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Abstract— This paper investigates the robustness of dual-
rate MPC systems with a proposed inferential control strategy.
It shows that for some scenarios where a high-frequency
model plant mismatch is presented, such dual-rate inferential
MPC systems may be more robust than fast single rate MPC
systems.

Keywords: Robustness, multirate/dual-rate systems,
model predictive control (MPC).

I. INTRODUCTION

A system is multi-rate (MR) when its inputs and outputs
are sampled at different rates. When output measurements
are available at a slow rate (SR), which is an integer
multiple m slower than the fast rate (FR) at which the
input is updated, the system is dual-rate (DR). This paper
considers robustness [5] of DR model predictive control
(MPC); prediction models always include some model plant
mismatch (MPM).

Unfortunately the tools of linear control analysis cannot
be applied easily because MR systems are periodically
time varying. Two popular approaches adopted to handle
MR systems are: (i) inferential control (IC) [3], and (ii)
the lifting technique [2]. With the lifting technique, [6]
shows that DR MPC systems may lose robust stability when
the integer m (the sample rate ratio) increases. Since DR
systems with large m are common, it is important to design
control schemes for DR systems whose stability robustness
can be guaranteed when m is large. [4] indicates that the
IC technique can be used to achieve this.

This paper gives a new insight to the robustness of DR
inferential MPC systems and their stability robustness. In
particular it is demonstrated that, contrary to intuition, for
some scenarios robustness actually improves as m increases
and hence DR control may be more robust than SR control.
Robustness analysis will be discussed in Section II, illustra-
tive examples in Section III, and conclusions in Section IV.
For simplicity of notation the presentation is restricted to
single input single output systems.

II. ROBUSTNESS OF DUAL-RATE INFERENTIAL MPC

In this section we will study the stability robustness of
DR MPC systems in the presence of MPM, considering the
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inferential control scheme to be proposed in the following.

A. Proposed inferential control

IC [3] uses an internal process model, as shown in
Figure 1. In this paper, we assume that the model with
input u and output ŷ has the following form,

a(z)ŷk = b(z)uk, (1)

where a(z) = 1 + a1z
−1 + . . . + anz−n, b(z) = b1z

−1 +
. . . + bnz−n, and n is the system order.
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Fig. 1. Internal model structure

In a DR system with IC strategy, model (1) is with the
fast input sampling period T . Correspondingly, subscripts
k in (1) mean that ŷk = ŷ(k ·T ), and uk = u(k ·T ). Model
(1) is used to supply output estimates ŷ when the actual
output y is not available. Note that the measurement of y
is only available every slow period mT .

Without loss of generality, define vectors of future and
past variables at fast sampling instant km as (subscripts are
not included in this paper where they are implicit):

u→ =
[

ukm · · · ukm+nc−1

]T
,

ŷ→ =
[

ŷkm+1 · · · ŷkm+ny

]T
,

Luss =
[

ukm+nc
· · · ukm+ny

]T
,

u← =
[

ukm−1 · · · ukm−n

]T
,

ŷ← =
[

ŷkm · · · ŷkm−n+1

]T
,

(2)

where ny , nc are prediction and control horizons, respec-
tively; uss is the current estimate of the input required to
remove steady-state offset and L is used to denote a vector
of ones of appropriate dimension to its use. Given a one
step ahead prediction model – the fast rate model (1), the
formulation of predictions is well known (e.g. [5]), so the



reader is referred there for details of the matrices H, Hs, P
used next.

In summary a vector of output predictions is given as
follows:

ŷ→ = H u→+ Hsuss + P x̂ + L[yk − ŷkm], (3)

where yk − ŷkm is the error between the most recent
process measurement yk (note that yk = y(k · mT )) and
the corresponding model output ŷkm ; and

x̂ =

[
u←
ŷ←

]
. (4)

Every fast sample, a sequence of future control inputs u→
is calculated so that the following performance index J can
be minimized:

J = ‖ r→− ŷ→‖
2
2 + λ‖u→− Luss‖2

2, (5)

subject to ukm+i = uss, i ≥ nc, where r is the set point.
Since MPC is a receding horizon control strategy by

nature, a constraint-free solution ukm can be found by: (i)
substitution into (5) from (3); (ii) differentiation w.r.t. u→;
(iii) setting the gradient to zero; and (iv) implementing the
first element of the computed sequence and discarding the
other elements. Thus,

ukm =
[

1 0 · · · 0
]
[HT H + λI]−1{HT X − Luss}

(6)
where X = r→ − P x̂ − Hsuss − L(yk − ŷkm). For the
next sample, ukm+1 can be found by repeating the above
procedures.

In this DR inferential MPC, the prediction (3) and the
minimization of J in (5) are carried out every fast period
T . But the offset yk− ŷkm in (6) is only updated every slow
period mT .

B. Robustness of dual-rate inferential MPC

In this section, we will investigate the robust stability of
the dual-rate predictive control system with the proposed
IC scheme in the presence of MPM.

The law (6) is periodically time varying, due to the term
yk − ŷkm. However, as model (1) is known, we can lift [1],
[2] the m control elements in one slow period and the lifted
control law (at the slow rate) is time invariant. Next we will
show how to obtain the lifted control law.

Rewrite (6) as follows:

ukm = M1 r→+ M2x̂ + M3uss + M4(yk − ŷkm), (7)

where Mi, i = 1, 2, 3, 4 are all constant matrices:

M1 =
[

1 0 · · · 0
]
[HT H + λI]−1HT ,

M2 = − [
1 0 · · · 0

]
[HT H + λI]−1HT P,

M3 = − [
1 0 · · · 0

]
[HT H + λI]−1(HT Hs + L),

M4 = − [
1 0 · · · 0

]
[HT H + λI]−1HT L.

(8)
Next, as a precursor to computing the loop sensitivity,

we represent the control law in transfer function form. For

simplicity and without loss of generality, in the following
we ignore the term uss and substitute into (7) from (4).

Rewriting (7) using shift operators q−1 gives

M5ukm = M6r + M7ŷkm + M4(yk − ŷkm). (9)

where M5 and M7 are the polynomials:

M5 = 1 −
n∑

i=1

q−iM2(i), M7 =
n−1∑
i=0

q−iM2(n + i + 1),

(10)
and

M6 =
ny∑
i=1

M1(i) (11)

Mi(j) means the j-th element in the constant matrix Mi

(i = 1, 2); r is the set point signal and, as it does not affect
loop sensitivity, is assumed constant for convenience.

In each slow period mT , control law (9) is used m times
to compute the m ‘inter-sample’ fast rate control inputs,
that is:

M5ukm+i = M6r + M7ŷkm+i + M4(yk − ŷkm),
i = 0, · · · ,m − 1.

(12)
where again the reader is reminded that the term (yk− ŷkm)
is the same in each of these m updates.

Next in order to find the slow rate lifted control law which
depends only on the output measurement yk, we need to
eliminate the ŷ terms which can be done using (12) and
(1). First define Uk, Yk as the lifted fast rate control inputs
and predicted outputs, respectively

Uk =




ukm

...
ukm+m−1


 , Yk =




ŷkm

...
ŷkm+m−1


 , (13)

and hence represent the lifted control law by writing all m
equations (12) as simultaneous equations:

diag[M5, · · · ,M5]Uk =
[

M6 · · · M6

]T
r

+ diag[M7, · · · ,M7]Yk (14)

+
[

M8 · · · M8

]T (yk − ŷkm).

Second, the lifted IC control law (14) is further simplified
by eliminating ŷ as follows. Assume the fast rate process
model (1) is given and derive two lifted models: Σ1 and
Σ2. The former is a model with m inputs and m outputs,
corresponding to Yk = Σ1Uk; the later is a model with
m inputs and one output, corresponding to ŷkm = Σ2Uk.
Replacing Yk and ŷmk in (14) with Σ1Uk and Σ2Uk

respectively, (14) becomes:

Uk = Sr − Ryk, (15)

here S and R are polynomial matrices and their derivation
is straightforward; r is a constant reference signal, and yk is
the slow rate actual process output. The underlying period
of the lifted controller (15) is mT .



We remark that the lifting technique is used here to derive
the lifted control law (14); however, elements in the lifted
control input Uk in (13)-(15) are calculated separately. This
is different from the results in [6], where the time varying
DR system is converted into a time invariant single-rate
system (with underlying period mT ) by applying the lifting
technique, so that the lifted control input is computed as a
whole. The purpose that we use the lifting technique in this
paper is to obtain a time invariant control law so that the
robust stability of the DR closed loop system in terms of
the ratio m can be analyzed as that for a single-rate system.

The key observation is given next. From (6) and hence
implicit in (14), the effect of the MPM upon the control law
will be proportional (roughly) to a factor of 1/m, because
the term yk − ŷkm is updated only every mth sample.
The logical conclusion therefore is that sensitivity to MPM
improves as m increases until in the limit as m → ∞
(equivalent to removing the feedback path), the controller
behavior is unaffected by MPM.

The effect of integer m on the robust stability of example
closed-loop systems can be observed from plotting the sen-
sitivity function1 Tsen = ClPl(I + ClPl)−1. Pl represents
the lifted true process (input Uk, output the slow sampled
yk) and Cl represents the corresponding lifted controller
(15), with input the slow rate yk, and output the lifted Uk.

III. SIMULATION EXAMPLE

In this section, we will give an illustration example to
support our observation. The real process is the same as
that used in [6]. It is a continuous-time system

1
(s + 1)(3s + 1)(5s + 1)

, (16)

and a first order discrete time model with sampling period
1 second is identified as:

0.0419z−1 + 0.0719z−2

1 − 0.8969z−1
. (17)

We emphasize here that the model plant mismatch for this
example is significant in the high frequency.

The input is manipulated every 1 second, but the mea-
surement is available every m > 1 second. For inferential
MPC (6) based on (17), the tracking performances and the
sensitivity functions for different m are shown in Figures 2
and 3, where ny = 10, nc = 2, and λ = 0.1.

For this case DR inferential MPC is more robust than fast
SR MPC in the sense that (i) the bigger m, the better the
performance; and (ii) the effect of the MPM on performance
reduces as m increases. These observations are in contrast
to those in [6], which used a lifted MPC scheme.

Similar conclusions can be found in [4]. However, the
inferential control scheme used there is different; it uses
a periodic switch between ŷ and y. The scheme proposed

1the sensitivity function we defined in this paper has the same form
as the classical complementary sensitivity function defined in most of the
literatures
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Fig. 2. Tracking performances with different m
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Fig. 3. Sensitivity functions with different m

here avoids effects caused by the abrupt change between ŷ
and y.

IV. CONCLUSIONS

Contrary to common expectation, for some examples
DR control may be more robust to MPM than single rate
control. It is shown that if there is significant MPM in the
high frequency, then there could be benefits from sampling
the model measurements at a slower rate.
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