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Abstract— This work focuses on predictive control of linear
parabolic PDEs with state and control constraints. Initially,
modal decomposition techniques are used to derive a finite-
dimensional system that captures the dominant dynamics of
the PDE, and project the PDE state constraints onto the finite-
dimensional system state. A number of MPC formulations,
designed on the basis of different finite-dimensional approxi-
mations, are then presented and compared. The formulations
differ in the way the evolution of the fast eigenmodes is
accounted for in the performance objective and state con-
straints. The impact of these differences on the ability of the
predictive controller to enforce closed-loop stability and state
constraints satisfaction in the infinite-dimensional system is
discussed. Finally, the MPC formulations are applied, through
simulations, to the problem of stabilizing an unstable steady-
state of a linearized model of a diffusion-reaction process
subject to state and control constraints.
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I. I NTRODUCTION

Transport-reaction processes are characterized by signif-
icant spatial variations due to the underlying diffusion and
convection phenomena. The dynamic models of transport-
reaction processes over finite spatial domains typically con-
sist of parabolic partial differential equation (PDE) systems
whose spatial differential operators are characterized by a
spectrum that can be partitioned into a finite (possibly un-
stable) slow part and an infinite stable fast complement [11].
The traditional approach to the control of parabolic PDEs
involves the application of spatial discretization techniques
to the PDE system to derive large systems of ordinary
differential equations (ODEs) that accurately describe the
dynamics of the dominant (slow) modes of the PDE system.
The finite-dimensional systems are subsequently used as the
basis for the synthesis of finite-dimensional controllers (e.g.,
see [4], [16], [7]). A potential drawback of this approach is
that the number of modes that should be retained to derive
an ODE system that yields the desired degree of approx-
imation may be very large, leading to complex controller
design and high dimensionality of the resulting controllers.

Motivated by these considerations, significant recent
work has focused on the development of a general frame-
work for the synthesis of low-order controllers for parabolic
PDE systems – and other highly dissipative PDE systems
that arise in the modeling of spatially-distributed systems
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– on the basis of low-order ODE models derived through
a combination of the Galerkin method (using analytical
or empirical basis functions) with the concept of inertial
manifolds [6]. Using these order reduction techniques, a
number of control-relevant problems, such as nonlinear and
robust controller design, dynamic optimization, and control
under actuator saturation have been addressed for various
classes of dissipative PDE systems (e.g., see [3], [2], [9]
and the book [6] for results and references in this area).
The approaches proposed in these works, however, do not
address the issue of state constraints in the controller design.
Operation of transport-reaction processes typically requires
that the state of the closed–loop system be maintained
within certain bounds to achieve acceptable performance
(for example, requiring reactor temperature not to exceed
a certain value or requiring a product concentration not to
drop below some purity requirement). Handling both state
and control constraints – the latter typically arising due to
the finite capacity of control actuators – in the design of
the controller, therefore, is an important consideration.

Model Predictive Control (MPC), also known as receding
horizon control, is a popular control method for handling
constraints (both on manipulated inputs and state variables)
within an optimal control setting. In MPC, the control
action is obtained by solving repeatedly, on-line, a finite-
horizon constrained open-loop optimal control problem. The
popularity of this approach stems largely from its ability
to handle, among other issues, multi-variable interactions,
constraints on controls and states, and optimization re-
quirements. Numerous research studies have investigated
the properties of model predictive controllers and led to
a plethora of MPC formulations that focus on a number
of control-relevant issues, including issues of closed–loop
stability, performance, implementation and constraint satis-
faction (e.g., see [12], [1], [15], [14] for surveys of results
and references in this area).

Most of the research in this area, however, has focused
on lumped-parameter systems modeled by ODE systems.
Compared with lumped-parameter systems, the problem of
designing predictive controllers for distributed parameter
systems, modeled by PDEs, has received much less atten-
tion. Of the few results available on this problem, some have
focused on analyzing the receding horizon control problem
on the basis of the infinite-dimensional system using control
Lyapunov functionals (e.g., [13]), while others have used
spatial discretization techniques such as finite differences



(e.g., [8]) to derive approximate ODE models (of possibly
high-order) for use within the MPC design, thus leading to
computationally expensive model predictive control designs
that are, in general, difficult to implement on–line.

Motivated by the above considerations, we focus in this
work on the development of a framework for the design of
predictive controllers for linear parabolic PDEs with state
and control constraints. The rest of the paper is organized as
follows. In section II, the class of parabolic PDEs consid-
ered is described, and formulated as an infinite-dimensional
system. Next, in section III, the predictive control problem
is formulated on the basis of the infinite-dimensional sys-
tem. Then, in section IV, modal decomposition techniques
are used to derive a finite-dimensional system that captures
the dominant dynamics of the infinite-dimensional system.
Projection techniques are used to obtain the corresponding
state constraints on the finite-dimensional system. A number
of MPC formulations, designed on the basis of different
finite-dimensional approximations, are presented and com-
pared. The formulations differ in the way the evolution of
the fast eigenmodes is accounted for in the performance
objective and state constraints. The impact of these differ-
ences on the ability of the predictive controller to enforce
closed-loop stability and state constraints satisfaction in the
infinite-dimensional system is discussed. Finally, in section
V, the MPC formulations are applied, through simulations,
to the problem of stabilizing an unstable steady-state of a
linearized model of a diffusion-reaction process subject to
state and control constraints.

II. PRELIMINARIES

In this work, we focus on control of a linear parabolic
PDE of the form

∂x̄

∂t
= b

∂2x̄

∂z2
+ αx̄ + w

m∑

i=1

bi(z)ui (1)

with the following boundary and initial conditions

x̄(0, t) = 0, x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (2)

subject to the following input and state constraints

umin
i ≤ ui ≤ umax

i , i = 1, · · · , m (3)

χmin ≤
∫ π

0

r(z)x̄(z, t)dz ≤ χmax (4)

where x̄(z, t) ∈ IR denotes the state variable,z ∈ [0, π] ⊂
IR is the spatial coordinate,t ∈ [0,∞) is the time,ui ∈ IR
denotes thei-th constrained manipulated input;umin

i and
umax

i are real numbers representing, respectively, the lower
and upper bounds on thei-th input, andχmin and χmax

are real numbers. The term
∂2x̄

∂z2
denotes the second-order

spatial derivative of̄x; α, b andω are constant real numbers
with b > 0, and x̄0(z) is a sufficiently smooth function of
z. The functionbi(z) is a known smooth function ofz that
describes how the control action,ui(t), is distributed in the
finite interval [0, π]. Whenever the control action enters the

system at a single pointza, with za ∈ [0, π] (i.e., point
actuation), the functionbi(z) is taken to be nonzero in a
finite spatial interval of the form[za − µ, za + µ], where
µ is a small positive real number, and zero elsewhere in
[0, π]. The functionr(z) is a “state constraints distribution”
function that describes where the state constraints are to be
enforced in the spatial domain,[0, π]. Throughout the paper,
the notation|·| will be used to denote the standard Euclidian
norm in IRn, while the notation| · |Q will be used to denote
the weighted norm defined by|x|2Q = x′Qx, whereQ is a
positive-definite matrix andx′ denotes the transpose ofx.
Finally, the notation‖ · ‖2 will be used to denote theL2

norm (as defined in Eq.5 below) associated with a Hilbert
space.

To proceed with the presentation of our results, we
formulate the PDE of Eq.1 as an infinite dimensional system
in the Hilbert spaceH([0, π]; IR), withH being the space of
measurable functions defined on[0, π], with inner product
and norm

(ω1, ω2) =
∫ π

0

(ω1(z), ω2(z))IRndz, ‖ω1‖2 = (ω1, ω1)
1
2

(5)
where ω1, ω2 are two elements ofH([0, π]; IRn) and the
notation(·, ·)IRn denotes the standard inner product inIRn.
Defining the state functionx onH([0, π]; IR) as

x(t) = x̄(z, t), t > 0, z ∈ [0, π], (6)

the operatorA as

Ax = b
∂2x̄

∂z2
+ αx̄ (7)

and the input operator as

Bu =
m∑

i=1

biui (8)

the system of Eqs.1-2 takes the form

ẋ = Ax + Bu, x(0) = x0 (9)

where x0 = x0(z). For the operatorA, the eigenvalue
problem is defined as

Aφj = λjφj , j = 1, · · · ,∞ (10)

whereλj denotes an eigenvalue andφj denotes an eigen-
function. Using the definition ofA in Eq.7, the eigenvalue
problem takes the form

b
∂2φj

∂z2
+ αφj = λj (11)

subject to
φj(0) = φj(π) = 0 (12)

whereb > 0. A direct computation of the solution of the
above eigenvalue problem yields

λj = α− bj2, φj(z) =

√
2
π

sin(j z), j = 1, . . . ,∞
(13)



The spectrum ofA, σ(A), is defined as the set of all
eigenvalues ofA, i.e., σ(A) = {λ1, λ2, . . .}. From the
expression for the eigenvalues, it is clear that all the
eigenvalues ofA are real, and that, for a givenα and
b, only a finite number of unstable eigenvalues exists,
and the distance between any two consecutive eigenvalues
(i.e., λj and λj+1) increases asj increases. Furthermore,
σ(A) can be partitioned asσ(A) = σ1(A)

⋃
σ2(A),

where σ1(A) = {λ1, . . . , λm} contains the firstm
(with m finite) “slow” (possibly unstable) eigenvalues and
σ2(A) = {λm+1, λm+2, . . .} contains the remaining “fast”
stable eigenvalues. This implies that the dominant dynamics
of the PDE can be described by a finite-dimensional system,
and motivates the use of modal decomposition to derive a
finite-dimensional system that captures the dominant (slow)
dynamics of the PDE.

III. PROBLEM STATEMENT

Referring to the system of Eq.9, we consider the problem
of asymptotic stabilization of the origin, subject to the
following control and state constraints

umin
i ≤ ui(t) ≤ umax

i (14)

χmin ≤ (r, x(t)) ≤ χmax (15)

The problem will be addressed within the MPC framework
where the control, at statex and timet, is conventionally
obtained by solving, on-line, a finite-horizon constrained
optimal control problem of the form

P (x, t) : min{J(x, t, u(·)) | u(·) ∈ S} (16)

s.t. ẋ(τ) = Ax(τ) + Bu(τ)

u(τ) ∈ U
χmin ≤ (r, x(τ)) ≤ χmax, τ ∈ [t, t + T ]

(17)
whereS = S(t, T ) is the family of piecewise continuous
functions (functions continuous from the right), with period
∆, mapping[t, t+T ] into U := {u ∈ IRm : umin

i ≤ ui ≤
umax

i , i = 1, · · · ,m}, and T is the specified horizon. A
control u(·) in S is characterized by the sequenceu[k],
whereu[k] := u(k∆), and satisfiesu(t) = u[k] for all
t ∈ [k∆, (k + 1)∆). The performance index is given by

J(x, t, u(·)) =
∫ t+T

t

[
q‖xu(τ ; x, t)‖22 + |u(τ)|2R

]
dτ

+ F (x(t + T ))
(18)

whereq is a strictly positive real number,xu(τ ; x, t) denotes
the solution of Eq.9, due to controlu, with initial state
x at time t, and F (·) denotes the terminal penalty. The
minimizing controlu0(·) ∈ S is then applied to the system
over the interval[k∆, (k + 1)∆] and the procedure is re-
peated indefinitely. This defines an implicit model predictive
control law

M(x) := u0(t; x, t) (19)

It is well known that the control law defined by Eqs.16-19 is
not necessarily stabilizing. For finite-dimensional systems,
the issue of closed-loop stability is usually addressed by
means of imposing suitable penalties and constraints on the
state at the end of the optimization horizon (e.g., see [1],
[5], [14] for surveys of different approaches). In these ap-
proaches, however, a priori knowledge of the stability region
starting from where the predictive controller is guaranteed to
be stabilizing is difficult to obtain due to the implicit nature
of the MPC law which can impact on the practical im-
plementation of MPC by requiring, for example, extensive
closed-loop simulations in search of the appropriate initial
condition and/or horizon length. To overcome this problem,
one can use the hybrid predictive control structure proposed
in [10] which employs logic-based switching between MPC
and a fall-back controller with an explicitly-defined stability
region. The hybrid predictive control structure provides a
safety net for the implementation of MPC with guaranteed
stability regions.

IV. PREDICTIVE CONTROL OFCONSTRAINED PDES

Owing to its infinite-dimensional nature, the system of
Eq.9 cannot be used directly as the basis for the synthe-
sis of a predictive controller that can be implemented in
practice. To address this problem, we initially apply modal
decomposition techniques to the system of Eq.9 to derive
a finite-dimensional system that captures the dominant dy-
namics of the infinite-dimensional system. Using projection
techniques, the constraints on the state of the infinite-
dimensional system are then projected onto the finite-
dimensional space in order to obtain the corresponding
state constraints on the finite-dimensional system describing
the dominant dynamics of the PDE. A number of MPC
formulations, designed on the basis of the finite-dimensional
approximation, that differ in the way the state constraints are
handled within the optimization problem are then presented
and compared in terms of their ability to enforce closed-
loop stability and ensure constraint satisfaction for the state
of the infinite-dimensional system.

A. Modal decomposition

In this section, we apply standard modal decomposition
to the infinite-dimensional system of Eq.9 to derive a finite-
dimensional system. LetHs, Hf be modal subspaces of
A, defined asHs = span{φ1, φ2, . . . , φm} and Hf =
span{φm+1, φm+2, . . .} (the existence ofHs, Hf follows
from the properties ofA). Defining the orthogonal projec-
tion operators,Ps andPf , such thatxs = Psx, xf = Pfx,
the statex of the system of Eq.9 can be decomposed as

x = xs + xf = Psx + Pfx (20)

Applying Ps and Pf to the system of Eq.9 and using the
above decomposition forx, the system of Eq.9 can be re-



written in the following equivalent form

dxs

dt
= Asxs + Bsu, xs(0) = Psx(0) = Psx0

dxf

dt
= Afxf + Bfu, xf (0) = Pfx(0) = Pfx0

(21)
whereAs = PsA, Bs = PsB, Af = PfA, Bf = PfB.
In the above system,As is a diagonal matrix of dimension
m×m of the formAs = diag{λj} (λj are eigenvalues of
As) andAf is an unbounded differential operator which is
exponentially stable (following from the fact thatλm+1 < 0
and the selection ofHs,Hf ). In the remainder of the paper,
we will refer to thexs- andxf -subsystems in Eq.21 as the
slow and fast subsystems, respectively.

B. MPC formulations: accounting for input and state con-
straints

In this section, we present and compare a number of
MPC formulations that are designed on the basis of dif-
ferent approximations of the infinite-dimensional system.
The formulations differ in the way the evolution of thexf -
subsystem is accounted for in the performance objective
and state constraints. The impact of these differences on
the ability of the predictive controller to enforce constraint
satisfaction for the full state is discussed.

In the first formulation, the predictive controller is de-
signed directly on the basis of the full system of Eq.21 (for
the purpose of computations, a sufficiently high-order finite-
dimensional system that adequately describes the evolution
of the infinite-dimensional system is considered). The con-
trol action is obtained by solving, in a receding horizon
fashion, the following optimization problem:

min
u

∫ t+T

t

[
qs‖xs(τ)‖22 + qf‖xf (τ)‖22 + |u(τ)|2R

]
dτ

+ F (xs(t + T ))
(22)

s.t. ẋs(τ) = Asxs(τ) + Bsu(τ)
ẋf (τ) = Afxf (τ) + Bfu(τ)
u(τ) ∈ U
χmin ≤ (r, xs(τ) + xf (τ)) ≤ χmax, τ ∈ [t, t + T ]

(23)
where qs and qf are strictly positive real numbers. The
above formulation includes penalties on both the slow and
fast states and uses models that describe their evolution for
prediction purposes. Stability can be addressed either by
proper selection of the terminal penalties or by imposing
terminal constraints of the formxs(t + T ) ∈ Ws, where
Ws is some invariant set centered around the origin. Even
though this formulation accounts for the evolution of the
slow and fast states in both the cost functional and the state
constraints, a potential drawback is the use of a high-order
model describing the evolution of the fast states which must
be solved at each time step in the optimization problem.

In the second formulation, the predictive controller is
designed on the basis of the low-order, finite-dimensional

slow subsystem describing the evolution of thexs states
(the fast subsystem is neglected). The MPC law in this case
is obtained by solving, in a receding horizon fashion, the
following optimization problem

min
u

∫ t+T

t

[
qs‖xs(τ)‖22 + |u(τ)|2R

]
dτ + F (xs(t + T ))

(24)
s.t. ẋs(τ) = Asxs(τ) + Bsu(τ)

u(τ) ∈ U
χmin ≤ (r, xs(τ)) ≤ χmax, τ ∈ [t, t + T ]

(25)
Unlike the formulation of Eqs.22-23, the above formulation
includes penalties only on the slow states and the input. The
evolution of the fast states is not accounted for in the cost
functional nor in the state constraints. Despite its low-order
characteristic, a potential drawback of this formulation is the
fact that, when appropriate stability constraints are incor-
porated into the optimization problem, the resulting MPC
law, when implemented on the full system of Eq.21, can
only enforce closed-loop stability but not necessarily full-
state constraints satisfaction, since it neglects the evolution
of the fast states. Note that neglecting the exponentially
stable fast subsystem in the design of the controller has no
effect on the stability of the full closed-loop system which
can be achieved by simply stabilizing the slow subsystem
(containing the unstable modes). However, since the full
state,x, includes contributions from bothxs andxf (recall
that x = xs + xf ), it is possible that thexf -subsystem,
which is affected by the control input, may evolve in a
way that causes the full-state constraints to be violated
for some time. So, while the stabilization objective can be
achieved independently of the fast subsystem, the additional
objective of state constraints satisfaction requires that the
evolution of the fast states be properly taken into account
when designing the predictive controller.

In order to account for the effect of the fast states on
the full-state constraints, the formulation of Eqs.24-25 can
be modified by incorporating the fast states into the state
constraints equation. The control action in this case is
computed by solving the following optimization problem

min
u

∫ t+T

t

[
qs‖xs(τ)‖22 + |u(τ)|2R

]
dτ + F (xs(t + T ))

(26)
s.t. ẋs(τ) = Asxs(τ) + Bsu(τ)

ẋf (τ) = Afxf (τ) + Bfu(τ)
u(τ) ∈ U
χmin ≤ (r, xs(τ) + xf (τ)) ≤ χmax, τ ∈ [t, t + T ]

(27)
Similar to the formulation of Eqs.24-25, the above formu-
lation includes penalties only on the slow states and the
input. However, the state constraints include the contribu-
tion of both the slow and fast subsystems. When appropriate
stability constraints are imposed on the above optimization
problem, the resulting MPC law, if feasible, enforces both



closed-loop stability and full-state constraints satisfaction.
Note, however, that by taking the fast states evolution into
account in the state constraints, a model describing the
evolution of the fast subsystem is needed for prediction
purposes in solving the optimization problem. In the formu-
lation of Eqs.26-27, this requires solving a possibly high-
order system of ODEs. This problem can be circumvented
by exploiting the two time-scale separation between the
slow and fast subsystems and deriving an approximate
model that describes the evolution of the fast subsystem.
To directly account for the two-time scale behavior of the

system of Eq.21, we defineε :=
|Re{λ1}|
|Re{λm+1}| and multiply

the xf -subsystem of Eq.21 byε to obtain the following
system [6]:

ε
dxf

dt
= Afεxf + εBfu (28)

whereAfε is an unbounded differential operator defined as

Afε = εAf . Introducing the fast time scaleτ =
t

ε
and

settingε = 0, the fast subsystem takes the form:

dxf

dτ
= Afεxf (29)

From the above analysis, and with a slight abuse of notation,
the O(ε) approximation of the transient behavior of the
fast state is given bȳxf (t) = etAf x̄f (0). Using this
approximation leads to the following MPC formulation

min
u

∫ t+T

t

[
qs‖xs(τ)‖22 + |u(τ)|2R

]
dτ + F (xs(t + T ))

(30)
s.t. ẋs(τ) = Asxs(τ) + Bsu(τ)

u(τ) ∈ U
χmin ≤ (r, xs(τ) + eτAf x̄f (0)) ≤ χmax

(31)

whereτ ∈ [t, t + T ], thus eliminating the need to solve the
original xf state evolution equation. It should be noted here
that the idea of exploiting the two time-scale behavior of
the system of Eq.21 to approximatexf and avoid solving
a possibly high-orderxf -subsystem at each time step can
be extended to the nonlinear case where the computational
savings resulting from such approximation are expected to
be more profound than in the linear case.

Finally, a variation of the above formulation can be ob-
tained by including an additional term in the cost functional
to penalize some measure of the evolution ofxf that is
different from the one chosen for the penalty on the slow
state, as follows

min
u

∫ t+T

t

[
qs‖xs(τ)‖22 + |u(τ)|2R

]
dτ

+ F (xs(t + T )) + Γ(xf (t))

(32)

s.t. ẋs(τ) = Asxs(τ) + Bsu(τ)
u(τ) ∈ U
χmin ≤ (r, xs(τ) + xf (τ)) ≤ χmax, τ ∈ [t, t + T ]

(33)

wherexf (τ) is obtained from the two time-scale approxi-
mation used in the formulation of Eqs.30-31 andΓ(xf (t))
is a term that can be designed to properly penalize the
evolution of the fast states. Incorporating some penalty on
xf allows for greater flexibility in influencing its behavior
so as to help the objective of state constraints satisfaction.

V. SIMULATION EXAMPLE

In this section, we demonstrate and compare, through
computer simulations, the implementation of the various
MPC formulations discussed in the previous section. To this
end, we consider the following parabolic PDE

∂x̄

∂t
=

∂2x̄

∂z2
+ (βT e−γγ − βU )x̄ + βU

m∑

i=1

bi(z)ui(t)

x̄(0, t) = 0, x̄(π, t) = 0, x̄(z, 0) = x0(z)
(34)

which represents a linearized model of a typical diffusion-
reaction process, around the zero steady-state, wherex̄
denotes a dimensionless temperature,βT denotes a di-
mensionless heat of reaction,γ denotes a dimensionless
activation energy,βU denotes a dimensionless heat transfer
coefficient,ui(t) denotes the manipulated input andbi(z) is
the corresponding actuator distribution function of thei-th
actuator, chosen to bebi(z) = 1/µ for z ∈ [zai−µ, zai +µ]
and bi(z) = 0 elsewhere in[0, π], where µ is a small
positive real number andzai is the center of the interval
where actuation is applied. The following typical values
are given to the process parameters:βT = 50, βU = 2, and
γ = 4. For these values, it was verified that the operating
steady-state,̄x(z, t) = 0, is an unstable one.The control
objective is to stabilize the state profile at the unstable zero
steady-state by manipulatingui(t) subject to the following
input and state constraints

umin
i ≤ ui ≤ umax

i (35)

χmin ≤
∫ π

0

r(z)x̄(z, t)dz ≤ χmax (36)

where umin
i = −10, umax

i = 10, for i = 1, 2, χmin =
−0.035, χmax = 2. The state constraints distribution func-
tion, r(·), is chosen to ber(z) = 1/µ for z ∈ [zc−µ, zc+µ]
and r(z) = 0 elsewhere in[0, π], where µ is a small
positive real number andzc = 1.156 is the center of the
interval where the state constraints are to be enforced. For
a sufficiently smallµ, this choice implies that the state
constraints are to be enforced only at a single point in the
spatial domain, i.e.,−0.035 ≤ x̄(zc, t) ≤ 2.

The eigenvalue problem for the spatial differential oper-
ator of the PDE of Eq.34 can be solved analytically and its
solution yields

λj = 1.66− j2, φj(z) =
√

2
π sin(j z), j = 1, . . . ,∞

(37)
For this system, we consider the first two eigenvalues as the
dominant ones and use two point control actuators (m = 2),
with finite support, centered atza1 = π/3 andza2 = 2π/3,



to achieve the control objective subject to the constraints
of Eqs.35-36. To simplify the presentation of the results,
we will work with the amplitudes of the eigenmodes of the
PDE of Eq.34. Specifically, using standard modal decom-
position, we derive the following high-order ODE system
that describes the temporal evolution of the amplitudes of
the first l eigenmodes:

ȧs(t) = Asas(t) + Bsu(t)

ȧf (t) = Afaf (t) + Bfu(t)
(38)

where as(t) = [a1(t) a2(t)]′, af (t) =
[a3(t) a4(t) · · · al(t)]′, ai(t) ∈ IR is the modal
amplitude of thei-th eigenmode, the notationa′s denotes
the transpose ofas, u(t) = [u1(t) u2(t)]′, the matricesAs

and Af are diagonal matrices, given byAs = diag{λi},
for i = 1, 2 and Af = diag{λi}, for i = 3, · · · , l. Bs and
Bf are a2×2 and(l−2)×m matrices, respectively whose
(i, j)-th element is given byBij = (bj(z), φi(z)). Note
that x̄(z, t) =

∑l
i=1 ai(t)φi(z), xs(t) = a1(t)φ1 + a2φ2,

xf (t) =
∑50

i=3ai(t)φi and that(xs(t), φi) = ai(φi, φi).
Using these projections, the state constraints of Eq.36 can
be expressed as constraints on the modal amplitudes as
follows:

χmin ≤
2∑

i=1

ai(t)φi(zc) +
l∑

i=3

ai(t)φi(zc) ≤ χmax

(39)
We now proceed with the design and implementation of
the different predictive control formulations presented in
the previous section. The following initial condition is
considered in all simulation runs:̄x(z, 0) = 0.08sin(z) +
0.001sin(2z) and l is chosen to be 50. In the first scenario
considered, we use theas-subsystem in Eq.38 as the basis
for the predictive controller design (theaf -subsystem is
neglected). For this case, we consider an MPC formulation
with the following objective function and constraints:

min
u

∫ t+T

t

[
qs|as(τ)|2 + |u(τ)|2R

]
dτ (40)

s.t. ȧs(τ) = Asas(τ) + Bsu(τ)
umin ≤ ui(τ) ≤ umax, i = 1, 2
χmin ≤ Csas(τ) ≤ χmax, τ ∈ [t, t + T ]

(41)
where Cs = [φ1(zc) φ2(zc)] is a row vector,qs = 8.79,
R = rI, with r = 0.01, andT = 0.007. To ensure stabil-
ity, we impose a terminal equality constraint of the form
as(t + T ) = 0 on the optimization problem. The resulting
quadratic program is solved using the MATLAB subroutine
QuadProg. The control action is then implemented on the
50-th order model of Eq.38. Fig.1 and Figs.4-5 (solid lines)
show, respectively, the closed-loop state and manipulated
input profiles under the MPC controller of Eqs.40-41. It is
clear that the predictive controller successfully stabilizes the
state at the zero steady-state. However, by examining Fig.2
(solid line), we observe that the state atzc = 1.156 violates

the lower constraint for some time. The violation of the state
constraint is a consequence of neglecting the contribution of
theaf states to the full state of the PDE. To account for the
evolution of the fast states in the optimization problem, we
consider the following MPC formulation with the objective
function and constraints given by

min
u

∫ t+T

t

[
qs|as(τ)|2 + |u(τ)|2R

]
dτ (42)

s.t. ȧs(τ) = Asas(τ) + Bsu(τ)
ȧf (τ) = Afas(τ) + Bfu(τ)
umin ≤ ui(τ) ≤ umax, i = 1, 2
χmin ≤ Csas(τ) + Cfaf (τ) ≤ χmax

(43)

where τ ∈ [t, t + T ], Cf = [φ3(zc) · · · φ50(zc)] is
a row vector and the MPC tuning parameters have the
same values used in the previous formulation. The results
are shown in Fig.2 (dashed lines) and Fig.3 where we
see that the predictive controller designed using Eqs.42-43
successfully stabilizes the state profile at the zero steady-
state and that the state constraints are satisfied for all times.
The corresponding manipulated input profiles are given in
Figs.4-5. As noted in section IV-B, the above formulation
requires solving the high-orderaf -subsystem at each time
step to predict the volution of the fast states included in
the state constraints equation. An alternative approach is
to utilize the two time-scale separation property of the
differential operator in order to approximate the evolution of
af . For example, using the approximation of Eq.29 in the
above formulation yields the following objective function
and constraints

min
u

∫ t+T

t

[
qs|as(τ)|2 + |u(τ)|2R

]
dτ (44)

s.t. ȧs(τ) = Asas(τ) + Bsu(τ)
umin ≤ ui(τ) ≤ umax, i = 1, 2
χmin ≤ Csas(τ) + Cf exp (τAf ) af0 ≤ χmax

(45)
whereτ ∈ [t, t + T ], af0 = af (0). The above formulation
does not require solving the state evolution equation for the
af -subsystem at each time step; instead it uses an explicit
(approximate) expression,af (τ) = eτAf af0, to account
for the dynamics of the fast subsystem which contribute to
the full-state constraints. The resulting predictive controller,
when implemented on the system of Eq.34 successfully
stabilizes the zero steady-state and enforces full-state con-
straints satisfaction (see dashed-dotted lines in Fig.2 and
Figs.4-5).

In summary, the comparison between the different MPC
formulations serves to underscore the fact that the fast
states, while inconsequential as far as full closed-loop sta-
bility is concerned, are central to the predictive controller’s
ability to enforce the state constraints in the closed-loop
PDE and must therefore be accounted for in the predictive
controller design.
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Fig. 1. Closed-loop state profile under the MPC formulation of Eqs.40-41
without accounting for the fast modal states in the constraints.
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Fig. 2. Closed-loop state profile atzc = 1.156 under the MPC
formulation of Eqs.40-41 without accounting for the evolution of fast
modes (solid), under the MPC formulation of Eqs.42-43 accounting for
the fast modes in the state constraints (dashed), and under the MPC
formulation of Eqs.44-45 using the two time-scale approximation for the
fast modal states in the constraints (dashed-dotted).
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