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A new algorithm for efficient MPC and a comparison with
competing schemes

Lars Imsland, Nadav Bar and Bjarne A. Foss

Abstract—An approach for constrained predictive control X > 0 is a closed, convex set. The paid, B) is assumed
of linear systems (or uncertain systems described by polytopic stabilizable. For brevity we have restricted us to linear

uncertainty models) is presented. The approach consists of a jme-invariant systems, but the generalization to poligtop

non-convex offline problem, and an efficient online problem. . . .
The offline problem can be considered as a generalization of UNcertainty models is straightforward [2], [3]. .
earlier results, and a solver for the non-convex optimization The control objective will be to minimize (while satis-

problem is developed. Two examples, one being a laboratory fying constraints) the infinite horizon linear quadratic)L
experiment, compare the approach to existing approaches, cost function,
revealing both advantages and disadvantages.

oo
T T
I. INTRODUCTION JrLg = Z$k+i+1ka+i+l + upy Rug4q, (2)

Model predictive control (MPC) has gained significant =0
popularity in industry as a tool to optimize system perwhere Q and R are positive semi-definite matrices and
formance while handling constraints explicitly. However.x;,;,; anduy,; denote predicted values of states and con-
limitations on computational efficiency have restricte@ thtrol inputs (subscrip: denotes current time). The system
application range. This has lead to a substantial effort #8& assumed to be prestabilized by a feedback contréfler
obtain predictive constraint-handling control strategieat optimal with respect to (2) in the unconstrained case. We
have more attractive online computational properties thanill express the degrees of freedom as the perturbatign,
quadratic programming typically used in traditional lineaaway from this optimal control, and let the future (predijte
MPC. In most cases, this is obtained by performing someontrol input be
calculations offline. ]

Examples of such schemes are explicit MPC as presented W — {‘Kwi e =k kdne—1 A3)
in [1], and efficient robust predictive control (ERPC) pre- ’ —Kuw;, i >k +ne.
sented in [2]. Explicit MPC computes offline via multi- \ 5 -;nsequence the optimization is carried out in terms
parametric programming an explicit solution to the finite

; - of the new free variables;. The¢;’'s should be minimized,
horizon MPC problem. In ERPC, the offline part uses the 1 .ot 1he Jarge enough to prevent constraint violation.
degrees of freedom on the control horizon to find larg

invariant ellipsoids for an augmented system, while th%eyond the control horizon,, we can set; = 0 assuming
X psoic n aug ystem, e optimal LQ control is feasible onwards. The system
online part efficiently minimizes control deviation from

unconstrained optimal LQ-control, subject to augmentegquatlon for (1) with (3) is
state membership of the precomputed ellipsoid. Tpy1 = Py, + Bey, 4)
Herein, we present a generalization of the offline problem

of ERPC, thus we will denote the new approach generalizéthere® = A — BK.

ERPC, GERPC. Through this generalization, it is possiblg|| ErriclENT CONSTRAINED SUBOPTIMAL CONTROL
to obtain significantly larger invariant ellipsoids. Using . .
the information obtained by solving the offline problem, "€ Proposed controller consists of an offline part and
we specify a new efficient online problem. Furthermore@" online part. First we present the offline part, which is

through two examples, one being a laboratory experimerﬁ, method for construcping enlarged invariant sets lfor the
we compare the merits of GERPC with ERPC and explici ystem (4) by augmenting the state space. In the online part

Section 11I-B), we use the information obtained through
MPC. . ; - s
the offline problem to specify an efficient optimizing,
Il. MODEL CLASS AND CONTROL OBJECTIVE constraint-handling controller.
Conside_r the fpllowing discrete-time I.inear state-spac@  Augmenting the state space for enlarging the region of
model subject to input and state constraints attraction
Trr1 = Az + Buy (1a) The unconstrained LQ controllek” will typically have
subject to— @ < uj, <, % € X, (1b) @ rather small region where it does not hit the constraints

(and hence stability is guaranteed). The objective of this
where the inequalities should be interpreted componengection is to enlarge this region of attraction by augmentin
wise. The state and input dimensions arec R"» and the state space, inspired by a similar approach in [2] (see
u € R™, and the origin is an equilibrium) < @, and below). Denoting this augmented variable= (z, f), the

_ augmenting variablg € R? is imposed with the following
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Let ¢, be computed by, = D f.. The overall dynamics is
then described by

® BD
an=va, v=(2 )@

Note that in the special case &f = I, F =0 andG =0
we recover the original LQ controller. Fdr =0, G = M
where M has the “time recession” structure

0I 0 -0
00 I -0

M= ,
0. 0 01
0-- 0 00O
and D = [I0 --- 0] we recover the offline problem of
ERPC [2]. In this case the variablé is interpreted as
the future ¢;’s, ie. fI = (cf,cliy,---vcfp, 1) thus
the dimension isp = n, - n.. This predictive control

()

when f = 0, when it is the same as the unconstrained
LQ controller). In this section we look at how the cost
can be minimized (although sub-optimally) while retaining
stability. We briefly first present one that is akin to the
method used in [2], where the minimizingis found from
the feasible ones (inside the ellipsdid). Then we present
a new method, that searches fs in a larger set; the ones
that ensure feasibility at theextsample.

In this section, we will assume that the structural con-
straint /' = 0 is imposed in (8). This means thgt,; =
G fi, and thus not dependent on the evolutionzgf This
assumption is mainly done for simplicity of presentation.

1) Feasibility now: As future control flexibility (thef) is
part of the current augmented state, the ellipsoidal $tabil
constraint can be applied at current time rather than at the
end of the control horizon, as is common in other (e.g. QP-
based) MPC approaches. This reduces online optimization

interpretation is not so straightforward in the generalecaso minimizing a performance index based on the future
of (5), but a connection can still be made. We obtain (irjegrees of freedom in the inpuk;, subject to membership
general) an infinite horizon (but note; the control degreesf the precomputed ellipsoid

of freedomf;, is still finite) as opposed to the finite horizon
given by the time recession matrix (7): For a givep
and fi, the futurecyy;'s are given ascyr; = D frti,
= 07 17 “ee Wherefk+i+1 = G.Z'k_;,_i + ka-f—?,

We want to findD, F' andG that gives the largest possi-

ble region of attraction for the original system. We do this

by looking for invariant ellipsoidst, := {z | 2TQ 'z <
1}, where the projection of the ellipsoifl. onto the state
space (see [2))&.. = {z|z"(TQ.TT) 'z < 1} where

subjectto 2'Q;'z <1,

min Jy 9)
o,
with z = (z, f).
Here, J; penalizes the future control perturbations,
o0
Jp = Z C;-H‘W%H
=0

(10)

the matrix 7' is defined by the coordinate transformationvhereW > 0 is given by

x = Tz, should be as large as possible.
The size of€,.., the region of attraction in the-space,
is proportional tolndet(7Q.TT). Thus, the following

W=B"PB+R, P=Q+K'RK+®'"Pd.
In [5] it is shown that/; and the LQ cost (2) differ by a bias

optimization problem maximizes the region of attractionterm, thus minimizing the two indices is equivalent. Furthe

. Ty—1
Izn}:r}G Indet(TQ.T") (8a)
; Q. Q.97
subject to (\I/Qz 0. >0 (8b)
’L_l,? — [7KJT GI}QZ[*K;I— e;!']T >0, 5=1,...,ny (80)

Condition (8b) guarantees invariance 6f, while (8c)
guarantees that the control inside is feasible. Heree;
is the jth column of the identity matrix, and; and K
correspond to theth input. With constanD, F' andG (as

note that by standard arguments, the infinite sum (10) has
a limit that is readily computed,

Z chpiWepi = ['Tf 11)

1=0
where I is the positive definite solution of the discrete
Lyapunov equatiolG TG —T' = —DTWD.
This turns the online problem into minimizing a quadratic
function subject to one ellipsoidal constraint, which can
be solved extremely efficiently using a Newton-Raphson

in ERPC), this is a convex problem, for which efficientmethod to determine one Lagrange multiplier [5].

algorithms exist [3]. However, treatin@, F' and G as

2) Feasibility at next sampleThe ellipsoidal constraint

variables makes the problem non-convex, since they ai (9) leads to sub-optimality. According to [5], this sub-

multiplied with Q.. This increase in complexity can be

optimality can be reduced by allowing a line search outside

rewarded by significantly larger ellipsoids, as pointed outhe ellipsoid subject to feasibility at the next time ingtan

in [4] and to be seen in the examples.

(i.e., by “scaling” f). As this “scaling” can be performed

State constraints can be handled by adding LMI condexplicitly, it only adds marginally to computational com-

tions to (8a). This is omitted for reasons of space limitadijo

plexity. In view of the improved performance due to the

but it should be noted that while the LMI offline problem*“scaling” of f, it is tempting to look for other algorithms

of ERPC can handle LMIs involving). only, the solver
discussed in Section 1lI-C can handle LMIs involviiy =
Q; ! as well.

B. Online problem: minimizing cost

Although the augmented part of the autonomous systemmin J;  subject to

specifies a valid controller, it is not optimizing (apartrfro

that search forf outside&, in more general ways, subject
to feasibility at the next time instant. The straightfordiar
convex optimization problem that solves this, is

ZUTQ 10z <1
Df <u+ Kz, (12)
—Df <u— Kzy,
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where two constraints are added to ensure that the computgiden problem, it only has to be solved once. Also, if
control satisfies input constraints. Denoting the optimapecific requirements on the desired region of attraction
solution of (9) by f, and the optimal solution of (12) by exists, it might not be necessary to solve the problem to
fazy it is clear thatJ;(fi,) < Jr(f). In practice, the optimality, merely that the region is large enough might
eigenvalues oft will be strictly less than 1, in which case suffice.
the inequality is strict. For the rest of this section, this i The non-convexity arises since the Lyapunov matrix is
assumed. multiplied by theF" and G variables. This makes the prob-
Apart from the two linear constraints, this optimizationlem minimizing a convex function subject to bilinear (and
problem has the same structure as (9). It is solved relgtivelinear) matrix inequalities. Similar optimization probis
fast and reliable by for instance thei ncon-algorithm of frequently arise in the literature, for instance for theatit
Matlab. However, using a general optimization routine doesutput feedback” problem.
not enjoy the same efficiency as using a Newton-Raphson-We choose to adapt “sequential semidefinite program-
method to solve (9). ming” as proposed in [6] for the problem at hand. To
We therefore propose a more efficient method of solvdo this, we must use a standard trick to transform the
ing (12), but where the solution might not always be thdilinear matrix inequality (8b) into a linear matrix inediya
optimal. Letfr.. be a feasible solution of (12). This can bebut with an additional non-convex inequality constraint.
found by solving (9), or it can be obtained from the solutionThen, the problem is solved in a manner similar to the
at the previous time-step via (5). Suclfa,s exists at the “augmented Lagrangian” approach from the SQP world,
first iteration, if we start inside,... by augmenting the Lagrangian by weighting the quadratic
Algorithm 1: deviation from the inequality constraint, approximateyiteh
i) Solve the optimization problem obtained by removin@econd-ordel’ Taylor expansion and minimize it sequentiall
the linear constraints from (12) using e.g. a Newtonby semidefinite programming. See [7] for further details.
Raphson method. Call the solutighf. Obtain f;cas Since this is a second-order algorithm, the convergence
(e.g. by solving (9)). properties are better than algorithms merely relying on
i) Check if f* satisfies the linear constraints of (12). Ifgradient information. Thus, it is a significant advantage
they do, thenf* is the optimal solution to (12), and that exact expressions for the gradient and Hessian of the
we are finished. If they do not, then go to iii). augmented Lagrangian are readily computable.
iii) Pick the f on the line betweerf* and f..s that is
closest tof* and satisfies the constrair{ts. . ) V. I_EXAMPLES
The properties of the solution are as follows (the proof is In this section we will present two examples, where
omitted for space reasons): the performance of the suggested control algorithm will
Theorem 1:The f produced by Algorithm 1 guaranteesPe compared to two control schemes that also are tailored
feasibility at next time step, satisfies the control coristsa towards efficient predictive control under constraints. We
and when it is not equal tg*, at least one input is at a Will first briefly review these. _
constraint. Furthermorg"I'f < f],.T'ffeas, thus f is Efficient robust predictive control. As mentioned
always a better solution thafy.qs. above, the offline problem of ERPC as proposed in [2] is a
The “line-search” forf in Algorithm 1 can be imple- Special (convex) case of the GERPC offline problem. The
mented explicitly, and hence very efficiently./if, = 1 and  online problem has the same structure as (9).
f* exists but violates the input constraints, then it merely Explicit MPC . Explicit MPC (referred to as eMPC)
amounts to Choosing the right input constraint, a}}‘g“ is refers to the epr|C|t solution of the finite horizon con-

not needed at all. strained LQR problem as piecewise affine functions (con-
3) Algorithm and stability: The overall approach can be trollers) defined on polytopic partitions of the state space

summarized as follows: as derived in [1]. The offline problem of finding these
Algorithm 2: controllers and the corresponding polytopes can be solved

Offline: Find an optimalK™ for the unconstrained case. Useas a multi-parametric QP problem, see [8] for a recent
the optimization problem (8) to find., D, G and @, that algorithm.

give a suitable invariant set. The online problem consists of finding which poly-
Online: At each time step, find the minimizing of (9), tope the present state is within. If done with a brute
(12) or Algorithm 1, and implement;, = —Kux), + ¢, force-approach, this might involve a significant number
wherec;, = Df. of arithmetic operations when the number of polytopes is

The (omitted) proof of stability of Algorithm 2 is similar large. However, by using smart data structures to store the
to that of Algorithm 4.1 of [2], with a slight difference due problem data and exploiting the structure, it is possible
to the minimization of the “infinite horizon cost” (11). to significantly reduce the online computational effort. [9]
Theorem 2 (Closed loop stability)f for system (1) Nevertheless, storing all the polytopes and corresponding
there existkK, Q,, p, D and G such thatz, € &,  controllers might require a significant amount of memory.

the closed-loop application of Algorithm 2 is feasible and .
asymptotically stabilizing. A. Double integrator example

_ . Consider the discretized double integrator model [8],
C. Solving the non-convex offline problem

2
As mentioned above, the problem (8) to be solved offline A= (1 TS) , B= (Ts>
is non-convex, and hence hard to solve. However, for a 0 1 Ts
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the number of states,, the control freedom,, - n., and
especially the constraints, since the constraints must hol
on the entire control horizon. The computational complexit
grows exponentially with problem size.

In conclusion, it is probably safe to say that the ERPC
offline problem has least complexity for a given system and
horizon, while mpQP and the local algorithm in Section IlI-
C are harder to compare. In our experience the mpQP
problem is faster than our implementation of the local BMI
algorithm for the same control horizon.

2) Online: Memory usage The demand on online mem-
ory is about the same for ERPC and GERPC (there is a
slight difference due to the size of tliematrix). Therefore,

& 4 3 2 4 0 1 2 3 a4 s we compare GERPC with eMPC.
X eMPC has to store all the piecewise affine controllers
e chaded (he po | A A online, but in addition it has to store the inequalities that
Fig. 1. The shaded area (the polytopes) are the region whereMPC  define the polytopes. If is the number of polytopes, and
o o e e e Tt oLier e mcrts emiey s is the number of inequalities, the total number of reals to
of attraction for GERPC (horizon 2 and 5). The innermost stiid is the ~ be stored are - (n,, -n,+n,)+s-(n,+1). This is an upper
largest invariant ellipsoid where the LQ controller is unstained. bound that does not take into account that the controllers in
several regions are the same, and other symmetry effects.
) ) ) . GERPC must as a minimum store two symmetric matrices
whgreTs = .05s is the samplmg time. There are constraintyr and Q:1), of dimensionn, + p, giving a total number
on input,|u| < 1, and on velocity|z,| < 1. The weighting f 9. L(p+n.)(p+n, + 1) reals to be stored.

matrices are chosen & = diag{1,0} and R = 1. , The memory requirements for horizonsmaf = 5 can be
We will in the following compare the region of attraction, g,;mymarized as follows

online (and offline) computational demand, online memory

use and sub-optimality of GERPC, ERPC and eMPC. GERpC crude” explicit MPC g o o sicit MPC
1) Offline: Region of attraction. The obtained “regions  (reals) ~ ("€@ls: clo?trollers Plus reals plus integers)

of attractions” for the three approaches are shown in Fig- polytopes)

ure 1. We immediately observe that the computed region is 56 182 + 756 240 + 255

significantly larger for eMPC (which stretches indefiniterAS we can see, the difference is considerable in favor of

in the z, -direction) than for GERPC, which again is IargerGERPC, and will be even larger for longer horizons, as the

than for ERPC. For ERPC, increasing the horizon onl3§ize of the matrices grows quadratically while the number

marginally increased the region of attraction beyond tth polytopes grows exponentially. In the rightmost column.,

region of attraction for the LQ-controller. This is not tgpl : L
in our experience, but must be attributed to the effect o‘é’e see that by using smart data structures and exploiting

the state constraint. The fixed structure @fin the case roblem structure [9], “smart” eMPC considerably reduces

of ERPC seemingly makes enlargement most pronounc%nggmory demand as compared to the straightforward imple-

. . e ; X . ntation.
in one particular direction, and in this case this comes Online computational complexity. A count of “worst
in conflict with the state constraint. This example clearly " floatin P int rati npi ﬁ/ wn below for the given
shows the importance of flexibility id: since the GERPC case loa_ 9 F:O gp.e atio 543 S ,0 elowtor the give
ellipsoids are both rotated and “fattened” as compared fgampie (initial condition af—4,0)):
ERPC. GERPC “crude” eMPC  “smart” eMPC

Offline computational complexity. The difference in 12896 1008 a2
offline computing time between ERPC and GERPC is
large, even though the number of optimization variables afgpr the Newton-Raphson method used by GERPC (for solv-
not very different different. The offline problem of ERPCing the optimization problem (9)), the worst case number
is convex [3], while solving a non-convex optimizationof jterations were 13 in our implementation, with 992 float-
problem is NP hard. The fact that one usually does nghg point operations (counted with tHd ops-command
require optimality helps considerably, and allows the use ®f Matlab 5) per iteration. Enhancing performance using
local search algorithms with a guaranteed upper compIeX|§¢a|ing [5] or Algorithm 1 only adds about 1% to this
limit. These local algorithms are however more compleyumber.
than the ERPC problem. As for the approach suggested inwe see that the “smart” eMPC-controller is extremely

Section IlI-C, the convex problem solved at each iteratioquick in this case. However, all these numbers are small
is about three times as large in number of optimization

variables than the corresponding ERPC problem, and alsagyr gerpc, it is advantageous to store the results of somexmatri
has more constraints. calculations done offline for efficiency reasons. In our impatation, this
As mentioned above, the eMPC solution is found usingmounts to two symmetric matrices of dimensgpand one of dimension
. ! . . -D + ngz, which together withK give 82 extra variables to be stored.
multi-parametric quadratic pro_grammlng (meP) For thi urthermore, the memory requirement for GERPC does not take into
type of problem, the computational complexity depends o#ccount “intermediate variables” that can be introducech@niterations.
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S in Figure 3 (most of the other projections showed similar
’ proportions). We clearly see that even for an extremelytshor

/ L control horizon, GERPC is able to obtain significantly large
o es e e oesosoes 0w s s s regions of attractions than ERPC.

Algorithm  n.  Offline calc. ime  dimQ.  V;[x107%]

X

o GERPC 2 600s 1910 55.3

0% 05 1 15 2 25 3 35 (] 05 1 15 2 25 3 35 ERPC 2 Ogs l@ 10 06

Time s Time ) ERPC 5 8.9s 1616 1.0

Fig. 2. The stat d control inputand perturbatiore. Solid line i ERPC 8 a8 71s 2222 14
ig. 2. e states, and control inputand perturbatiore. Solid line is

ihMPC and eMPC (they are barely distinguishable), dottee is GERPC EEE% ig %ggg %g%g %g

(with scaling), and dashed line is GERPC with Algorithm 1.

considering present-day computing power. A QP MPC
controller (implemented usinguadpr og in Matlab) with
horizon 5 uses about 106000 floating point operations.
Sub-optimality. Simulations of the system from initial

condition (—4,0) with infinite horizon MPC (ihMPC),
eMPC and GERPC with “scaling” and the new algorithm in
Section IlI-B are shown in Figures 2. We would expect that
both eMPC and GERPC for initial conditions far from the
origin will show sub-optimality. However, for this example
it is hard to find initial conditions where eMPC shows
significant sub-optimality. GERPC on the other hand, is
far from optimal, probably due to the fact that it stays
away from the constraints. As we see from the table below,
the scaling-technique of [5] reduces sub-optimality dligh - ;
while Algorithm 1 reduces it significantly. Pitch(rad] r [rad/sec]

=y
(=]

o

-
(=]

, Pitch vlelocity[rad/sec]

N
(=]

Initial Cost Fig. 3. Projections of 6-dimensional ellipsoids. GERPC wtbrizon
condition n. = 2 (outer ellipsoid) and ERPC fot. = 13 (the ellipsoids for ERPC
for n. = 2,5, 8,10 lies inside then. = 13 ellipsoid).

GERPC GERPC GERPC

(9)  wiscaling Alg. 1 We have not performed a detailed comparison with eMPC.
(-4,00 83272 83172 677.89 609.44 609.39 However, in [8] an example with a similar model of the
(-2,6) 37824 37457 23463 20446 204.46 gsgme dimension is used. There the horizon 4 offline case
as solved in 1830 s (not directly comparable to our

The fact that “scaling” is not as effective as reported in [5 b . h ) and th b
for ERPC, is probably mostly due to the state constraiff-mPers: Since another computer was use ) and the number
! greglons found were 12223.

(state constraints were not considered in the exampl8 . .
in [5]), and that we are able to start further away from In order to get a reasonable region of attraction we had to

- S . d increasen, for ERPC. For the given system environment,
the origin due to larger ellipsoidal regions of attraction. however, the online optimization problem of ERPC with

B. Lab helicopter example n. > 10 was too computationally demanding, and lead to
This example compares GERPC and ERPC. They WeEéJmputer exceptions and hence controller failure. It sthoul

eMPC ihMPC

used to control a laboratory helicopter (Quanser 3-DOEE Noted that the implementation used in this example can
Helicopter). Using two “local” PD controllers to decouple e further optimized with respect to efficiency. Figure 4
pitch and elevation, the following 6 statea (s “travel”,

p is pitch angle of helicopter and is elevation angle), 2

inputs (setpoints to pitch and elevation controllers) nhode -

is used: s
g
. =
A 01 0 0 0 0 A ) 5° =3 T,
by 0 0 —-045 O 0 0 A 0 0 £
s1_]oo o 1 0 0 0 0 |[[pe] *
5170 0 —108 —728 0 0 S1t] 198 0 [ec] e ‘
: 00 0 0 0 1 b 0 0 [
§ 00 0 0 —3.09-498]L¢ 0 4.98 e
- ™ . 1

Pitchrad] 52 FIradisec]

The weighting matrices are chosen a§ =
diag{1,1,1,10,1,10} and R = diag{95,95}. Fig. 4. A projection of two ellipsoids (the GERPC region ofrattion
A comparison of the volumes obtained by GERPC andnd the largest invariant ellipsoid for unconstrained L@}l @ne state

: ; . trajectory, and (right) a (rotated) zoom. The point whegebecomes zero
ERPC is shown in the table below. The volume fadter= .\ ~ed with a dot.

det(TQ.TT)~1 is a measure of the size of the ellipsoids.
A three-dimensional projection of the ellipsoids is showrshows three of the states from a laboratory trial starting
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the online problem might demand a higher computational
load than for GERPC, since the computational complexity
grows linearly withn, [5].

Stability and robustness It is important to keep in
mind that GERPC/ERPC gives stability guarantees. On the
other hand, it is well known that finite horizon MPC (as
implemented by explicit MPC) might enter “blind alleys”
if the horizon is not long enough, and thus the fact that the
controller is defined for an initial condition does not imply
| that this initial condition is within the region of attraati.

0 However, the stability of the piecewise affine controllen ca
be checked (conservatively) using e.g. piecewise quadrati
Lyapunov functions and LMIs, or one can enforce stability
by design, by either finding the horizon length that guaran-
tees stability, or adding stability constraints (at thetaufs

a more complex controller).

While GERPC/ERPC straightforwardly can handle un-
outside the invariant ellipsoid given by the LQ-contrqgllercertainty by the use of polytopic models, this is not so
and entering it after about 0.4s. This is confirmed bygtraightforward for explicit MPC. Some results in that
Figure 5, where we see that the “perturbation” to the firstirection have appeared recently [10], however restricted
control also is zero after 0.45s. to 1- andoo-norm type objective functions.

15 2 25 3
Time [s]

0 0.5 1

Fig. 5. At top, the first input (the pitch referenae,) with the constraint
(-20° in radians), with the corresponding (cf. (3)).

V. DISCUSSION VI. CONCLUSION

Offline problem. The examples clearly indicates that the By considering feasibility through a non-convex opti-
generalized offline problem achieved considerably largenization problem offline, we are able to pose efficient
regions of attractions than ERPC. The generalization afnline optimization algorithms for constrained optimiza-
the offline problem gives more freedom in “shaping” thetion of linear systems and systems described by polytopic
ellipsoid, which can be especially helpful in the presencencertainty models. Compared to ERPC larger regions of
of state constraints as in the first example. Furthermore, vadtractions were achieved. Further, a less sub-optimaien!
believe that the generalized offline problem in the multiplgroblem was proposed. The new approach offers few ad-
input case (as in the second example) has more freedoantages to explicit MPC in terms of online computational
for exploiting possible couplings between the inputs thagfficiency or sub-optimality, but it uses less online memory
the ERPC offline problem has, sin¢gis a general matrix In addition, the new approach gives (in the same way as
as opposed to the “diagonal structure” of thé matrix ERPC) stability guarantees, and model uncertainty can be
of ERPC. However, the regions of attraction obtained bjandled.
GERPC and ERPC will always be a subset of the set where

the explicit MPC controller is defined, but this set is not
necessarily a region of attraction as discussed below. (1]

The non-convexity of the offline problem makes it harder
and less tractable than the convex problem of ERPC. W]
proposed a local solver of the non-convex BMI problem,
which uses the exact Hessian of the optimization criterionys
As is common for second-order algorithms, the algorithm
must be started reasonably close to a feasible solutiors - thi[ ]
is achieved by using the ERPC solution as starting point.

Online problem. The first example reveals that while
GERPC/ERPC requires limited memory online, explicit [°]
MPC performs better as far as computational complexityg)
and sub-optimality is concerned. However, it is not hard
to imagine examples where the memory requirements o{]
explicit MPC is prohibitive. In this respect, suboptimal
implementations of explicit MPC could be an interesting
alternative to compare with GERPC.

In the first example, we were able to reduce sub-
optimality in GERPC considerably by the new online algo-
rithm suggested in Algorithm 1. Of course, this algorithm (]
could also be used to reduce sub-optimality for ERPC. [1q]

Since longer “control horizonsfi. (= p/n,) might have
to be used to obtain a suitable region of attraction for ERPC,

(8]
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