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Abstract— In this paper we design exponentially convergent
observers for a class of parabolic partial integro-differential
equations (P(I)DEs) with only boundary sensing available.
The problem is posed as a problem of designing invertible
coordinate transformation of the observer error system into
exponentially stable target system. Observer gain (output
injection function) is shown to satisfy a well-posed hyperbolic
PDE that is closely related to the hyperbolic PDE governing
backstepping control gain for the state-feedback problem. It
is shown how observer gain can be obtained directly from
the control gain. Backstepping controller and observer are
then combined to obtain a solution for the boundary output-
feedback problem. Collocated and anti-collocated positions of
sensor and actuator are considered. Explicit solutions to the
output-feedback problem are obtained for certain classes of
PDEs. It is shown that the order of the compensator can be
substantially lowered without affecting stability. Simulation
study for the model of chemical tubular reactor is presented.

I. INTRODUCTION

In this paper we propose backstepping based infinite
dimensional observers for a class of linear parabolic partial
differential equations, and use them to develop output feed-
back controllers for stabilization by boundary control. The
backstepping observer problem is dual to the backstepping
control problem. While in the latter one is limited to
employing control only at the boundary, in the former it
is sensing that is restricted only to the boundary.

To solve this problem we draw inspiration from a recent
paper of Krener and Wang [6] in which a finite dimensional
backstepping observer is proposed for nonlinear ODEs.
They discover and exploit a triangular structure dual to that
for the backstepping controller design [7]. The complexities
present due to nonlinearities in finite dimension make the
Krener-Wang observer local. This limitation is not an issue
in our problem, as the class of parabolic PDEs we consider
is linear. Our observers, due to the infinite dimension, take
a form in which they are almost unrecognizable as Krener-
Wang observers, however their structure is exactly that of
Krener and Wang, where duality with backstepping control
is exploited.

Putting together our earlier state-feedback boundary sta-
bilizers [11] and the present observers, yields output feed-
back compensators for a class of parabolic PDEs. The
controller/observer pair uses gain kernels that are computed
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by solving a linear hyperbolic PDE, an object much eas-
ier, both conceptually and computationally, than operator
Riccati equations arising in LQG approaches to boundary
control. Moreover, we exploit duality and find a relationship
between the two kernels, reducing the problem to solving
only one hyperbolic PDE, which is then, with some varia-
tions, used both for state feedback in the controller, and for
output injection in the observer.

While this is not the first solution to the problems
of boundary observer design or output-feedback boundary
control (see, e.g. [1], [3], [8], [10]), our approach has a
distinguishing feature relative to the existing methods. For
a number of physically relevant problems we are able to
find the observer/controller kernels in closed form, i.e.,
as explicit functions of the spatial variable. This, in turn,
allows to even find closed-loop solutions explicitly.

II. PROBLEM STATEMENT
We consider the following class of parabolic PDEs:

ut (x, t) = εuxx (x, t)+b(x)ux(x, t)+λ(x)u(x, t)

+g(x)u(0, t)+
∫ x

0
f (x,y)u(y, t)dy (1)

for x ∈ (0,1), t > 0, with boundary conditions1

ux (0, t) = qu(0, t) , (2)
u(1, t) = U(t) or ux(1, t) = U(t) , (3)

and under the assumption

ε > 0, q ∈ R, λ, g ∈C1 [0,1] , f ∈C1([0,1]× [0,1]) (4)

Without loss of generality we can set b(x)≡ 0, since it can
be eliminated from the equation with the transformation

u(x, t) 7→ u(x, t)e
− 1

2ε
x
∫

0
b(τ)dτ

(5)

and the appropriate changes of q, λ(x), g(x), and f (x,y).
The PDE (1)–(2) is controlled at x = 1 (using either

Dirichlet or Neumann actuation) by a boundary input U(t)
that can be any function of time or a feedback law.

The problem is to design an exponentially convergent
observer for the plant with only boundary measurements
available. Our ultimate objective is to use these observers
for output-feedback stabilization by boundary control. We
consider two possibilities: the anti-collocated case, when
sensor and actuator are placed at the opposite ends, and the
collocated case, when sensor and actuator are placed at the
same end.

1The case of Dirichlet boundary condition at the zero end can be handled
by setting q = +∞.



III. BACKSTEPPING CONTROL DESIGN
OVERVIEW

Though the main topic of this paper is observer design, it
is crucial for further analysis to first recapitulate the back-
stepping approach to state-feedback boundary stabilization.
This problem, for the class (1)–(2), was solved in [11] by
finding a backstepping-style integral transformation

w(x, t) = u(x, t)−
∫ x

0
k (x,y)u(y, t) dy (6)

that maps the system (1)–(2) into the system

wt(x, t) = εwxx(x, t)− cw(x, t) , x ∈ (0,1) , (7)
wx(0, t) = qw(0, t) , (8)
w(1, t) = 0 or wx(1, t) = 0 , (9)

which is exponentially stable for c ≥ εq̄2 (respectively, c ≥
εq̄2 + ε/2) where q̄ = max{0,−q}. Once the kernel k(x,y)
of the transformation (6) is found, the stabilizing boundary
control at x = 1 can be obtained in the form

u(1, t) =
∫ 1

0
k1(y)u(y, t) dy (10)

for Dirichlet type of actuation, k1(y) = k(1,y), or

ux (1, t) = k1(1)u(1, t)+
∫ 1

0
k2(y)u(y, t) dy (11)

for Neumann type of actuation, k2(y) = kx(1,y).
It was shown in [11] that the control gain kernel k(x,y)

satisfies the following hyperbolic PDE:

εkxx(x,y)− εkyy(x,y) = (λ(y)+ c)k(x,y)− f (x,y)

+
∫ x

y
k(x,ξ) f (ξ,y)dξ, (12)

for (x,y) ∈ T = {x,y : 0 < y < x < 1} with boundary
conditions

εky(x,0) = εqk(x,0)+g(x)−
∫ x

0
k(x,y)g(y)dy , (13)

k(x,x) = −
1
2ε

∫ x

0
(λ(ξ)+ c)dξ , (14)

and the following theorem proved.
Theorem 1: The equation (12) with boundary conditions

(13)–(14) has a unique C 2(T ) solution. For any u0 ∈
L2 (0,1) the system (1)–(2), (10) (or (11)) with the kernel
k1(y) = k(1,y) (or k2(y) = kx(1,y)) has a unique classical
solution u(x, t) ∈ C2,1 ((0,1)× (0,∞)) and is exponentially
stable at the origin, u(x, t) ≡ 0, in the L2 (0,1) and H1(0,1)
norms.

IV. OBSERVER FOR ANTI-COLLOCATED
OUTPUT FEEDBACK DESIGN

Suppose the only available measurement of our system is
at x = 0, the opposite end to control actuation. We propose

the following observer for the system (1)–(3) with Dirichlet
actuation :

ût (x, t) = εûxx (x, t)+λ(x) û(x, t)+
∫ x

0
f (x,y)û(y, t)dy

+g(x)u(0, t)+ p1(x)[u(0, t)− û(0, t)], (15)
ûx (0, t) = qu(0, t)+ p10[u(0, t)− û(0, t)] , (16)
û(1, t) = U(t) . (17)

Here p1(x) and p10 are output injection functions (p10 is a
constant) to be designed. Note, that we introduce output
injection not only in the equation (15) but also at the
boundary where measurement is available.

The observer error ũ(x, t) = u(x, t)− û(x, t) satisfies the
following PDE:

ũt (x, t) = εũxx (x, t)+λ(x) ũ(x, t)

+
∫ x

0
f (x,y)ũ(y, t)dy− p1(x)ũ(0, t) , (18)

ũx (0, t) = −p10ũ(0, t) , (19)
ũ(1, t) = 0. (20)

Observer gains p1(x) and p10 should be now chosen to
stabilize the system (18)–(20). For linear finite dimensional
systems the problem of finding the observer gains is dual
to the problem of finding the control gains. This motivates
us to try to solve the problem of stabilization of (18)–(20)
by the same integral transformation approach as the (state
feedback) boundary control problem reviewed in Section
III. We look for a backstepping-like transformation

ũ(x, t) = w̃(x, t)−
∫ x

0
p(x,y) w̃(y, t) dy (21)

that transforms system (18)–(20) into the exponentially
stable (for c ≥ 0) system

w̃t(x, t) = εw̃xx(x, t)− cw̃(x, t) , x ∈ (0,1) , (22)
w̃x(0, t) = 0 , (23)
w̃(1, t) = 0. (24)

By substituting (21) into (18)–(20) and using (22)–(24)
it can be shown that the kernel p(x,y) must satisfy the
following hyperbolic PDE:

εpyy(x,y)− εpxx(x,y) = (λ(x)+ c)p(x,y)− f (x,y)

+
∫ x

y
p(ξ,y) f (x,ξ)dξ, (25)

with the boundary conditions

d
dx

p(x,x) =
1
2ε

(λ(x)+ c), (26)

p(1,y) = 0 . (27)

In addition, the following conditions should be satisfied:

p1(x) = εpy(x,0), p10 = p(0,0). (28)

The problem is now to prove that PDE (25)–(27) is well-
posed. Once the solution p(x,y) to the problem (25)–(27)
is found, the observer gains can be obtained from (28).
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Fig. 1. Exponential convergence of the observer.

Let us make a change of variables x̆ = 1− y, y̆ = 1− x,
λ̆(y̆) = λ(x), f̆ (x̆, y̆) = f (x,y), p̆(x̆, y̆) = p(x,y). In these new
variables the problem (25)–(27) becomes

εp̆x̆x̆(x̆, y̆)− εp̆y̆y̆(x̆, y̆) = (λ̆(y̆)+ c)p̆(x̆, y̆)− f̆ (x̆, y̆)

+
∫ x̆

y̆
p̆(x̆,ξ) f̆ (ξ, y̆)dξ, (29)

p̆(x̆,0) = 0, (30)

p̆(x̆, x̆) = −
1
2ε

∫ x̆

0
(λ̆(ξ)+ c)dξ . (31)

This is the same PDE as (12)–(14) with q = ∞, g(x) = 0
and λ → λ̆, f → f̆ . Hence, using the results of Section III
we immediately obtain the following result.

Theorem 2: The equation (25)–(27) has a unique C 2(T )
solution. For any ũ0(x)∈ L2(0,1) the system (18)–(20) with
p1(x) and p10 given by (28) has a unique classical solution
ũ(x, t) ∈ C2,1((0,1)× (0,∞)) and is exponentially stable at
the origin, ũ(x, t) ≡ 0, in the L2(0,1) and H1(0,1) norms.

This result can be readily extended to the Neumann type
of actuation as well.

The fact that the observer gain in transposed and switched
variables satisfies the same class of PDEs as control gain
is reminiscent of the duality property of state-feedback
and observer design problems for linear finite-dimensional
systems. The difference between the equations for observer
and control gains is due to the fact that the observer error
system does not contain terms with g(x) and q because
u(0, t) is measured.

The exponential convergence of the observer designed in
this section is illustrated in Figure 1. Plant parameters were
taken g(x) ≡ 0, f (x) ≡ 0, q = ∞, λ = 5. We can see that
observer converges to the plant even though the plant is
unstable.

V. OBSERVER FOR COLLOCATED OUTPUT
FEEDBACK DESIGN

Suppose now that the only available measurement is at
the same end with actuation (x = 1). Of course, for the
problem to make sense we should assume that the actuation
is of Neumann type and u(1) is available for measurement.
We solve this problem with a restriction on the class (1)–
(2) by setting f (x,y) ≡ 0, g(x) ≡ 0. This restriction is
necessary because the boundary control problem is ”lower-
triangular” [7] whereas the boundary observer problem is
”upper-triangular”, thus the plant must be (tri-)diagonal.

Consider the following observer:

ût (x, t) = εûxx (x, t)+λ(x) û(x, t)+ p1(x)[u(1)− û(1)] ,(32)
ûx (0, t) = qû(0, t) , (33)
ûx (1, t) = −p10[u(1, t)− û(1, t)]+U(t) . (34)

Here p1(x) and p10 are output injection functions to be
designed. The difference with the anti-collocated case (apart
from injecting u(1, t) instead of u(0, t)) is that gain p10 is
introduced in the other boundary condition.

The observer error ũ(x) satisfies the equation

ũt (x, t) = εũxx (x, t)+λ(x) ũ(x, t)− p1(x)ũ(1, t) , (35)
ũx(0, t) = qũ(0, t) , (36)
ũx(1, t) = p10ũ(1, t). (37)

We are looking for the transformation

ũ(x, t) = w̃(x, t)−
∫ 1

x
p(x,y) w̃(y, t) dy (38)

that maps (35)–(37) into the exponentially stable (for c ≥
εq̄2 + ε/2) target system

w̃t(x, t) = εw̃xx(x, t)− cw̃(x, t) , x ∈ (0,1) , (39)
w̃x(0, t) = qw̃(0, t) , (40)
w̃x(1, t) = 0. (41)

Note, that the transformation (38) is in upper-triangular
form. By substituting (38) into (35)–(37) and using (39)–
(41) it can be shown that the kernel p(x,y) must satisfy the
following hyperbolic PDE:

εpyy(x,y)− εpxx(x,y) = (λ(x)+ c)p(x,y), (42)

with the boundary conditions

px(0,y) = qp(0,y), (43)

p(x,x) = −
1
2ε

∫ x

0
(λ(ξ)+ c)dξ . (44)

In addition, the following conditions must be satisfied:

p1(x) = −εpy(x,1), p10 = p(1,1). (45)

Once the solution p(x,y) to the problem (42)–(44) is found,
the observer gains can be obtained from (45).

Similar to the anti-collocated case we introduce new
variables x̆ = y, y̆ = x, p̆(x̆, y̆) = p(x,y) in which (42)–(44)
becomes

εp̆x̆x̆(x̆, y̆)− εp̆y̆y̆(x̆, y̆) = (λ(y̆)+ c)p̆(x̆, y̆), (46)
p̆y̆(x̆,0) = qp̆(x̆,0), (47)

p̆(x̆, x̆) = −
1
2ε

∫ x̆

0
(λ̆(ξ)+ c)dξ , (48)

This is exactly the same PDE as (12)–(14) for k(x̆, y̆) and
therefore using Theorem 1 we obtain the following result.

Theorem 3: The equation (42)–(44) has a unique C 2(T )
solution. For any ũ0(x)∈ L2(0,1) the system (35)–(37) with
p1(x) and p10 given by (45) has a unique classical solution
ũ(x, t) ∈ C2,1((0,1)× (0,∞)) and is exponentially stable at
the origin, ũ(x, t) ≡ 0, in the L2(0,1) and H1(0,1) norms.



The duality of the observer design to control design in
the collocated case is even more evident than in the anti-
collocated case. The kernel of the coordinate transformation
(38) is equal to the kernel of the transformation (6) with
switched variables: p(x,y) = k(y,x). The observer gain is
actually equal (up to a factor of −ε) to the control gain:
p1(x) = −εk2(x), p10 = k1(1).

VI. OUTPUT FEEDBACK CONTROL LAWS

Having at our disposal stabilizing controllers and expo-
nentially convergent observers we can now combine the
results of Sections III-V to obtain solutions to the output-
feedback problem. First we formulate the result for the anti-
collocated case.

Theorem 4: Let k(x,y) be the solution of (12)–(14),
p1(x), p10 be the solutions of (25)–(28), and let the assump-
tions (4) and c ≥ εq̄2 hold. Then for any u0, û0 ∈ L2(0,1)
the system (1)–(2) with the controller

u(1, t) =
∫ 1

0
k1(y)û(y, t)dy (49)

and the observer

ût (x, t) = εûxx (x, t)+λ(x) û(x, t)+
∫ x

0
f (x,y)û(y, t)dy

+g(x)u(0, t)+ p1(x)[u(0, t)− û(0, t)], (50)
ûx (0, t) = qu(0, t)+ p10[u(0, t)− û(0, t)] , (51)

û(1, t) =
∫ 1

0
k1(y)û(y, t)dy , (52)

have the unique classical solutions u(x, t), û(x, t) ∈
C2,1((0,1) × (0,∞)) and are exponentially stable at the
origin, u(x, t) ≡ 0, û(x, t) ≡ 0, in the L2(0,1) and H1(0,1)
norms.

Proof: The coordinate transformation

ŵ(x, t) = û(x, t)−
∫ x

0
k (x,y) û(y, t) dy (53)

maps (50)–(52) into the system

ŵt(x, t) = εŵxx(x, t)− cŵ(x, t)+

{

p1(x)+g(x)+

−
∫ x

0
k(x,y)(p1(y)+g(y))dy

}

w̃(0, t) , (54)

ŵx(0, t) = qŵ(0, t)+(p10 +q)w̃(0, t) , (55)
ŵ(1, t) = 0 . (56)

The w̃-system (22)–(24) and the homogeneous part of the ŵ-
system (54)–(56) (without w̃(0, t), where w̃(0, t) is driving
the ŵ-system (54)–(55) through a C1 function of x) are
exponentially stable heat equations. The interconnection of
the two heat equations (ŵ, w̃) is a cascade, and therefore the
combined (ŵ, w̃) system is exponentially stable in L2 and
H1. Hence, the system (û, ũ) is also exponentially stable
since it is related to (ŵ, w̃) by the invertible coordinate
transformation (21), (53). This directly implies the closed-
loop stability of (u, û).

A similar result holds for the collocated case.

Theorem 5: Let k(x,y) be the solution of (12)–(14),
p1(x) be the solution of (42)–(45) and let the assumptions
(4) and c ≥ εq̄2 + ε/2 hold. Then for any u0, û0 ∈ L2(0,1)
the system (1)–(2) (g(x)≡ 0, f (x,y)≡ 0) with the controller

ux(1, t) = k1(1)u(1, t)+
∫ 1

0
k2(y)û(y, t)dy (57)

and the observer
ût (x, t) = εûxx (x, t)+λ(x) û(x, t)+ p1(x)[u(1)− û(1)] ,(58)
ûx (0, t) = qû(0, t) , (59)

ûx (1, t) = k1(1)û(1, t)+
∫ 1

0
k2(y)û(y, t)dy , (60)

have the unique classical solutions u(x, t), û(x, t) ∈
C2,1((0,1) × (0,∞)) and are exponentially stable at the
origin, u(x, t) ≡ 0, û(x, t) ≡ 0, in the L2(0,1) and H1(0,1)
norms.

Proof: Using the fact that u(1, t) is measured and
p10 = k(1,1) we can avoid boundary injection term in (60)
by using u(1, t) instead of û(1, t) in the controller (57).
With this modification the error system (35)–(37) remains
the same. The rest of the proof is similar to the proof of
Theorem 4.

VII. EXPLICIT CONSTRUCTION
For some classes of systems our approach can give

explicit solutions for the boundary output-feedback sta-
bilization problem which is not the case with existing
methods. In this section we present two important cases.

A. Explicit solution for constant λ(x) ≡ λ0

Consider the unstable heat equation with anti-collocated
boundary actuation and sensing (u(0, t) measured, u(1, t)
controlled)

ut(x, t) = εuxx(x, t)+λ0u(x, t) , (61)
ux(0, t) = 0 , (62)

The open-loop system (61)–(62) (with u(1, t) = 0) is unsta-
ble with arbitrarily many unstable eigenvalues.

Theorem 6: The controller (49) with the observer (50)–
(52) where

k1(x) = −a
I1(

√

a(1− x2))
√

a(1− x2)
, k1(1) = −

a
2

, (63)

p1(x) =
a(1− x)
x(2− x)

I2(
√

ax(2− x)), p10 = −
a
2

, (64)

exponentially stabilizes the zero solution of (61)–(62).
Proof: The gain kernel for the state-feedback problem

has been found in [11] by solving (12)–(14) analytically:

k(x,y) = −ax
I1(

√

a(x2 − y2))
√

a(x2 − y2)
, (65)

where a = (λ0 +c)/ε and I1 is the modified Bessel function
of the first order. The solution to (29)–(31) with λ(x)≡ λ0,
q = ∞, g(x) ≡ 0, and f (x,y) ≡ 0 is [11]

p̆(x̆, y̆) = −ay̆
I1(

√

a(x̆2 − y̆2))
√

a(x̆2 − y̆2)
. (66)
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Fig. 2. Controller (dashed) and observer (solid) gains for the anti-
collocated case.

This gives the observer gains (64). The stability of the
closed-loop system is ensured by Theorem 4.

In Figure 2 the control and the observer gains for the
different values of the parameter a are shown.

The closed-loop system was simulated with ε = 1, λ0 =
10, c = 5, u(x,0) = 2e−2x sin(πx). With this choice of the
parameters the open-loop system has two unstable eigenval-
ues. The plant and the observer are discretized using a finite
difference method. Since designs exist where, in principle,
the order of the observer can be as low as the number of
unstable eigenvalues, we design the low order compensator
by taking a coarse grid (keeping the fine discretization of
the plant, 100 points in our case). The controller is able to
stabilize the system with just a 6th order compensator. In
Figure 3 the pole-zero map and Bode plots of the low order
compensator are shown.

B. Explicit solution for a family of nonconstant λ(x)

The other case in which the output-feedback problem can
be solved explicitly is the heat equation with a non-constant
coefficient:

ut(x, t) = εuxx(x, t)+λαβ(x)u(x, t) , x ∈ (0,1) ,(67)
u(0, t) = 0 , (68)

where

λαβ(x) =
2εα2

cosh2(αx−β)
. (69)

Equations of the form (67)–(68) often describe the
heat/mass transfer systems with heat generation or volumet-
ric chemical reactions. The coefficient λαβ(x) parameterizes
a family of ”one-peak” functions. The free parameters α and
β are chosen so that the maximum of λαβ(x) is 2α2 and
is achieved at x = β/α. Examples of λαβ(x) for different
values of α and β are shown in Figure 4. The open-loop
system (67)–(68) (with u(1, t) = 0) is unstable for all three
cases shown in Figure 4.

Since the plant is in the diagonal form (there is no terms
with g(x) and f (x,y)), we choose to collocate the sensor
and the actuator at x = 1.

Theorem 7: The controller (57) with the observer (58)–
(60) where

k2(x) = −α2 tanh(β)e(1−x)α tanhβ(tanhβ− tanh(β−αx)) (70)
p1(x) = −εk2(x), p10 = −α(tanh(β)− tanh(β−α)) (71)

exponentially stabilizes the zero solution of (67)–(68).
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Fig. 3. Pole-zero map and Bode plot of the compensator for λ(x) ≡ λ0.

Proof: The stabilizing kernel (70) for (67)–(68) was
obtained in [11]. The stability of the closed-loop system is
ensured by Theorem 5.
In Figure 5 the observer gains corresponding to λαβ(x) from
Figure 4 are shown.

C. Explicit solution for λ(x) = λ0 +λαβ(x)

In Sections VII-A and VII-B we considered two in-
teresting examples of solving an output-feedback problem
explicitly, in a closed form. One can actually combine these
two solutions to get a solution for a heat equation with
λ(x) = λ0 + λαβ(x). It can be done in two steps. First,
transform the error system into the target system (39)–(41)
with c = −λ0. It will give a PDE for p(x,y) with λ(x) =
λαβ(x) whose solution we know. The target system will
not be stable, but it will have constant coefficients. Second,
stabilize this target system with p1(x) corresponding to
a constant λ0. The resulting gain will be expressed in
quadratures in terms of gains for λ0 and λαβ(x). Denote
by pαβ(x,y) and pa(x,y) the observer gains for the heat
equation with λ(x) = λαβ(x) and λ(x) = λ0 (a = (λ0 +c)/ε),
respectively. Then following the procedure described above
we obtain the observer gain for the heat equation with
λ(x) = λ0 +λαβ(x):

p1(x) = pa
1 (x)+ pαβ

1 (x)+ εpa
10 pαβ(x,1)

−

∫ 1

x
pαβ(x,ξ)pa

1 (ξ)dξ , (72)

and p10 = pa
10 + pαβ

10 . For example for β = 0 one can get the
closed-form solution

p1(x) =
εa2

ϕ(x)2 I2(ϕ(x))+ εaα tanh(αx)
I1(ϕ(x))

ϕ(x)
. (73)

VIII. CHEMICAL TUBULAR REACTOR EXAMPLE

In this section we present the simulation results for a
linearization of an adiabatic chemical tubular reactor. For
the case when Peclet numbers for heat and mass transfer
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are equal (Lewis number of unity) the two equations for
the temperature and concentration can be reduced to one
equation [4]

vt = Pe−1vξξ − vξ +Da(b− v)e
v

1+µv , ξ ∈ (0,1) , (74)
vξ(0) = Pe v(0) , (75)
vξ(1) = 0 , (76)

where Pe is Peclet number, Da is the Damköhler number,
µ is the dimensionless activation energy, and b is the
dimensionless adiabatic temperature rise.

For a particular choice of system parameters (Pe = 3,
Da = 0.05, µ = 0.05, and b = 10) system (74)–(76) has
three equilibrium profiles (Figure 6) [5]. As shown in [5],
the middle profile is unstable while the outer two profiles
are stable. Linearization of the system (74)–(76) around the
unstable equilibrium profile v̄(ξ) gives [2]

vt = Pe−1vξξ − vξ +DaF(v̄(ξ))v, ξ ∈ (0,1) , (77)
vξ(0) = Pe v(0) , (78)
vξ(1) = 0 , (79)

where v now stands for the deviation variable from the
steady state v̄(ξ) and F is a spatially dependent coefficient
defined as

F(v̄) =

(

b− v̄
(1+µv̄)2 −1

)

e
v̄

1+µ v̄ (80)

In a real application control would be implemented through
small variations of Tin and Cin at the 0-end [4]. To put
the system in our standard form with control at 1-end and
without vξ-term, we introduce variable change x = 1− ξ,
u(x, t) = v(1 − x, t)exp(Pex/2) and obtain the following
system

ut = Pe−1uxx +λc(x)u , (81)
ux(0) = (Pe/2)u(0) , (82)
ux(1) = −(Pe/2)u(1)+uc

x(1) , (83)

where λc(x) is defined as

λc(x) = (Pe−2)/4+DaF(v̄(1− x)) , (84)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

ξ

v̄(ξ)

Fig. 6. Steady-state profiles for the adiabatic chemical tubular reactor
with Pe = 3, Da = 0.05, µ = 0.05, and b = 10.
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Fig. 7. Closed-loop response and the control effort for the chemical
tubular reactor example.

and uc
x(1) stands for the control law to be designed. We

consider the collocated case, i.e. both the sensor and the
actuator are placed at 1-end.

The observer gain has been found by solving (46)–(48)
numerically. In simulations the observer was discretized
using a finite difference method on a coarse grid with order
6. The order of the plant (81)–(83) was taken 100. The
closed-loop response of the system and the control effort
for u(x,0) = 0.25sin(3πx/2)+0.75 and c = 1 are shown in
Figure 7. We can see that the low-order compensator can
successfully stabilize the system.
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