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Abstract— Conventional real-time optimizers are based on
steady-state models and their effectiveness on plants with
long-lived dynamics are thus limited. This is particularly true
for tightly integrated plants with material recycle loops and
other mass / energy integration loops, which tend to show
distinct time-scale separation in their dynamic behavior. The
use of steady state model limits the execution frequency of
the RTO and precludes the utilization of dynamic degrees of
freedom, ultimately leading to suboptimal results. Researchers
have suggested to combine unit-level controls and plant-wide
economic optimization into a single dynamic optimization but
the demand for modeling accuracy and computation may be
too high for such an approach to be feasible in practice. In
this paper, we propose a two-layer architecture for dynamic
plant-wide optimization and control, in which the upper layer
performs a dynamic optimization of the integrated plant to
determine economically optimal setpoints for the lower layer
performing control functions at the unit level. To alleviate
the unrealistic modeling and computational requirements,
we propose the plant-wide dynamic optimization at a rate
significantly lower than those of the controllers. Slow-scale
plant-wide models are less “stiff” and therefore thought to
be more robust to model errors. We discuss how to obtain
a “slow”-scale plant-wide model for a chosen optimization
frequency and the interfacing of the slow-running plant-wide
dynamic optimizer with the fast running unit controllers. An
example is given to compare the various approaches.

I. INTRODUCTION

With the increasing need for improving process eco-
nomics, efficiency, and quality in the globalized market
environment, real-time optimization (RTO) has attracted the
attention of the process industry and has been adopted
sporadically [1]. The RTO system is model-based and
implemented on top of unit-based multivariable controllers.
The objective is to maintain the plant operation near an
economic optimum in the face of disturbances and other
external and internal changes. This RTO layer usually
functions between the production planning/scheduling layer
and the local unit-based control layer. A typical RTO
strategy is based on a steady-state model of the plant
and calculates setpoints for the multivariable controllers of
various plant units, which steer the operating conditions of
their respective units to the calculated optimal values. A
general structure of the chemical plant with a steady-state
RTO scheme is illustrated in Fig. I

As the domain of RTO often spans an entire plant, it can
be computationally demanding to perform the optimization
at a rate same as the local unit controllers. More importantly,
integrated plants tend to involve dynamics of very different
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Fig. 1. Typical automation system in a chemical plant

time scales (with slow modes dominating) and therefore
be extremely stiff (i.e., ill-conditioned), which can pose
numerical difficulties and robustness problems. These are
perhaps the reasons for the popularity of the use of a steady
state model in RTO. However, for most integrated plants
with long-lived dynamics, the approach can be extremely
limited. In order for the assumption of steady state hold,
the frequency of RTO would have to be limited to, say,
once every several days. In fact, changes will invariably
occur in the mean time and the plant is unlikely to reach
the intended steady state ever. If the steady-state RTO is
executed more frequently, however, the mismatch between
the steady state model and the transient dynamics can make
the solution infeasible for implementation at the local unit
levels. Due to these problems, it has been observed that the
on-line time of the steady-state RTO often drops with time
and it even gets turned off completely [10].

Several researchers suggested to use a dynamic model
based RTO executed at the same frequency as the local
controllers (e.g. MPC). The one-layer solution, which com-
bines the economic and control objectives into a single
dynamic optimization, has been proposed [9], [3], [11]. Ex-
tensive simulations are necessary to determine appropriate
weights to be assigned to the economic objective and the
control objective terms. This strategy was applied to the
FCC converter used in the liquefied petroleum gas (LPG)
production process involving 4 CVs and 4 MVs [3], [11].
The economic objective function they used was a nonlin-
ear one. The optimization was solved by the sequential



quadratic programming (SQP) method and the performance
was compared with that of the typical two-layer steady-
state RTO approach. The results showed that the dynamic
optimization indeed responded to changes faster, but as the
economic and control objectives were mixed into a single
term, the economic performance can unduly suffer when the
process experienced large disturbances. In addition, such
an approach is unlikely to be extendable to a large-scale
integrated plant involving many units and recycle loops,
as models encompassing dynamics of various time scales
(dominant slow modes and many fast modes) would be
very “stiff” and the optimization result would be extremely
sensitive to model errors. Because of these reasons, we will
focus on the two-layer optimization scheme, as shown in
Fig. I, in this paper.

One approach designed to enhance the execution fre-
quency of the RTO layer within the two layer structure
is the single-point dynamic optimization scheme with a
cross-functional coordination layer, which was proposed
by Lu [6]. In this approach, RTO is performed at some
predicted future point (called ‘optimization point’), which
is not necessary the steady state point. The execution rate
of the RTO is the same as the MPCs. The cross-functional
coordination layer is used to coordinate the two layers to
ensure the feasibility of the setpoints sent to the MPC. Since
the optimization is performed at a single time point based
on a fast rate model, the performance of this scheme is
highly sensitive to the choice of the ‘optimization point’,
and we can expect that this approach too will be sensitive
to plant/model mismatches in the high frequency range. It is
generally very difficult to obtain ‘bridge dynamics’, which
connect the units together, accurate up to the execution
frequency of MPC controllers.

Considering this, we propose a logical middle ground
where RTO based on a reduced-order “slow-scale” dynamic
model of the plant is performed at a rate significantly lower
than the MPC controllers in order to calculate optimal
setpoints for the individual units. The slower rate should
make the modeling task more tractable since the slower rate
model, which retains the dominant slow modes only, should
be better conditioned and more easily identifiable. Hence,
we can expect that the optimization result based on this
model would be more robust. In addition, computational
burden should be less given the slower execution rate
and the reduced order nature of the model. Finally, such
a middle ground is entirely reasonable from a practical
viewpoint, as most changes relevant to plant economics are
low-frequency in nature.

II. DYNAMIC OPTIMIZATION USING LOW
FREQUENCY MODEL

A. Model Construction

First, the frequency of the plant-wide optimization must
be decided based on various factors, such as the accuracy
of the plant-wide dynamic model that can be obtained, the
bandwidth of external and internal changes relevant to plant

economics and interaction, and computational feasibility.
Once the frequency of the RTO is decided, one must develop
a plant-wide model valid up to the chosen frequency. This
may be done using a fundamental model or using system
identification. In the former case, one typically gets a
very large set of stiff DAEs. Removing the ill-conditioning
(“stiffness”) using the singular perturbation approach has
been discussed in the literature [4] but the procedure can
be extremely complicated for a large-scale nonlinear system
where the state variables are not explicitly separable in
terms of time scale. On the other hand, one can conceivably
use numerical approaches such as the Proper Orthogonal
Decomposition (POD) method coupled with residualization
to identify the slow-scale model from the simulation data.

A more likely scenario in practice is to use the linear
models used in the local MPCs and connect them up with
‘bridge’ dynamics to obtain a plant-wide model. As before,
we can expect the accuracy of the bridge dynamics to be
poor in the high frequency range, and therefore it must be
reduced by eliminating the uncertain high frequency parts
of the dynamics while retaining the dominant slow-scale
dynamics. The linear models combined through bridge dy-
namics can be reduced using various linear model reduction
methods including the frequency-weighted model reduction
(FWMR)[2], which minimizes

‖Wo(G−Gr)Wi‖∞ (1)

whereG is the original model,Gr is the reduced model,
Wo andWi are output and input weighting matrices, respec-
tively. These weighting matrices make the approximation
more accurate in certain ranges whereWo and Wi have
larger singular values. Details of the procedure to obtain a
FWMR model can be found in [12].

B. Proposed Plant-wide Automation Architecture

Once the reduced order model capturing the dominant
slow-scale plant-wide dynamics is obtained, it can be used
to solve the following dynamic optimization problem at the
chosen optimization interval ofTopt:

max
Yg,Ug

feco (2)

Ymin ≤ Yg(k + 1|k) ≤ Ymax

Umin ≤ Ug(k) ≤ Umax

where

Ug(k) = [ug(k), . . . , ug(k + M − 1)]T ,

Yg(k + 1|k) = [yg(k + 1|k), . . . , yg(k + P |k)]T .

Ug denotes a vector of manipulated variables with the
horizon ofM . Yg is a vector of predicted outputs with the
prediction horizon ofP . This output prediction is calculated
by integrating the plant model.Ymin and Ymax are the
lower and the upper bounds ofYg, whereasUmin andUmax

are the lower and the upper bounds forUg. Note that the
above represents a receding horizon algorithm, meaning that



the same optimization is solved again at the next sample
time with an updated prediction.

As the global solution from the RTO layer may not be
feasible for the local controller, which does not account
for interactions from the other units, we adopt the use of
the following least-square coordination collar proposed by
Lu (2001) [6] to find a locally feasible point closest to the
global solution:

minuj
ls(k)

∑(
uj

ls(k)− uj
g(k)

)2

(3)

yj
min ≤ yj

ls ≤ yj
max

uj
min ≤ uj

ls(k) ≤ uj
max

where

yj
ls = Gj

xx
j(k) + Gj

uu
j
ls(k) + Gj

dd
j(k), . (4)

The superscriptj denotes the index of the local unit.uj
g

is the setpoint passed from the optimizer to the unitj. uj
ls

andyj
ls are vectors of MVs and CVs computed by the least-

square coordination collar. As this coordination layer checks
the feasibility of the setpoint at the end of MPC prediction
horizon, the gain matrices in Eq. (4) are for the end of MPC
prediction horizon. Note that the above finds the feasible
MV values that are closest to the optimal values in the least-
square sense, while respecting the key constraints at the
local level. Another option is to formulate the least-square
problem to find feasible CV values closest to their globally
optimal values. The proper choice of transfer option can be
different according to the plant-wide objective.

Least-square
Coordination

Real-Time Optimizer
(RTO)

MPC

Regulatory
Controllers

REAL PLANT

Least-square
Coordination

MPC

Regulatory
Controllers

ug or yg ug or yg

uLS or yLS

∆uMPC

uLS or yLS

∆uMPC

M
P

C
 U

p
d

a
te

∆u

ym

∆u

ym

P
la

n
tw

id
e

S
ta

te
 U

p
d
a
te

S
lo

w
S

a
m

p
lin

gSLOW SCALE
(~hours)

FAST SCALE
(~minutes)

M
P

C
 U

p
d

a
te

Fig. 2. Schematic representation of plant-wide dynamic optimization
strategy.

Once the setpoints have been determined for each MPC,
MPC calculates a profile for manipulated variables such that
the errors between the future output and the given setpoint
trajectories are minimum. This is repeated at each sample
time of the MPC until the next execution point for the RTO

is reached and new setpoints are passed down from the RTO
layer. In the mean time, the state vector of the plant-wide
optimizer is updated at the same sample rate as the MPC
controllers, that is, every time local controller actions and
disturbances are calculated, with some appropriate filtering.
The architecture of the proposed scheme is illustrated in
Fig. 2.

III. ILLUSTRATIVE EXAMPLES

A. Problem Description
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Fig. 3. Schematic of the integrated plant with reactor, storage tank, flash
tank connected via a recycle stream

In this section we present an example involving a reactor,
a storage tank, and a separation unit connected via a
large recycle stream. The large recycle ratio introduces
a time scale separation, which complicates modeling and
optimization. The material balance of this system can be
described by the following ordinary differential equations:

ḢR = 1
ρAR

(F0 + D − FR)

˙x1R = 1
ρARHR−k1x1R

[F0(x10 − x1R) + D(x1D − x1R)]

˙x2R = 1
ρARHR

[−F0x2R + D(x2D − x2R)] + k1x1R − k2x2R

˙x3R = 1
ρARHR

[−(F0 + D)x3R] + k2x2R

˙HM = 1
ρAM

(FR − FM )

˙x1M = FR
ρAM HM

(x1R − x1M )

˙x2M = FR
ρAM HM

(x2R − x2M )

˙x3M = FR
ρAM HM

(x3R − x3M )

ḢB = 1
ρAB

(FM −B −D)

˙x1B = 1
ρABHB

[FM (x1M − x1B)−D(x1D − x1B)]

˙x2B = 1
ρABHB

[FM (x2M − x2B)−D(x2D − x2B)]

˙x3B = 1
ρABHB

[FM (x3M − x3B) + Dx3B ]

Here, HR, HM , and HB denote the liquid heights in
the reactor, the storage tank, and the separator, respectively.
Flowrates for feed, reactor outflow, storage tank outflow,
recycle, and product stream are denoted byF0, FR, FM , D,
and B, respectively.xij denotes the molar liquid fraction
of componenti (i = 1, 2, 3) in the streamj. As the liquid
level in each tank behaves as integrators, some of these
flowrates must be used to stabilize the levels. According to
Richardson’s rule [8], the largest stream should be selected
to control the liquid level in a vessel. However, if we
selectFR, FM , andD to control the levels of the reactor,



TABLE I

NOMINAL VALUES FOR THE PROCESS AND OPERATING PARAMETERS

Parameters Value
Liquid density ρ = 1
Volatility α1 = 90 αB = 1
Rate constant k1 = 0.0167 k2 = 0.0167
Vessel area AR = 5 AM = 10

AB = 5
Vessel holdup HR = 20 HM = 20

HB = 20
Flowrate,hr−1 F0 = 1.667 FR = 31.33

FM = 31.33 B = 1.667
D = 29.67

Mole fraction x10 = 1.00 x20 = 0
x30 = 0 x1R = 0.8861
x2R = 0.1082 x3R = 0.0058
x1M = 0.8861 x2M = 0.1082
x3M = 0.0058 x1B = 0.1139
x2B = 0.7779 x3B = 0.1082
x1D = 0.9295 x2D = 0.0705

Controller gains KC,R = −10 KC,M = −10
KC,B = −5

TABLE II

OUTPUT AND MANIPULATED VARIABLES OF UNIT 1 AND UNIT 2

Unit 1 Unit 2
output variables range output variables range

1 x1R [0,1] 1 x1B [0,0.15]
2 x2R [0,0.15] 2 x2B [0.75,1]
3 x3R [0,0.02] 3 x3B [0,0.15]
4 x1M [0,1] 4 B [0.67,3]
5 x2M [0,0.15]
6 x3M [0,0.02]
7 FR [8,47]
8 FM [8,47]

MV variables range MV variables range
1 HR [10, 30] 1 HB [10, 30]
2 HM [10, 30] 2 D [8, 45]

the storage tank, and the flash tank, respectively, the three
levels are not independently controllable as the MVs are
all internal flow variables and are not independent. Instead,
we usedFR, FM , andB to stabilize the levels through P-
only controllers. Although these flows are no longer directly
available as manipulated variables for the RTO, the degrees
of freedom remain the same as the level setpoint of each
vessel can be used as a MV. The nominal values of the
process and operating parameters are given in Table I.

The underlying process was divided into two process
units with an MPC for each: Unit 1 consists of the reactor
and the intermediate tank, whereas Unit 2 includes the
separator. Each MPC has two manipulated variables, i.e.
setpoints of the reactor level and the storage tank level
for MPC 1, and the setpoint of the separator level and
the recycle flow for MPC 2. Table II provides a list of
output and manipulated variables of each unit as well as
their constraints.

To keep our strategy easy to implement computationally,
the linearized model was used in the MPCs. Sample time of
6 minutes was used in both MPCs. As the transient dynam-

ics last as long as 12 hours once a move is made, we used
the observer-based model predictive control formulation for
integrating dynamics discussed in [5], [7], which allows the
step responses to be truncated well before the responses
settle. Since the objective of each MPC controller is to
minimize the error between the CV setpoints and future CV
values, the quadratic objective function was employed. The
parameters for the both MPC controllers are given in Table
III, where ttrnc is the truncation time of the step-response
model,p is the prediction horizon,m is the control horizon,
∆umax is the rate constraint of the input variables,Γy and
Γu are the output and input weighting matrices, respectively.
Note that in the MPC optimization, the output constraints
were implemented as soft constraints to avoid the possibility
of infeasibility.

TABLE III

PARAMETERS FOR LOCALMPCS

Parameters MPC 1 MPC 2
ttrnc 8 hrs. 8 hrs.

p 40 40
m 10 10

∆umax [0.3; 0.3] [0.04; 0.5]

Γy Γy
ii =





3 for x1R,
7 for x2R,
0 else




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 3




Γu

[
1 0
0 1

] [
3 0
0 1

]

To decide on the execution frequency of the RTO, we
considered the eigenvalues of the system around the steady-
state, which are -0.0097, -0.0167, -0.0167, -0.1567, -0.1567,
-0.3133, -0.3279, -0.3458, -0.3458, -1, -1, -2. This suggests
a clear separation of between the slow and fast modes
at the frequency between 0.0167-0.1567 rad/min, which
corresponds to the time period of 40-377 mins. Therefore,
we chose to execute the RTO at the frequency of once
every 60 minutes, and the FWMR method was used to
obtained the slow-scale model accurate up to this optimiza-
tion frequency. The optimization horizon (P ) and the MV
horizon (M ) were chosen as 8 and 2, respectively. We also
imposed the same soft output and hard input constraints as
in the MPC layer. The test scenario was to increase the
production throughput by 20 %. The optimization was a
quadratic program (QP) to minimize the difference between
this production demand and the actual product flow (B). We
compared three different plant-wide optimization strategies
as described below.
• Dynamic RTO with a Slow-scale Model: The dynamic

RTO is performed at everyTopt time interval. The state
of the dynamic optimizer is updated at each sampling
time of MPC using the input and output measurements.

• Single-point Dynamic RTO Scheme: The objective
function uses dynamic gains at the optimizing point,
which is chosen to be the end of prediction horizon
of the local controllers (4 hours). The optimization is



performed at the same frequency as the local MPC
controllers.

• Steady-state RTO Scheme: The objective function of
the RTO is formulated using only the steady-state
gains, and the execution rate is once every 10 hours.

Note that in the first two schemes, setpoints of the MVs
from the RTO are transferred to the coordination collars
for the feasibility checks as in Eq. (3). Then the output
trajectories were calculated and passed to the local MPCs.

B. Simulation Result

The simulation results are shown in Figs. 4-6, which
include the response of the selected CVs, i.e., the production
rate (B), the concentration of component 2 (x2B), and the
selected MVs, i.e., feed flowrate (F0), and recycle flowrate
(D). For the CV plots, the solid lines represent the output
measured from the nonlinear plant, the dash lines are the
output prediction from the MPCs, and the dash-dot lines
represent the setpoint given to the MPC.
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Fig. 4. Simulation results from the slow-scale dynamic RTO: (top) CVs
and (bottom) MVs.

From the simulation results, the slow-scale dynamic RTO
showed superior performance over the other schemes. This
is due to fact that this scheme allows multiple prediction
and control horizons. So the MVs were moved in a more
gradual manner so as to prevent large process interactions
among the process units as shown in Fig. 4. Note that
the reason why the actual change of the product flowB
(solid line) was slightly jumpier than the MPC prediction
is becauseB was used to control the holdup in the flash
tank and it was a small flow compared to the recycle, the
reactor and the storage outflows. So during the transient
period, the percentage change in this product stream can be
large compared to the other streams.

In contrast, the single-point dynamic RTO and the steady-
state RTO optimize the plant based on a prediction at a
single point, and ignore the rest of the dynamic information.
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Fig. 5. Simulation results from the single-point dynamic RTO: (top) CVs
and (bottom) MVs.
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Fig. 6. Simulation results from the steady-state RTO: (top) CVs and
(bottom) MVs.

Therefore, it is not surprising that both RTO schemes made
more aggressive setpoint changes in the MVs as shown
in Figs. 5-6, and the product flowB in both cases were
affected significantly. In fact, one can possibly detune the
P-controllers to make the change inB smoother when using
the steady-state and the single-point RTO schemes. We did
not investigate this option, since the detuning of the level
loops translates into a larger MPC sample time than the
pre-specified value of 6 minutes. Furthermore, in the steady-
state RTO case we also observed the product concentration
x2B violated the lower bound constraints for a short period
of time shortly after the RTO was turned on. This unde-
sirable behavior happened due to the mismatch between
the steady-state prediction and the transient response of the
system.



IV. CONCLUSION

Dynamic optimization using a reduced order model cap-
turing dominant slow modes of an integrated plant can
provide a computationally efficient and robust solution that
responds efficiently to external and internal changes. The
key to make the proposed method practicable is a systematic
method that enables the user to develop a reduced order
model that accurately represents dominant slow dynamic
modes and therefore is well conditioned. This coupled with
the slow execution frequency makes the on-line computation
feasible. The proposed architecture also emphasizes a better
coordination between the RTO layer and the control layer.
The use of a coordination collar is recommended to ensure
the feasibility of the globally optimal setpoints within each
local controller. If not, new feasible setpoints that are closest
to the globally optimal setpoints are calculated and sent
to the local controllers. To keep the prediction accurate,
the plant-wide model’s state vector is updated with filtered
feedback errors at each sampling time of MPC. The plant-
wide optimizer then uses this state vector for the prediction
at the sample point of RTO. The suggested method is
a promising alternative to the current steady-state-model-
based or other single-point RTO schemes, which can be
limited in terms of execution frequency and often lack the
necessary robustness to realistic model errors.

REFERENCES

[1] C. R. Cutler, R. T. Perry, Real time optimization with multivariable
control is required to maximize profits,Computers and Chemical
Engineering, vol. 7(5), 1983, pp. 663.

[2] D. F. Enns, Model reduction with balance realization: An error bound
and frequency weighted generalization,Proceedings of the IEEE
conference on Decision and Control, 1984, 127.

[3] M. T. Gouv̂ea and D. Odloak, One-layer real time optimization
of LPG production in the FCC unit: procedure, advantages and
disadvantages,Computers and Chemical Engineering, vol. 22, 1998,
pp. S191-S198.

[4] A. Kumar and P. Daoutidis, Control of nonlinear differential-
algebraic-equation systems with applications to chemical processes,
Chapman & Hall/CRC, vol. 397 of Research Notes in Mathematics
Series, 1999.

[5] J. H. Lee and M. Morari and C. E. Garcia, State-space interpretation
of model predictive control,Automatica, vol. 30(4), 1994, pp. 707-
717.

[6] J. Z. Lu, Challenging control problems and emerging technologies
in enterprise optimization,Pre-Prints of 6th IFAC Symposium on
Dynamics and Control of Process Systems, 2001, pp. 29.

[7] P. Lundstr̈om and J. H. Lee and M. Morari and S. Skogestad,
Limitations of dynamic matrix control,Computers and Chemical
Engineering, vol. 19(4), 1995.
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