and N = N̂ + 1. If they are close (according to
the desired accuracy), then stop; a convergent optimal
solution has been found. If not, then go back to step
2 and perform spatial discretization withN = N̂ + 2.

• Step 6: Reduce the temporal discretization stepδt to
increase the resolution in the temporal domain.

The structure of the above algorithm is motivated by the
fact that the discrepancy between the infinite-dimensional
program and its finite-dimensional approximation of Eq.4
decreases, as the number of basis functions,N , used in the
expansion of Eq.3 increases (at least, up to the point where
round-off errors are not important). This is a consequence of
the hierarchy of the eigenfunctions. On the other hand, the
convergence of the above algorithm is a direct consequence
of the fact that asN increases andδt decreases, the finite-
dimensional program converges to the infinite-dimensional
one.

VI. GAN THIN FILM EPITAXY : PROCESS DESCRIPTION

AND OPTIMIZATION PROBLEM FORMULATION

In an economic environment where profit margins tighten
due to market saturation, company survival dictates re-
duction of cost; thus the objective for microelectronics
fabrication processes is to increase yield while minimizing
reactant consumption and satisfying safety requirements.
One such process is the metal-organic vapor phase epitaxy
(MOVPE), also known as metal-organic chemical vapor
deposition; MOVPE is the method of choice to produce a
variety of high-performance optical and electronic devices
including light-emitting diodes, quantum-well lasers, and
heterojunction bipolar transistors. Multilayered structures of
group-III nitrides form the basis of these devices.

MOVPE utilizes the thermal decomposition and reaction
of gaseous precursors to epitaxially grow multiple layers of
III-nitride thin films with precise thickness, composition,
and dopant level. The success of the deposition process
depends heavily on the film thickness (which is in the
order of a fewÅ) and the sharpness of the composition
profile at the heterostructure interface [22]. The growth rate
and the structural properties of the thin film are controlled
by multiple fundamental phenomena that occur during
the process cycle, including gas-phase reactions and mass
transport of the precursor gases, adsorption, subsequent
surface diffusion and reaction of the adsorbed species, and
desorption.

GaN is one such semiconductor and because of its wide
bandgap energy (3.4 eV), it has potential applications in
manufacture of blue-green LED and laser diodes. Currently
GaN on Sapphire, Si or SiC substrates is produced in a

two stage MOVPE process [18], [1] usually with trimethy-
gallium (TMGa) andNH3 as precursors for gallium and
nitrogen respectively, diluted inH2 (carrier gas). During the
first stage, a GaN nucleation layer is formed on the wafer
surface at low temperatures (600◦C), forming a buffer layer
between the GaN epilayer and the Sapphire substrate. The
need for the buffer layer originates from the large lattice
mismatch between Sapphire and GaN. Alternatively, AlN is
also employed as a buffer layer [1]. At the termination of
the first stage the reactor is purged with carrier gas and the
substrate temperature is increased, annealing the nucleation
layer. The rate of temperature increase has been found to be
significant, with a rate of 40◦C/min to be optimal in terms
of the resulting GaN layer quality [26]. The second stage
of the GaN epitaxy is initiated at temperature of1060 ◦C,
forming the desired GaN epilayer.

Parasitic pre-reactions betweenGa and N2 precursors
that form Lewis acid-base adducts are known to occur,
which on one hand deplete the feed stream of limiting
species and on the other hand can negatively affect the film
quality owing to deposition of adduct on cold reactor walls
which leads to particulate formation. One way to avoid
this problem is to feed gallium and nitrogen containing
precursors from different inlets, so that mixing between the
two occurs just above the wafer, rather than using a single
inlet of premixed stream of precursors.

In order to grow films of uniform thickness a spatially
invariant concentration of Ga containing precursors over the
substrate is necessary, a requirement which is impossible
to meet because of transport and reaction limitations. Re-
cent simulation results [23] show that the thickness non-
uniformity is approximately 25%. Thickness uniformity
can, in principle, be improved by using multiple inlets and
feeding precursors from alternate inlets into the reactor.
However, such an implementation suffers the drawback of
increased complexity and increasing number of inlets does
not guarantee a high degree of thickness uniformity.

In this paper, we demonstrate an alternate approach to
achieve uniform radial thickness of GaN films in a vertical
MOVPE reactor. The approach is based on the observation
that a change in precursor distribution across the reactor
inlet results in an altered GaN deposition rate profile over
the substrate. We propose that by appropriately switching
from one deposition rate profile to another, it is possible to
grow films which have a high degree of spatial uniformity.

VII. PROCESS MODEL DERIVATION

A schematic of vertical MOVPE reactor with showerhead
configuration is shown in Figure 1. Precursor gases for
gallium and nitrogen enter through the inlet directly above
the substrate over which the film is deposited.TMGa
and ammonia diluted in hydrogen carrier gas were used as
precursors for gallium and nitrogen respectively. In order
to obtain spatial variations in concentration of precursors
across the inlet, a split inlet design comprising of a three
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Fig. 1. vertical MOVPE reactor with a three concentric ring showerhead
inlet configuration .

concentric ring showerhead reactor was used. Further details
of process conditions and reactor geometry are provided in
Table I.

TABLE I

REACTOR GEOMETRY AND PROCESS CONDITIONS

Reactor radius 2 in
Substrate radius (Rs) 1.5 in
Number of inlets 3
inner inlet outer radius 0.5 in
middle inlet outer radius 1 in
outer inlet outer radius 1.5 in
Substrate to inlet distance (z0) 3 in
Reactor Pressure 0.1 atm
Reactor wall Temperature 300 K
Substrate Temperature (Ts) 1300 K
Inlet Temperature 300 K
Inlet velocity 80 cm/s
X∗

TMGa 1.5×10−4

X∗
NH3

0.15
∗ Inlet Mole fractions of reactant inH2 carrier gas

The reaction model describing the reactions between gas-
phase species and gas-surface reactions has been adopted
from [23], [15] and is shown is Table II. ReactionsG1
and G2 describe the gas-phase decomposition ofTMGa
and dimethyl gallium (DMGa) respectively. Reaction G3
describes the recombination reaction betweenTMGa and
ammonia to form an adduct and its rate is estimated by
the rate of bimolecular collisions [23], which according
to kinetic theory isk = πσ2

AB(8kBT/πµ)0.5 where kB

is the Boltzmann’s constant, T is absolute temperature in
gas phase andµ is the reduced mass given by1/µ =
1/mTMGa + 1/mNH3 wheremTMGa and mNH3 are the
molecular weights ofTMGa and ammonia respectively.
The mean collision diameter (σAB) for two species is given
by σAB = 1/2 × (σA + σB) where σA and σB are the
collision diameters of A and B.

G4 andG5 are adduct dissociation and methane elimina-
tion reactions respectively. Formation of cyclic trimer has
been shown to be negligible and thus is neglected from the
gas-phase kinetic model [19].

The rates of adsorption reactionsS1-S3 were calculated
assuming the sticking coefficient to be equal to unity. The
rate of nitrogen adsorptionS4 on the surface was set to
be equal to the combined rate ofS1, S2 and S3 in order

to maintain film stoichiometry. ReactionsS5 and S6 are
included for completeness, though our simulations reveal
that their contribution towards the overall film growth is
negligible.

The above reaction model was incorporated into mo-
mentum, energy and mass conservation equations, and the
following set of coupled partial differential equations was
solved using FLUENT.

∂ρ

∂t
+5 · (ρu) = 0

∂(ρu)
∂t

+5 · (ρu u)−5 · T − ρg = 0

Cp[
∂(ρT )

∂t
+5 · (ρuT )] = −5 ·q−

∑

k

hkWkω̇

∂(ρYk)
∂t

+5 · (ρuYk) = −5 ·jk + Wkω̇k,

∀ k = 1, . . . , Ns − 1

(7)

whereρ is the density andCp is the specific heat capacity of
the multicomponent mixture,u is the fluid velocity vector
andT is the temperature,T is the stress tensor andq is the
heat flux due to conduction.Yk is the mass fraction,hk the
partial specific enthalpy,Wk the molecular weight, anḋωk

the net production rate, due to homogeneous reactions, of
speciesk. Ns is the number of gaseous species andjk the
species mass fluxes.

Physical properties such as viscosity, thermal conductiv-
ity, binary diffusion coefficients and specific heat capacities
were calculated from kinetic theory and were a function of
composition. and temperature. Full multicomponent diffu-
sion model was used for species diffusion.

VIII. R EDUCED-ORDER MODELLING AND

OPTIMIZATION

Based on the results of Fluent simulations the following
simplifying assumptions were made while formulating the
optimization problem. It was found that the concentrations
of speciesCH4 and (CH3)2Ga : NH2 were insignificant
in comparison to concentration of other gaseous species
inside the reactor. Hence, these species and the correspond-
ing gas-phase and surface reactions (G5, S5 andS6) were
omitted. Similarly, variations in axial and radial velocities
were small irrespective of the inlet configuration. Thus,
axial and radial velocities were assumed to be time invariant
and equal to their respective time averages. Furthermore,
heat generation due to chemical reactions was ignored
because of low concentration of reacting species (e.g.,
TMGa).

An analysis of the thermal Peclet number revealed that
convective heat transfer was small compared to heat trans-
fer by conduction (characterized by low values of Peclet
number), which allowed us to drop the convective heat
transfer term from the energy conservation equation. Also
the dependence of specific heat and thermal conductivity
of the mixture on temperature and mixture composition



TABLE II

GAS AND SURFACE REACTIONS

Gas phase Reactions k0 E Surface reactions† s‡
(G1) Ga(CH3)3 → Ga(CH3)2 + CH3 3.5× 1015 59.5 (S1) Ga(CH3)3 + S → Ga(bulk) + 3CH3 1
(G2) Ga(CH3)2 → GaCH3 + CH3 8.7× 107 35.4 (S2) Ga(CH3)2 + S → Ga(bulk) + 2CH3 1
(G3) Ga(CH3)3 + NH3 → (CH3)3Ga : NH3 coll. 0 (S3) GaCH3 + S → Ga(bulk) + CH3 1
(G4) (CH3)3Ga : NH3 → Ga(CH3)3 + NH3 1× 1014 18.5 (S4) NH3 + S → N(bulk) + CH3 −∗
(G5) (CH3)3Ga : NH3 → (CH3)2Ga : NH2 + CH4 1× 1014 49 (S5) (CH3)3Ga : NH3 + 2S → GaN + 3CH4 1

(S6) (CH3)2Ga : NH2 + 2S → GaN + 2CH4 1

∗Rate equal to S1+S2+S3,†S denotes a free surface site,‡s = 1 denotes a unity sticking coefficient at zero coverage

was found to be almost the same. These considerations
allowed the energy equation to be decoupled from the rest
of the equations and an exponentially decaying relationship
for deviation of temperature from the steady-state profile
was assumed, whose time constant was tuned to minimize
the error. The simulations also revealed that the deviation
of the temperature spatial profile from the steady-state
tends to die out quickly after switching from one inlet
configuration to another. The above argument was further
bolstered by the presence of a single dominant eigenvalue
(which captured 98% of the energy included in the ensemble
of snapshots) for temperature during calculation of the
empirical eigenfunctions via Karhunen-Loève expansion.

As mentioned earlier, different inlet configurations can
be employed to obtain different distributions of precursors
across the reactor inlet. Switching from one inlet configura-
tion to another causes the system to dynamically evolve to a
new steady-state with a characteristic deposition rate profile.
Under the objective of minimum non-uniformity in the final
film thickness, the goal of optimization is to ascertain an
optimal switching policy for inlet configurations.

A reduced-order model was obtained for the solution
of the optimization problem through spatial discretization
using the method of weighted residuals with empirical
eigenfunctions (obtained by Karhunen-Loève expansion) as
basis functions. Simulation data from Fluent for a variety
of inlet configurations (initial conditions) were employed
as “snapshots” to construct empirical eigenfunctions that
describe the dominant spatial patterns in the solution of the
PDEs describing momentum, energy and mass transport. 28
snapshots were taken from each switching and a total of 25
different switchings (from 6 different inlet configurations)
were employed to generate an ensemble of28 × 25 snap-
shots. Under the assumptions discussed earlier, we required
the computation of empirical eigenfunctions for five species
namely TMGa, DMGa, MMGa, adduct and NH3 to
derive the reduced-order model. In consequence, the derived
reduced-order model based on the computed empirical
eigenfunctions, involved 64 ODEs to describe the dynamic
behavior of these species, with axial and radial velocities
held constant at their respective ensemble averages and an
algebraic expression describing the exponential (decaying)
dependence of the spatial variations of temperature from the
respective steady state.

The optimization problem was formulated as:

minF =w1

∫ Ro

0

{∫ tf

0

(Rdep(r, t)dt− H̄(δt))dt

}2

dr

+w2[Hobj − H̄(δt)]2

s.t.

H̄ =
1

Ro

∫ Ro

0

∫ tf

0

Rdep(r, t)dtdr

tf = [1 1 1 1]δt, δt ≥ 0
Rdep(r, t) =

∑
ls kls(Ts)Cls(t, r, z = z0)

(8)
wherels represents speciesTMGa, DMGa ,MMGa and
Adduct; F is the objective function andRdep is the surface
deposition rate of GaN,H̄ and Hobj are the spatially
average thickness and the target thickness of the film at
the end of deposition process respectively.tf represents
the total process time andδt = [δt δt1 δt2 δt3 δt4] is a
four-dimensional vector representing the switching times.
kls are the rate constants for surface reactionsS1-S3. In
the above optimization problem,Ro was taken to be 90
percent of the total wafer radius [23]. The rationale behind
this approach is to avoid the edge effect, which was always
present irrespective of the inlet configuration. Throughout
the rest of this paper, we will refer to it as cutoff radius. The
objective functionF is a quadratic function that penalizes
the spatial nonuniformity of the final film thickness across
the wafer surface area within the cut-off radius and the
deviation of the spatially averaged film thickness from a
predefined target one.

Additional constraints to the optimization problem (in
addition to the ones of Eq.8) arise from the Karhunen-Loève
expansion, and are of the form of Eq.4. Their explicit form
is omitted for brevity.

In the specific problem formulation the time duration
of each of the available inlet configurations,δti, were
the design variables. The non-linear program was solved
using a projected BFGS algorithm [14] to compute optimal
switching times from one inlet configuration to another.

IX. RESULTS

To better present the optimization results based on the
inlet concentration profiles, we assign to each inlet configu-
ration a shorthand notation; for example, we refer to an inlet
configuration withNH3 precursor flowing in the innermost
inlet and TMGa precursor flowing in the middle (with



H2 carrier gas for both inlets) and pureH2 flowing in the
outermost inlet asNTH configuration; shorthand notations
for other configurations are based on similar lines. In order
to demonstrate the effectiveness of optimal switching of
inlet configurations towards obtaining a final thin film of
high radial uniformity, we considered a switching scheme
comprising of switching from anNTH configuration to
TNN , from TNN to TNH and from TNH to TNT
configurations. Initially the reactor was assumed to be op-
erating at steady state with pure hydrogen flowing through
the three inlets. A total of 15 empirical eigenfunctions were
used for the five gaseous species (which accounted for at
least 99 percent of the energy embedded in the ensemble
of snapshots) with a different set of eigenfunctions (and in
extension a different ODE model) for each switching. A
projected BFGS algorithm [14] was used to obtain the so-
lution to the optimization problem, which took 52 searches
and 558 seconds of CPU time to reach at the solution. The
solution for optimal switching times is presented in Table
III. We note that the time needed for the computation of
empirical eigenfunctions is not included in the calculation
of the time needed to solve the optimization problem.
The time needed to compute the empirical eigenfunctions
was approximately 30 hours, which is still lower than the
estimated time required to solve the optimization problem
when using the full-order model (520 hours).

TABLE III

OPTIMAL SWITCHING TIME

Switching time [s]
HHH - NTH 0.00
NTH - TNN 2.40
TNN - TNH 3.70
TNH - TNT 5.20
TNT - HHH 6.70

The thickness of the deposited film along the substrate
obtained from integration of the reduced order model (for
optimal switching of inlets) is shown in Figure 2, and
is compared with results of Fluent simulations (under the
same policy). The green line represents the cutoff radius.
The error between the two is 1 %. It took more than
10 hours to run one dynamic simulation in Fluent. Thus,
the use of reduced order model resulted in considerable
saving of computational resources, with minimal loss of
accuracy. In order to further demonstrate the accuracy of the
reduced-order model, temporal variations of GaN deposition
rate on the substrate are plotted in Figures 3 and 4 for
simulations using Fluent (full-order model) and empirical
eigenfunctions (reduced-order model) respectively. It can
be seen that the reduced-order model follows the full-order
model closely for all times and the error (Figure 5) between
the two is marginal.

In Figure 6, the final film thickness, at the end of the
process operationtf = 6.7 s, along the substrate radius is
shown for each inlet configuration and compared against
the optimal case. The extent of homogeneity achieved
through switching is evident. Quantitatively, the maximum
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Fig. 2. Final GaN film thickness computed through integration of
reduced-order model (stars) and from full order model (circles). Green
line represents the cutoff radius.
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Fig. 3. GaN deposition rate on the heated substrate as a function of
process time calculated using FLUENT.

variation in wafer thickness from center of the wafer is
86%, 32%, 35% and 20% forNTH, TNN , TNH and
TNT inlet configurations respectively, while for the optimal
operation it is 3.1%. All profiles were obtained through
Fluent simulations and the cutoff radius is represented by
the green (dashed) line.

X. CONCLUSION

An approach that linked non-linear model reduction tech-
niques with control vector parameterization-based schemes
to efficiently solve dynamic constraint optimization prob-
lems arising in the context of spatially-distributed processes
described by highly-dissipative nonlinear partial differen-
tial equations was presented. The proposed approach was
successfully applied to a MOVPE process, where it was
demonstrated that the spatial non-uniformity (optimization
objective) of the deposited film across the substrate surface
can be reduced from 33% (steady-state operation with con-
stant inletTNN configuration) to 3% (under the optimal
switching policy).
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Fig. 4. GaN deposition rate on the heated substrate as a function of
process time for the reduced-order model.
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Fig. 5. Difference betweenGaN deposition rate computed using full-
order and reduced-order models.
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