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Abstract— This work focuses on predictive control of linear
parabolic PDEs with state and control constraints. Initially,
modal decomposition techniques are used to derive a finite-
dimensional system that captures the dominant dynamics of
the PDE, and project the PDE state constraints onto the finite-
dimensional system state. A number of MPC formulations,
designed on the basis of different finite-dimensional approxi-
mations, are then presented and compared. The formulations
differ in the way the evolution of the fast eigenmodes is
accounted for in the performance objective and state con-
straints. The impact of these differences on the ability of the
predictive controller to enforce closed-loop stability and state
constraints satisfaction in the infinite-dimensional system is
discussed. Finally, the MPC formulations are applied, through
simulations, to the problem of stabilizing an unstable steady-
state of a linearized model of a diffusion-reaction process
subject to state and control constraints.

Los Angeles, CA 90095

— on the basis of low-order ODE models derived through
a combination of the Galerkin method (using analytical
or empirical basis functions) with the concept of inertial
manifolds [6]. Using these order reduction techniques, a
number of control-relevant problems, such as nonlinear and
robust controller design, dynamic optimization, and control
under actuator saturation have been addressed for various
classes of dissipative PDE systems (e.g., see [3], [2], [9]
and the book [6] for results and references in this area).
The approaches proposed in these works, however, do not
address the issue of state constraints in the controller design.
Operation of transport-reaction processes typically requires
that the state of the closed—loop system be maintained
within certain bounds to achieve acceptable performance
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I. INTRODUCTION

a certain value or requiring a product concentration not to
drop below some purity requirement). Handling both state
and control constraints — the latter typically arising due to
the finite capacity of control actuators — in the design of
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Transport-reaction processes are characterized by sigr#F—e controller,_therefore, is an important conS|derat|on._
icant spatial variations due to the underlying diffusion and Model Predictive Control (MPC), also known as receding
convection phenomena. The dynamic models of transpoftorizon control, is a popular control method for handling
reaction processes over finite spatial domains typically cofonstraints (b(?th on manlpulatgd inputs and state variables)
sist of parabolic partial differential equation (PDE) system¥/ithin an optimal control setting. In MPC, the control
whose spatial differential operators are characterized by@!tion is obtained by solving repeatedly, on-line, a finite-
spectrum that can be partitioned into a finite (possibly ur{]onzon_constra{ned open-loop optimal control pro_blem..T_he
stable) slow part and an infinite stable fast complement [11pOPularity of this approach stems largely from its ability
The traditional approach to the control of parabolic PDEX handle, among other issues, multi-variable interactions,
involves the application of spatial discretization technique§Onstraints on controls and states, and optimization re-
to the PDE system to derive large systems of ordina uwements._ Numerous resea_rch studies have investigated
differential equations (ODES) that accurately describe tH&'® Properties of model predictive controllers and led to

dynamics of the dominant (slow) modes of the PDE systerd, Pléthora of MPC formulations that focus on a number
The finite-dimensional systems are subsequently used as fffecontrol-relevant issues, including issues of closed-loop
performance, implementation and constraint satis-

basis for the synthesis of finite-dimensional controllers (e.gSt2Pility;
see [4], [16], [7]). A potential drawback of this approach igaction (e.g., see [12], [1], [15], [14] for surveys of results
that the number of modes that should be retained to deri@@d references in this area).

an ODE system that yields the desired degree of approx-MOSt of the research in this area, however, has focused
imation may be very large, leading to complex controlleP" lumped-parameter systems modeled by ODE systems.

design and high dimensionality of the resulting controllers<compared with lumped-parameter systems, the problem of

Motivated by these considerations, significant recerfiesigning predictive controllers for distributed parameter
work has focused on the development of a general framgYStéms, modeled by PDEs, has received much less atten-
work for the synthesis of low-order controllers for parabolidi©on- Of the few results available on this problem, some have
PDE systems — and other highly dissipative PDE systerﬁgcused on analyzing the receding horizon control problem

that arise in the modeling of spatially-distributed system@" the basis of the infinite-dimensional system using control
Lyapunov functionals (e.g., [13]), while others have used

*Financial support by NSF, CTS-0129571, is gratefully acknowledgedaspatial discretization techniques such as finite differences
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(e.g., [8]) to derive approximate ODE models (of possiblysystem at a single point,, with z, € [0,x] (i.e., point

high-order) for use within the MPC design, thus leading tactuation), the functior;(z) is taken to be nonzero in a

computationally expensive model predictive control desigrinite spatial interval of the formz, — u, z, + u|, where

that are, in general, difficult to implement on—line. 1 is a small positive real number, and zero elsewhere in
Motivated by the above considerations, we focus in thif0, 7]. The functionr(z) is a “state constraints distribution”

work on the development of a framework for the design ofunction that describes where the state constraints are to be

predictive controllers for linear parabolic PDEs with statenforced in the spatial domaift), ]. Throughout the paper,

and control constraints. The rest of the paper is organized #e notation-| will be used to denote the standard Euclidian

follows. In section Il, the class of parabolic PDEs considnorm inIR™, while the notatior} - | will be used to denote

ered is described, and formulated as an infinite-dimensiontile weighted norm defined uwé = 2'Qzx, where@ is a

system. Next, in section Ill, the predictive control problenpositive-definite matrix and’ denotes the transpose of

is formulated on the basis of the infinite-dimensional sysFinally, the notation|| - ||» will be used to denote thé,

tem. Then, in section 1V, modal decomposition techniquesorm (as defined in Eq.5 below) associated with a Hilbert

are used to derive a finite-dimensional system that capturepace.

the dominant dynamics of the infinite-dimensional system. To proceed with the presentation of our results, we

Projection techniques are used to obtain the correspondifgmulate the PDE of Eq.1 as an infinite dimensional system

state constraints on the finite-dimensional system. A number the Hilbert spacé([0, 7]; IR), with H being the space of

of MPC formulations, designed on the basis of differentmeasurable functions defined ¢ ], with inner product

finite-dimensional approximations, are presented and corand norm

pared. The formulations differ in the way the evolution of G L

the fast eigenmodes is accounted for in the performancéwlaw) Z/ (w1(2),w2(2))mrdz, [|wil2 = (w1, w1)?

objective and state constraints. The impact of these differ- 0 (5)

ences on the ability of the predictive controller to enforcevhere w;,w, are two elements of<([0, 7];IR") and the

closed-loop stability and state constraints satisfaction in theotation(-, -)r~ denotes the standard inner producfiit.

infinite-dimensional system is discussed. Finally, in sectioDefining the state functior on ([0, 7];IR) as

V, the MPC formulations are applied, through simulations, B

to the problem of stabilizing an unstable steady-state of a a(t) =2(z1), >0, zel07], (6)

linearized model of a diffusion-reaction process subject tghe operatord as

state and control constraints. 9z

g 7 7
baz2—|—ax (7)

[l. PRELIMINARIES Az =

In this work, we focus on control of a linear parabolicand the input operator as
PDE of the form m
oz 2 Bu=) biu; (8)
pril b@ +az + w;bL(z)uL Q) |

. . o N the system of Egs.1-2 takes the form
with the following boundary and initial conditions

20,6) = 0, &(mt) = 0, 2(2,0) = To(z) (2) # = AvtBu, 2(0)=2 ®)

where 2y = x¢(z). For the operatord, the eigenvalue

subject to the following input and state constraints problem is defined as

min <

ur wpg < uft i=1,---,m 3) Ap; = Ny, j=1,--+,00 (10)
X < / r(2)z(z,t)dz < x™a® (4) where); denotes an eigenvalue agd denotes an eigen-
0 function. Using the definition of4 in Eq.7, the eigenvalue

wherez(z,t) € IR denotes the state variable,c [0,7] C  problem takes the form
R is the spatial coordinate,< [0, o) is the time,u; € R 5%,
b J

denotes the-th constrained manipulated input{**” and 52 T ad; = A; (11)
u*** are real numbers representing, respectively, the lower *
and upper bounds on theth input, andy™" and y™e*  Subject to

°7 9;(0) = ¢;(r) =0 (12)

are real numbers. The tera f denotes the second-order _ _ _
spatial derivative of; o, b andw are constant real numbers Where > 0. A direct computation of the solution of the
with b > 0, and () is a sufficiently smooth function of @POVe eigenvalue problem yields

z. The functionb;(z) is a known smooth function of that 2

describes how the control actiom;(t), is distributed in the A = @ —bj*, ¢;(2) = \/;Sm(j z), j = 1,...,00
finite interval [0, 7]. Whenever the control action enters the (13)



The spectrum ofA4, o(A), is defined as the set of all Itis well known that the control law defined by Egs.16-19 is
eigenvalues ofA, i.e., o(4) = {A1,X2,...}. From the not necessarily stabilizing. For finite-dimensional systems,
expression for the eigenvalues, it is clear that all théhe issue of closed-loop stability is usually addressed by
eigenvalues ofA4 are real, and that, for a given and means of imposing suitable penalties and constraints on the
b, only a finite number of unstable eigenvalues existstate at the end of the optimization horizon (e.g., see [1],
and the distance between any two consecutive eigenvalyé$, [14] for surveys of different approaches). In these ap-
(i.e., A; and \;41) increases ag increases. Furthermore, proaches, however, a priori knowledge of the stability region
o(A) can be partitioned ag(A4) = o A)Uo’2( A), starting from where the predictive controller is guaranteed to
where o1(A) = {\,...,A\n} contains the firstm be stabilizing is difficult to obtain due to the implicit nature
(with m finite) “slow” (possibly unstable) eigenvalues andof the MPC law which can impact on the practical im-
02(A) = {Ami1, Ama2,...} contains the remaining “fast” Plementation of MPC by requiring, for example, extensive
stable eigenvalues. This implies that the dominant dynami€osed-loop simulations in search of the appropriate initial
of the PDE can be described by a finite-dimensional syster&ondition and/or horizon length. To overcome this problem,
and motivates the use of modal decomposition to derive @€ can use the hybrid predictive control structure proposed
finite-dimensional system that captures the dominant (slow) [10] which employs logic-based switching between MPC

dynamics of the PDE. and a fall-back controller with an explicitly-defined stability
region. The hybrid predictive control structure provides a
[Il. PROBLEM STATEMENT safety net for the implementation of MPC with guaranteed

Referring to the system of Eq.9, we consider the problergtability regions.
of asymptotic stabilization of the origin, subject to the

following control and state constraints IV. PREDICTIVE CONTROL OF CONSTRAINED PDES
u™n o < (t) < uner (14)

7

Owing to its infinite-dimensional nature, the system of
Y < (ra(t) < x™ee (15) EQ.9 cannot be used directly as the basis for the synthe-

sis of a predictive controller that can be implemented in

The problem will be addressed within the MPC frameworlgractice. To address this problem, we initially apply modal
where the control, at state and timet, is conventionally decomposition techniques to the system of Eq.9 to derive
obtained by solving, on-line, a finite-horizon constrained, finite-dimensional system that captures the dominant dy-

optimal control problem of the form namics of the infinite-dimensional system. Using projection
. techniques, the constraints on the state of the infinite-
P(z,t) : J(x,t,u(: )es 16 : o . _
(%) min{J(z,#,u(-)) [ u(") € S} (16) dimensional system are then projected onto the finite-
st. &(r) = Axz(r)+ Bu(r) dimensional space in order to obtain the corresponding

state constraints on the finite-dimensional system describing
u(r) € U the dominant dynamics of the PDE. A number of MPC

™ < (ra(r)) < XM, T e[t t+ T formulations, designed on the basis of the finite-dimensional

(17)  approximation, that differ in the way the state constraints are

where S = S(t,T) is the family of piecewise continuous handled within the optimization problem are then presented
functions (functions continuous from the right), with periodand compared in terms of their ability to enforce closed-

A, mapping[t, t+T] intoUd := {u € R™ : u]"" < u; < loop stability and ensure constraint satisfaction for the state

u**®, i =1,---,m}, andT is the specified horizon. A of the infinite-dimensional system.
control u(-) in S is characterized by the sequencg],
whereulk] := u(kA), and satisfiesi(t) = u[k] for all

t € [kA, (k+ 1)A). The performance index is given by A. Modal decomposition

In this section, we apply standard modal decomposition

t+T
J(x, t,u(-)) = / [qllz®(m; 2, t)|15 + [u(T)|%] dr to the infinite-dimensional system of Eq.9 to derive a finite-
t dimensional system. Lek{,, H; be modal subspaces of
+ Flz(t+T)) A, defined asH, = span{¢i,d2,...,¢n} and H;y =

(18)  span{dmi1, pmra;--.} (the existence of{,, H; follows
whereg is a strictly positive real number,"(7; z,t) denotes from the properties 0f4). Defining the orthogonal projec-
the solution of Eq.9, due to contral, with initial state tion operatorsP; and P, such thatr, = P, 25 = Py,

x at time ¢, and F'(-) denotes the terminal penalty. Thethe stater of the system of Eq.9 can be decomposed as
minimizing controlu®(-) € S is then applied to the system

over the intervalkA, (k + 1)A] and the procedure is re- x = zs+ay = P+ P (20)

peated indefinitely. This defines an implicit model predictive

control law Applying P, and Py to the system of Eq.9 and using the
M(z) = u°(t;z,t) (19) above decomposition far, the system of Eq.9 can be re-
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written in the following equivalent form slow subsystem describing the evolution of the states
(the fast subsystem is neglected). The MPC law in this case

drg
7 Asxs + Bsu, 4(0) = Px(0) = Psxo is obtained by solving, in a receding horizon fashion, the
o following optimization problem
ditf Ajzp+ Bru, x5(0) = Prz(0) = Prxo t+T
@) min [ [alle(r)I+ fulr)E] dr o+ Fau(t+ 7))
WhereAS = PS.A, B, = P,B, .Af = Pf.A, Bf = PfB. Ui (24)
In the above systemd, is a diagonal matrix of dimension st y(r) = Ass(r) + Bou(r)

m x m of the form A, = diag{)\;} (\; are eigenvalues of

A,) and A; is an unbounded differential operator which is u(r) € U
exponentially stable (following from the fact thaf, ., < 0 X< (ras(r)) < XM T et t+ T
and the selection oft,, H ). In the remainder of the paper, (25)

Unlike the formulation of Eqs.22-23, the above formulation
includes penalties only on the slow states and the input. The
evolution of the fast states is not accounted for in the cost
B. MPC formulations: accounting for input and state confunctional nor in the state constraints. Despite its low-order
straints characteristic, a potential drawback of this formulation is the
In this section, we present and compare a number &ict that, when appropriate stability constraints are incor-
MPC formulations that are designed on the basis of diforated into the optimization problem, the resulting MPC
ferent approximations of the infinite-dimensional systemaw, when implemented on the full system of Eq.21, can
The formulations differ in the way the evolution of theg- only enforce closed-loop stability but not necessarily full-
subsystem is accounted for in the performance objectivgate constraints satisfaction, since it neglects the evolution
and state constraints. The impact of these differences @ the fast states. Note that neglecting the exponentially
the ability of the predictive controller to enforce constrainstable fast subsystem in the design of the controller has no
satisfaction for the full state is discussed. effect on the stability of the full closed-loop system which
In the first formulation, the predictive controller is de-can be achieved by simply stabilizing the slow subsystem
signed directly on the basis of the full system of Eq.21 (fofcontaining the unstable modes). However, since the full
the purpose of computations, a sufficiently high-order finitestate,z, includes contributions from both, andx; (recall
dimensional system that adequately describes the evolutitat z = x, + xy), it is possible that ther;-subsystem,
of the infinite-dimensional system is considered). The corwhich is affected by the control input, may evolve in a
trol action is obtained by solving, in a receding horizorway that causes the full-state constraints to be violated
fashion, the following optimization problem: for some time. So, while the stabilization objective can be
T achieved independently of the fast subsystem, the additional
min / [gs||zs(T) I3 + ayllz s (7)]13 + |u(7)|%] dr  Objective of state constraints satisfaction requires that the
“ t evolution of the fast states be properly taken into account

we will refer to thex,- andx -subsystems in Eqg.21 as the
slow and fast subsystems, respectively.

+  F(as(t+T1)) when designing the predictive controller.
. (22) In order to account for the effect of the fast states on
st 2s(1) = Aszs(r) + Beu(7) the full-state constraints, the formulation of Egs.24-25 can
ip(r) = Aszs(r)+ Bpu(r) be modified by incorporating the fast states into the state
u(r) € U constraints equation. The control action in this case is
XTI < (r g (7) + (7)) < X T € [t + T computed by solving the following optimization problem
(23) t+T
where g, and ¢y are strictly positive real numbers. The min/ [qs||x5(r)||§ + |u(7)|§] dr + F(zs(t+ 1))
above formulation includes penalties on both the slow and “ /¢ (26)
fast states and uses models that describe their evolution for, . .
e . . s.t. Zs(T) Aszs(7) + Bsu(r)
prediction purposes. Stability can be addressed either by
proper selection of the terminal penalties or by imposing ap(r) = Aga(r) + Bru(r)
terminal constraints of the form,(t + T') € W,, where u(t) € U
W, is some invariant set centered around the origin. Even X < (ryag(T) Fap(T)) < XM T € [t t+ T
though this formulation accounts for the evolution of the (27)

slow and fast states in both the cost functional and the sta®milar to the formulation of Eqs.24-25, the above formu-
constraints, a potential drawback is the use of a high-ord&tion includes penalties only on the slow states and the
model describing the evolution of the fast states which mustput. However, the state constraints include the contribu-
be solved at each time step in the optimization problem. tion of both the slow and fast subsystems. When appropriate
In the second formulation, the predictive controller isstability constraints are imposed on the above optimization
designed on the basis of the low-order, finite-dimensiongdroblem, the resulting MPC law, if feasible, enforces both
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closed-loop stability and full-state constraints satisfactiorwherez;(7) is obtained from the two time-scale approxi-
Note, however, that by taking the fast states evolution intmation used in the formulation of Eqs.30-31 an@:s(t))
account in the state constraints, a model describing the a term that can be designed to properly penalize the
evolution of the fast subsystem is needed for predictioavolution of the fast states. Incorporating some penalty on
purposes in solving the optimization problem. In the formuz ; allows for greater flexibility in influencing its behavior
lation of Eqs.26-27, this requires solving a possibly highso as to help the objective of state constraints satisfaction.
order system of ODEs. This problem can be circumvented
by exploiting the two time-scale separation between the V. SIMULATION EXAMPLE

slow and fast subsystems and deriving an approximate In this section, we demonstrate and compare, through
model that describes the evolution of the fast subsysterffomputer simulations, the implementation of the various
To directly account for the two-time scale behavior of thdVPC formulations discussed in the previous section. To this

system of Eq.21, we define— |Re{A1}| and multiply end, we consider the following parabolic PDE
L Re{An ] . ;P m
g;/estaéfn;s[lg]).system of Eq.21 by to obtain the following % = % + (Bre Vv _gU)j+gUZbi(z)ui(t)
. =1
d z(0,t) = 0, Z(m,t) = 0, Z(2,0) = wz(2)
6% = .Afexf + eru (28) (34)

) ) . . which represents a linearized model of a typical diffusion-
where Ay is an unbounded differential operator defined ag,;tion process, around the zero steady-state, where

Ase = eAy. Introducing the fast time scale = - and denotes a dimensionless temperatufe, denotes a di-

settinge = 0, the fast subsystem takes the form: ¢ mensionless heat of reaction, denotes a dimensionless
dz; activgt!on energypy denotes a di_mension_less heat tra_msfer
pr Afexy (29)  coefficient,u;(t) denotes the manipulated input abdz) is

F the ab si d with a sliaht ab  notati the corresponding actuator distribution function of thid
rom the above analysis, and with a slight abuse of notatiof), 01 chosen to H8(2) = 1/41 101 2 € [2as — 1, Zas + 1]

the O(e) approximation of the transient behavior of the, g bi(z) = 0 elsewhere in[0, 7], where ;i is a small

e _ iAo ; .
fast St‘fﬂe t'ls gllve(;l ?y‘vtfh(t)f H ¢ ffﬁfp('(c):).f Usmlgt_thls positive real number and,; is the center of the interval
approximation feads to the foflowing ormulalion \yhere actuation is applied. The following typical values

T are given to the process parametéts:= 50, Gy = 2, and
: 2 2 ) ’
ngn/t [aslls (P12 + [w(r) ] dr + F(xs(t + T)) ~ = 4. For these values, it was verified that the operating
(30) steady-statez(z,t) = 0, is an unstable one.The control

st. Zs(1) = Asw(T) + Bsu(r) objective is to stabilize the state profile at the unstable zero

u(t) € U (31) steady-state by manipulating(¢) subject to the following
XM < (ra(7) + €741 24(0)) <y input and state constraints

wherer € [t,t + T, thus eliminating the need to solve the (S T S (35)

original =y state evolution equation. It should be noted here _ m

that the idea of exploiting the two time-scale behavior of X" < / r(2)Z(z,t)dz < XM (36)

the system of Eqg.21 to approximatg and avoid solving _ 0 _

a possibly high-order ;-subsystem at each time step cawhere w;"" = —10, u{*** = 10, for i = 1,2, x\"™" =

be extended to the nonlinear case where the computational.035, x™** = 2. The state constraints distribution func-

savings resulting from such approximation are expected tion, 7(-), is chosen to be(z) = 1/ for z € [z —p, 2.+

be more profound than in the linear case. and r(z) = 0 elsewhere in[0, x|, where i is a small
Finally, a variation of the above formulation can be obJositive real number and. = 1.156 is the center of the

tained by including an additional term in the cost functionainterval where the state constraints are to be enforced. For

to penalize some measure of the evolutionaof that is @ sufficiently smally, this choice implies that the state

different from the one chosen for the penalty on the slowonstraints are to be enforced only at a single point in the

state, as follows spatial domain, i.e..-0.035 < Z(z.t) < 2.
t+T The eigenvalue problem for the spatial differential oper-
min / [gsllzs (T3 + [u(T)|%] dr ator of the PDE of Eq.34 can be solved analytically and its
“ t (32)  solution yields

+ F(zs(t+ 1)) +T'(zs(t))
A =166 — 3% ¢;(z) = %sin'z, j=1,...,00
st 2y(1) = Auwy(r) + Bou(r) J (2) \f (G 2), 7 o

u(T) U For this system, we consider the first two eigenvalues as the

€
X < (ryas(T) +ap()) < X™M® 7 € [t,t +T)  dominant ones and use two point control actuators<( 2),
(33) with finite support, centered at; = 7/3 andz,2 = 27/3,
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to achieve the control objective subject to the constrainthe lower constraint for some time. The violation of the state
of Egs.35-36. To simplify the presentation of the results;onstraint is a consequence of neglecting the contribution of
we will work with the amplitudes of the eigenmodes of thethea; states to the full state of the PDE. To account for the
PDE of Eq.34. Specifically, using standard modal decorevolution of the fast states in the optimization problem, we
position, we derive the following high-order ODE systemconsider the following MPC formulation with the objective
that describes the temporal evolution of the amplitudes déinction and constraints given by

the first! eigenmodes:

t+T
as(t) = Asas(t) + Bsu(t) (38) muill/t [qs|a5(7—)|2+|u(7—)‘%] dr (42)
ar(t) = Asas(t)+ Byult) sit. as(t) = Asas(T) 4+ Bsu(T)
where a (t) = [a(t) ax(®)], ar(t) = ap(t) = Asas(r)+ Bru(r)
las(t) as(t) - @), a;(t) € R is the modal S u";T) N C)
amplitude of thei-th eigenmode, the notatiom, denotes :zz - - mew e
the transpose ofs, u(t) = [u1(t) ua(t)]’, the matricesd X < Caas(1) 4+ Crap(r) < x
and Ay are diagonal matrices, given by, = diag{\i}, \yhere r € [tt+T), Cr = [#3(2e) -+ ¢s0(ze)] is

fori=1,2 and Ay = diag{\:}, fori = 3,---,1. B; and 5 (o vector and the MPC tuning parameters have the
By are a2 x2 and (I —2) x m matrices, respectively whose g3 me values used in the previous formulation. The results
(i,5)-th elementl is given byBi; = (b;(2),¢i(2)). Not€  gre shown in Fig.2 (dashed lines) and Fig.3 where we
that z(z, 1) = >im1 6i(1)9i(2), 7s(t) = a1(t)¢1 + azd2,  see that the predictive controller designed using Egs.42-43
zp(t) = > 25ai(t)¢i and that(z,(t),¢:) = ai(di, ¢i).  successfully stabilizes the state profile at the zero steady-
Using these projections, the state constraints of Eq.36 caghte and that the state constraints are satisfied for all times.
be expressed as constraints on the modal amplitudes fse corresponding manipulated input profiles are given in
follows: Figs.4-5. As noted in section IV-B, the above formulation
2 l requires solving the high-orders-subsystem at each time
X < Zai(t)qﬁi(zc) + Zai(t)¢i(zc) < x™**  step to predict the volution of the fast states included in
i=1 i=3 the state constraints equation. An alternative approach is
(39) to utilize the two time-scale separation property of the

:/r:/e S%W prct)cee%.v:.lth the :ﬂelslfgn anld tllmplementattlog Qifferential operator in order to approximate the evolution of
€ difierent prediclive control formuiations: presente .maf. For example, using the approximation of Eg.29 in the
the previous section. The following initial condition is

) ) . . above formulation yields the following objective function
considered in all simulation runs:(z,0) = 0.08sin(z) + y g obl

. ) . and constraints
0.001sin(2z) and! is chosen to be 50. In the first scenario

considered, we use thg-subsystem in Eq.38 as the basis
for the predictive controller design (the;-subsystem is
neglected). For this case, we consider an MPC formulation
with the following objective function and constraints: st as(1) = Asas(r) + Bsu(r)

t+T
min [ [adau(r)? + [u(nf]dr @)

t+T Umin < uz(T) < Umazy 1= 172
min / [gslas(D)? + [u(r)[3] dr  (40) X" < Cuag(r) + Crexp (tAp)agy < ™
v (49)
st as(t) = Agas(T)+ Bsu(r) wherer € [t,t + T}, ajo = ay(0). The above formulation

does not require solving the state evolution equation for the
a¢-subsystem at each time step; instead it uses an explicit
(approximate) expressiom;(7) = e “7ay, to account
where Gy = [61(2.) éa(z)] IS a row vectorg, — 8.79. for the dynamics of 'Fhe fast subsys_tem Whl_ch_ contribute to
. . the full-state constraints. The resulting predictive controller,
R = rlI, with r = 0.01, andT" = 0.007. To ensure stabil- .
when implemented on the system of Eq.34 successfully

Ity, we impose a termlna_tl gqugllty constraint of the f(.)rmstabilizes the zero steady-state and enforces full-state con-
as(t +T) = 0 on the optimization problem. The resulting

guadratic program is solved using the MATLAB subroutinﬁszti;:nf;' atisfaction (see dashed-dotted lines in Fig.2 and

Prog. Th ntrol action is then implement n th . .
QuadProg € control action 1S the plemented on the In summary, the comparison between the different MPC

50-th order model of Eq.38. Fig.1 and Figs.4-5 (solid I|nes]) mulations serves to underscore the fact that the fast

show, respectively, the closed-loop state and manipulate o .
P Y P P States, while inconsequential as far as full closed-loop sta-

input profiles under the MPC controller of Eqs.40-41. Itis ... . . ,
- - ility is concerned, are central to the predictive controller’s
clear that the predictive controller successfully stabilizes the .- . .
ility to enforce the state constraints in the closed-loop

te at the zer -state. However xamining Fi : o
sta_e at the zero steady-state. However, by exa ning E and must therefore be accounted for in the predictive
(solid line), we observe that the statezat= 1.156 violates !

controller design.

Umin ui(T) < Umaz, Z:1a2

<
X < Csas(r) < x™, 1€ [t,t+ T
(41)
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Fig. 1. Closed-loop state profile under the MPC formulation of Eqs.40-4Fig. 4. Manipulated input profiles for the first control actuator applied
without accounting for the fast modal states in the constraints. at zq, = m/3 under the MPC formulation of Egs.40-41 (solid), under the

0.08 MPC formulation of Eqs.42-43 (dashed), and under the MPC formulation
of Egs.44-45 (dashed-dotted).
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Fig. 2.  Closed-loop state profile at. = 1.156 under the MPC
formulation of Egs.40-41 without accounting for the evolution of fast
modes (solid), under the MPC formulation of Eqgs.42-43 accounting foFig. 5. Manipulated input profiles for the second control actuator applied
the fast modes in the state constraints (dashed), and under the MRCz., = 27/3 under the MPC formulation of Egs.40-41(solid), under the
formulation of Egs.44-45 using the two time-scale approximation for thtIPC formulation of Eqs.42-43 (dashed), and under the MPC formulation
fast modal states in the constraints (dashed-dotted). of Egs.44-45 (dashed-dotted).
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Fig. 3. Closed-loop state profile under the MPC formulation of Egs.42-43
accounting for the fast modes in the state constraints.
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