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Abstract— Conventional real-time optimizers are based on ‘ P'a"”i?svfgﬁj)d“"”g ‘
steady-state models and their effectiveness on plants with
long-lived dynamics are thus limited. This is particularly true

for tightly integrated plants with material recycle loops and Real-Time Optimizer

other mass / energy integration loops, which tend to show
distinct time-scale separation in their dynamic behavior. The MPC MPC
use of steady state model limits the execution frequency of mlnutes mlnutes

the RTO and precludes the utilization of dynamic degrees of

freedom, ultimately Ieadin_g to sqboptimal results. Researchers Regulatory Gontrol Regulatory Gontrol
have suggested to combine unit-level controls and plant-wide Seconds Seconds
economic optimization into a single dynamic optimization but i

the demand for modeling accuracy and computation may be
too high for such an approach to be feasible in practice. In .
this paper, we propose a two-layer architecture for dynamic =

plant-wide optimization and control, in which the upper layer
performs a dynamic optimization of the integrated plant to
determine economically optimal setpoints for the lower layer
performing control functions at the unit level. To alleviate Fig. 1. Typical automation system in a chemical plant
the unrealistic modeling and computational requirements,
we propose the plant-wide dynamic optimization at a rate

significantly lower than those of the controllers. Slow-scale {ime scales (with slow modes dominating) and therefore
plant-wide models are less “stiff” and therefore thought to

be more robust to model errors. We discuss how to obtain be ext_remel_y_stlff_ (i.e., ill-conditioned), which can pose
a “slow’scale plant-wide model for a chosen optimization Nhumerical difficulties and robustness problems. These are
frequency and the interfacing of the slow-running plant-wide perhaps the reasons for the popularity of the use of a steady
dynamic optimizer with the fast running unit controllers. An state model in RTO. However, for most integrated plants
example is given to compare the various approaches. with long-lived dynamics, the approach can be extremely
limited. In order for the assumption of steady state hold,
the frequency of RTO would have to be limited to, say,
With the increasing need for improving process ecoence every several days. In fact, changes will invariably
nomics, efficiency, and quality in the globalized markebccur in the mean time and the plant is unlikely to reach
environment, real-time optimization (RTO) has attracted ththe intended steady state ever. If the steady-state RTO is
attention of the process industry and has been adoptegecuted more frequently, however, the mismatch between
sporadically [1]. The RTO system is model-based anthe steady state model and the transient dynamics can make
implemented on top of unit-based multivariable controllershe solution infeasible for implementation at the local unit
The objective is to maintain the plant operation near alevels. Due to these problems, it has been observed that the
economic optimum in the face of disturbances and othem-line time of the steady-state RTO often drops with time
external and internal changes. This RTO layer usuallgnd it even gets turned off completely [10].
functions between the production planning/scheduling layer Several researchers suggested to use a dynamic model
and the local unit-based control layer. A typical RTObased RTO executed at the same frequency as the local
strategy is based on a steady-state model of the placntrollers (e.g. MPC). The one-layer solution, which com-
and calculates setpoints for the multivariable controllers diines the economic and control objectives into a single
various plant units, which steer the operating conditions afynamic optimization, has been proposed [9], [3], [11]. Ex-
their respective units to the calculated optimal values. Aensive simulations are necessary to determine appropriate
general structure of the chemical plant with a steady-staieeights to be assigned to the economic objective and the
RTO scheme is illustrated in Fig. | control objective terms. This strategy was applied to the
As the domain of RTO often spans an entire plant, it caRCC converter used in the liquefied petroleum gas (LPG)
be computationally demanding to perform the optimizatioproduction process involving 4 CVs and 4 MVs [3], [11].
at a rate same as the local unit controllers. More importantlithe economic objective function they used was a nonlin-
integrated plants tend to involve dynamics of very differenear one. The optimization was solved by the sequential
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guadratic programming (SQP) method and the performaneeonomics and interaction, and computational feasibility.
was compared with that of the typical two-layer steady©Once the frequency of the RTO is decided, one must develop
state RTO approach. The results showed that the dynangcplant-wide model valid up to the chosen frequency. This
optimization indeed responded to changes faster, but as thmay be done using a fundamental model or using system
economic and control objectives were mixed into a singl&entification. In the former case, one typically gets a
term, the economic performance can unduly suffer when theery large set of stiff DAEs. Removing the ill-conditioning
process experienced large disturbances. In addition, su€kstiffness”) using the singular perturbation approach has
an approach is unlikely to be extendable to a large-scaleen discussed in the literature [4] but the procedure can
integrated plant involving many units and recycle loopshe extremely complicated for a large-scale nonlinear system
as models encompassing dynamics of various time scaletere the state variables are not explicitly separable in
(dominant slow modes and many fast modes) would berms of time scale. On the other hand, one can conceivably
very “stiff” and the optimization result would be extremelyuse numerical approaches such as the Proper Orthogonal
sensitive to model errors. Because of these reasons, we villecomposition (POD) method coupled with residualization
focus on the two-layer optimization scheme, as shown ito identify the slow-scale model from the simulation data.
Fig. 1, in this paper. A more likely scenario in practice is to use the linear

One approach designed to enhance the execution fr@odels used in the local MPCs and connect them up with
quency of the RTO layer within the two layer structure'bridge’ dynamics to obtain a plant-wide model. As before,
is the single-point dynamic optimization scheme with ave can expect the accuracy of the bridge dynamics to be
cross-functional coordination layer, which was proposegoor in the high frequency range, and therefore it must be
by Lu [6]. In this approach, RTO is performed at someaeduced by eliminating the uncertain high frequency parts
predicted future point (called ‘optimization point’), which of the dynamics while retaining the dominant slow-scale
is not necessary the steady state point. The execution ratgnamics. The linear models combined through bridge dy-
of the RTO is the same as the MPCs. The cross-functionahmics can be reduced using various linear model reduction
coordination layer is used to coordinate the two layers tmethods including the frequency-weighted model reduction
ensure the feasibility of the setpoints sent to the MPC. SindEWMR)[2], which minimizes
the optimization is performed at a single time point based
on a fast rate model, the performance of this scheme is IWo(G = Gr)Willoo @
highly sensitive to the choice of the ‘optimization point’,where G is the original modelG,. is the reduced model,
and we can expect that this approach too will be sensitivi’, and¥; are output and input weighting matrices, respec-
to plant/model mismatches in the high frequency range. It idvely. These weighting matrices make the approximation
generally very difficult to obtain ‘bridge dynamics’, which more accurate in certain ranges whéig and IV; have
connect the units together, accurate up to the executitérger singular values. Details of the procedure to obtain a
frequency of MPC controllers. FWMR model can be found in [12].

Considering this, we propose a logical middle ground ) ) )
where RTO based on a reduced-order “slow-scale” dynamie: Proposed Plant-wide Automation Architecture
model of the plant is performed at a rate significantly lower Once the reduced order model capturing the dominant
than the MPC controllers in order to calculate optimaplow-scale plant-wide dynamics is obtained, it can be used
setpoints for the individual units. The slower rate shouldo solve the following dynamic optimization problem at the
make the modeling task more tractable since the slower raggosen optimization interval df,;:
model, which retains the dominant slow modes only, should

be better conditioned and more easily identifiable. Hence, Yoty Jeco @
we can expect that the optimization result based on this

model would be more robust. In addition, computational Vmin < Vg(k 4+ 1k) < Vmax

burden should be less given the slower execution rate Unnin < Uy(k) < Unax

and the reduced order nature of the model. Finally, such
a middle ground is entirely reasonable from a practicalnere
viewpoint, as most changes relevant to plant economics are Uy (k) = [ug(K), ..., ug(k + M —1)]7,

low-frequency in nature.
quency Yok + 11k) = [y, (k + 1|k), ..., yo(k + P|k)]”.

[I. DYNAMIC OPTIMIZATION USING LOW : . .
FREQUENCY MODEL U, denotes a vector of manipulated variables with the
i horizon of M. ), is a vector of predicted outputs with the
A. Model Construction prediction horizon ofP. This output prediction is calculated
First, the frequency of the plant-wide optimization musby integrating the plant model,,;, and V... are the
be decided based on various factors, such as the accurdmyer and the upper bounds df,, whereag/,,;, and, ..
of the plant-wide dynamic model that can be obtained, thare the lower and the upper bounds #gy. Note that the
bandwidth of external and internal changes relevant to plaabove represents a receding horizon algorithm, meaning that
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the same optimization is solved again at the next sampig reached and new setpoints are passed down from the RTO
time with an updated prediction. layer. In the mean time, the state vector of the plant-wide

As the global solution from the RTO layer may not beoptimizer is updated at the same sample rate as the MPC
feasible for the local controller, which does not accountontrollers, that is, every time local controller actions and
for interactions from the other units, we adopt the use disturbances are calculated, with some appropriate filtering.
the following least-square coordination collar proposed byhe architecture of the proposed scheme is illustrated in
Lu (2001) [6] to find a locally feasible point closest to theFig. 2.

global solution: Ill. ILLUSTRATIVE EXAMPLES
miny o 3 (U{S(k) _ uz‘(k)f (3) A. Problem Description
Yiuin < Vs < Vi - -
Wi, < uj (k) < ufyay &
where i
yi, = GixI (k) + Giu] (k) + Gld’ (k),.  (4) REACTOR SromAGE SEPARATOR

TANK

The superscript denotes the index of the local un'm;
is the setpoint passed from the optimizer to the ynif], ForX10
andyj, are vectors of MVs and CVs computed by the least-
square coordination collar. As this coordination layer checks

the feasibility of the setpoint at the end of MPC prediction
horizon, the gain matrices in Eq. (4) are for the end of MPC
prediction horizon. Note that the above finds the feasiblg9: 3- Schematic of the integrated plant with reactor, storage tank, flash

. . tank connected via a recycle stream
MV values that are closest to the optimal values in the least-

square sense, while respecting the key constraints at the, s section we present an example involving a reactor,
local level. Another option is to formulate the least-squarg storage tank, and a separation unit connected via a
problem to find feasible CV values closest to their globallyarge recycle stream. The large recycle ratio introduces
optimal values. The proper choice of transfer option can bg ime scale separation, which complicates modeling and
different according to the plant-wide objective. optimization. The material balance of this system can be
described by the following ordinary differential equations:

X2R *3R XoMm: X3M

B, 1B XoB: X3B

Real-Time Optimizer

GO Hp = ——(Fo+ D — Fg)
A
by 2 ein= b [Fy(si0—710) + D(@ip — 21p)]
(~hours) 5 1R = JApHp—kiz g L 0\F10 1R 1D 1R
Ug O ¥g Cs T3Rr = Sa gy [~ Fow2r + D(w2p — 22r)] + k1z1r — k22r
i T3R = pAlRiHR[—(Fo + D)x3r] + ka2z2r
Least-square Least-square | H M = T(F R — F M )
i e PAN,
Coordination Coordination | . R
| TiM = m(le —z1Mm)
U gOory.g Us OryLs I S R
\ T2M = W(xQR — TaMm)
Cj o= _ R _
— MPC —-— o J»‘;M PlAMHM (Q:BR xSJW)
‘ ‘ 3% Hp = - (Fy —B—-D)
Auppc Auype ! £8 . _PAB
e T ED 1B = sap iy (FM(ziv — #18) — D(z1p — 218)]
5 8 oz 3B = Sar g [Py (T2 — @2B) — D(zap — 228)]
FAST SCALE | § Regulatory Regulatory S JR N S ) anf — o Dax-
(~minutes) Q Controllers Controllers Q *3B PABHB[ wm(z3n — 23p) + Dasp]
= =
T Au Au D . . . .
Ym{ {Vm Here, Hir, H,;, and Hg denote the liquid heights in

the reactor, the storage tank, and the separator, respectively.
Flowrates for feed, reactor outflow, storage tank outflow,
Fig. 2. Schematic representation of plant-wide dynamic optimizatioﬁeCyCIev and product stream are denotedbyFr, Fir, D,
strategy. and B, respectively.z;; denotes the molar liquid fraction
of component (: = 1,2, 3) in the streamy. As the liquid

Once the setpoints have been determined for each MPIeyel in each tank behaves as integrators, some of these
MPC calculates a profile for manipulated variables such thflbwrates must be used to stabilize the levels. According to
the errors between the future output and the given setpoiRichardson’s rule [8], the largest stream should be selected
trajectories are minimum. This is repeated at each sampe control the liquid level in a vessel. However, if we
time of the MPC until the next execution point for the RTOselectFr, F);, and D to control the levels of the reactor,
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NOMINAL VALUES FOR THE PROCESS AND OPERATING PARAMETERS

TABLE |

ics last as long as 12 hours once a move is made, we used
the observer-based model predictive control formulation for
integrating dynamics discussed in [5], [7], which allows the

Parameters Value
Liquid density — p =1 step responses to be truncated well before the responses
Volatility a1 = 90 ag=1 settle. Since the objective of each MPC controller is to
Rate constant k1 = 0.0167 k2 = 0.0167 minimize the error between the CV setpoints and future CV
Vessel area Ar=5 Ay =10 . . .
Ap = values, the quadratic objective function was employed. The
Vessel holdup  Hp = 20 Hy = 20 parameters for the both MPC controllers are given in Table
Flowrate k=1 Fo — 1667 gs :321033 lll, where t;,,. is the truncation time of the step-response
e 3183 B 167 model,p is the prediction horizony is the control horizon,
D = 29.67 Aunmg, IS the rate constraint of the input variablé¥, and
Mole fraction ~ z10 = (1)-00 T20 = 00 a6 I'* are the output and input weighting matrices, respectively.
ooy = 01082 sn— Dooos Note that in the MPC optimization, the output constraints
2107 = 0.8861  wops = 0.1082 were implemented as soft constraints to avoid the possibility
x3m = 0.0058 x5 = 0.1139 of infeasibility.
zop = 0.7779  x3p5 = 0.1082
Controller gains K¢ g = —10 Ko v =-10
Kop=—5 PARAMETERS FOR LOCALMPCs
Parameters MPC 1 MPC 2
TABLE Il torme 8 hrs. 8 hrs
OUTPUT AND MANIPULATED VARIABLES OF UNIT 1 AND UNIT 2 P 40 40
m 10 10
A 0.3;0.3 0.04; 0.5
Unit 1 Unit 2 tmaz [ ] 0[ 0 0 ]0
output  variables range| output variables range ’ 3 forzig, 01 0 0
1 TiR [0.1] 1 z15  [0,0.15] I Thi=q 7 foraap, 00 0 0
2 zar  [0015] | 2 zop  [0.75,1] 0 else 00 0 3
3 T3R [0,002] 3 T3B [0,015] 1 0 3 0
4 a0 4 B (0673 ™ { 0 1 } { 0 1 w
5 Ton [0,0.15]
6 T3MN [0,0.02]
7 Fgr [8,47] . .

8 Fu 8,47] To decide on the execution frequency of the RTO, we
MV variables range | MV  variables  range considered the eigenvalues of the system around the steady-
1 Hp 110,301} 1 Hp 10, 30] state, which are -0.0097, -0.0167, -0.0167, -0.1567, -0.1567
2 Hyr [10, 30] 2 D [8, 45] ! ) T T o o !

-0.3133, -0.3279, -0.3458, -0.3458, -1, -1, -2. This suggests
a clear separation of between the slow and fast modes
at the frequency between 0.0167-0.1567 rad/min, which

the storage tank, and the flash tank, respectively, the threerresponds to the time period of 40-377 mins. Therefore,
levels are not independently controllable as the MVs aree chose to execute the RTO at the frequency of once
all internal flow variables and are not independent. Insteadyery 60 minutes, and the FWMR method was used to
we usedFg, Fy,, and B to stabilize the levels through P- obtained the slow-scale model accurate up to this optimiza-
only controllers. Although these flows are no longer directlyion frequency. The optimization horizo®} and the MV
available as manipulated variables for the RTO, the degrebsrizon (/) were chosen as 8 and 2, respectively. We also
of freedom remain the same as the level setpoint of eadmposed the same soft output and hard input constraints as
vessel can be used as a MV. The nominal values of the the MPC layer. The test scenario was to increase the

process and operating parameters are given in Table I.

production throughput by 20 %. The optimization was a

The underlying process was divided into two procesguadratic program (QP) to minimize the difference between
units with an MPC for each: Unit 1 consists of the reactothis production demand and the actual product fl&y. We
and the intermediate tank, whereas Unit 2 includes theompared three different plant-wide optimization strategies
separator. Each MPC has two manipulated variables, i.@s described below.

setpoints of the reactor level and the storage tank level o
for MPC 1, and the setpoint of the separator level and
the recycle flow for MPC 2. Table Il provides a list of
output and manipulated variables of each unit as well as
their constraints. .
To keep our strategy easy to implement computationally,
the linearized model was used in the MPCs. Sample time of
6 minutes was used in both MPCs. As the transient dynam-

Dynamic RTO with a Slow-scale Mod&he dynamic
RTO is performed at every,,, time interval. The state

of the dynamic optimizer is updated at each sampling
time of MPC using the input and output measurements.
Single-point Dynamic RTO SchemeThe objective
function uses dynamic gains at the optimizing point,
which is chosen to be the end of prediction horizon
of the local controllers (4 hours). The optimization is
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performed at the same frequency as the local MPC 3 —oremont 0.85 — onrement
ContrO“erS. 25 __‘_. SMeI?F(Ji)i;r)]rtediction __‘_. gefpi)ﬂtedmion
« Steady-state RTO Scheniehe objective function of o 08 i L lower bound
the RTO is formulated using only the steady-state® 2 S B S ——
gains, and the execution rate is once every 10 hours. 15/ 7Bt
Note that in the first two schemes, setpoints of the MVs 1 07
from the RTO are transferred to the coordination collars 0o 10 20 o 10 20
for the feasibility checks as in Eq. (3). Then the output time (hrs) time (hrs)
trajectories were calculated and passed to the local MPCs. 25 45 '
] =+ from
B. Simulation Result ! “ E.
The simulation results are shown in Figs. 4-6, WhichE 2 .: """""""""" Tpoess E
include the response of the selected CVs, i.e., the production i 30.._5\/——————-
rate (B), the concentration of component 2,¢), and the |~ ~
selected MVs, i.e., feed flowratd’(), and recycle flowrate 157 10 20 s 10 20
(D). For the CV plots, the solid lines represent the output time (hrs) time (hrs)

measured from the nonlinear plant, the dash lines are the
output prediction from the MPCs, and the dash-dot lineBig. 5. Simulation results from the single-point dynamic RTOpY CVs

represent the setpoint given to the MPC. and botton) Mvs.
3 0.85 3 0.85
- measurement - measurement —— measurement - measurement
- = MPC prediction - = MPC prediction = = MPC prediction = = MPC prediction
2.5 =+ setpoint =+ setpoint 2.5 =+ setpoint = setpoint
0.8 O lower bound o 08 | lower bound
o i
0.75 0.75
15
1 0.7
! 0 10 20 07 0 10 20 0 10 20
time (hrs) time (hrs) time (hrs)
2.5 45 2.5 45
40 40 \_\
e 2 e -1 035 2 2 jimm - 035
' '
-‘-‘-! 30 —— from RTO -‘-‘-! 30 —— from RTO
-« from MPC = from MPC
15 25 15 25
0 10 20 0 10 20 0o 10 20 0o 10 20
time (hrs) time (hrs) time (hrs) time (hrs)

Fig. 4. Simulation results from the slow-scale dynamic RT@p(CVs  Fig. 6.  Simulation results from the steady-state RT@p)(CVs and
and pottom) MVs. (bottorm) MVs.

From the simulation results, the slow-scale dynamic RTO
showed superior performance over the other schemes. THikerefore, it is not surprising that both RTO schemes made
is due to fact that this scheme allows multiple predictioomore aggressive setpoint changes in the MVs as shown
and control horizons. So the MVs were moved in a moré Figs. 5-6, and the product flo# in both cases were
gradual manner so as to prevent large process interacticafected significantly. In fact, one can possibly detune the
among the process units as shown in Fig. 4. Note th&-controllers to make the changelhsmoother when using
the reason why the actual change of the product flBw the steady-state and the single-point RTO schemes. We did
(solid line) was slightly jumpier than the MPC predictionnot investigate this option, since the detuning of the level
is becauseB was used to control the holdup in the flashloops translates into a larger MPC sample time than the
tank and it was a small flow compared to the recycle, thpre-specified value of 6 minutes. Furthermore, in the steady-
reactor and the storage outflows. So during the transiestate RTO case we also observed the product concentration
period, the percentage change in this product stream can gz violated the lower bound constraints for a short period
large compared to the other streams. of time shortly after the RTO was turned on. This unde-

In contrast, the single-point dynamic RTO and the steadyirable behavior happened due to the mismatch between
state RTO optimize the plant based on a prediction at the steady-state prediction and the transient response of the
single point, and ignore the rest of the dynamic informatiorsystem.
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IV. CONCLUSION

Dynamic optimization using a reduced order model cap-
turing dominant slow modes of an integrated plant can
provide a computationally efficient and robust solution that
responds efficiently to external and internal changes. The
key to make the proposed method practicable is a systematic
method that enables the user to develop a reduced order
model that accurately represents dominant slow dynamic
modes and therefore is well conditioned. This coupled with
the slow execution frequency makes the on-line computation
feasible. The proposed architecture also emphasizes a better
coordination between the RTO layer and the control layer.
The use of a coordination collar is recommended to ensure
the feasibility of the globally optimal setpoints within each
local controller. If not, new feasible setpoints that are closest
to the globally optimal setpoints are calculated and sent
to the local controllers. To keep the prediction accurate,
the plant-wide model’s state vector is updated with filtered
feedback errors at each sampling time of MPC. The plant-
wide optimizer then uses this state vector for the prediction
at the sample point of RTO. The suggested method is
a promising alternative to the current steady-state-model-
based or other single-point RTO schemes, which can be
limited in terms of execution frequency and often lack the
necessary robustness to realistic model errors.
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