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Abstract— An approach for constrained predictive control
of linear systems (or uncertain systems described by polytopic
uncertainty models) is presented. The approach consists of a
non-convex offline problem, and an efficient online problem.
The offline problem can be considered as a generalization of
earlier results, and a solver for the non-convex optimization
problem is developed. Two examples, one being a laboratory
experiment, compare the approach to existing approaches,
revealing both advantages and disadvantages.

I. I NTRODUCTION

Model predictive control (MPC) has gained significant
popularity in industry as a tool to optimize system per-
formance while handling constraints explicitly. However,
limitations on computational efficiency have restricted the
application range. This has lead to a substantial effort to
obtain predictive constraint-handling control strategies that
have more attractive online computational properties than
quadratic programming typically used in traditional linear
MPC. In most cases, this is obtained by performing some
calculations offline.

Examples of such schemes are explicit MPC as presented
in [1], and efficient robust predictive control (ERPC) pre-
sented in [2]. Explicit MPC computes offline via multi-
parametric programming an explicit solution to the finite
horizon MPC problem. In ERPC, the offline part uses the
degrees of freedom on the control horizon to find large
invariant ellipsoids for an augmented system, while the
online part efficiently minimizes control deviation from
unconstrained optimal LQ-control, subject to augmented
state membership of the precomputed ellipsoid.

Herein, we present a generalization of the offline problem
of ERPC, thus we will denote the new approach generalized
ERPC, GERPC. Through this generalization, it is possible
to obtain significantly larger invariant ellipsoids. Using
the information obtained by solving the offline problem,
we specify a new efficient online problem. Furthermore,
through two examples, one being a laboratory experiment,
we compare the merits of GERPC with ERPC and explicit
MPC.

II. M ODEL CLASS AND CONTROL OBJECTIVE

Consider the following discrete-time linear state-space
model subject to input and state constraints

xk+1 = Axk + Buk (1a)

subject to− u < uk < u, xk ∈ X, (1b)

where the inequalities should be interpreted component-
wise. The state and input dimensions arex ∈ R

nx and
u ∈ R

nu , and the origin is an equilibrium,0 < u, and
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X ∋ 0 is a closed, convex set. The pair(A,B) is assumed
stabilizable. For brevity we have restricted us to linear
time-invariant systems, but the generalization to polytopic
uncertainty models is straightforward [2], [3].

The control objective will be to minimize (while satis-
fying constraints) the infinite horizon linear quadratic (LQ)
cost function,

JLQ =

∞
∑

i=0

xT

k+i+1Qxk+i+1 + uT

k+iRuk+i, (2)

where Q and R are positive semi-definite matrices and
xk+i+1 anduk+i denote predicted values of states and con-
trol inputs (subscriptk denotes current time). The system
is assumed to be prestabilized by a feedback controllerK,
optimal with respect to (2) in the unconstrained case. We
will express the degrees of freedom as the perturbation,ck,
away from this optimal control, and let the future (predicted)
control input be

ui =

{

−Kxi + ci, i = k, . . . , k + nc − 1

−Kxi, i ≥ k + nc.
(3)

As a consequence the optimization is carried out in terms
of the new free variablesci. Theci’s should be minimized,
but must be large enough to prevent constraint violation.
Beyond the control horizonnc, we can setci = 0 assuming
the optimal LQ control is feasible onwards. The system
equation for (1) with (3) is

xk+1 = Φxk + Bck, (4)

whereΦ = A − BK.

III. E FFICIENT CONSTRAINED SUB-OPTIMAL CONTROL

The proposed controller consists of an offline part and
an online part. First we present the offline part, which is
a method for constructing enlarged invariant sets for the
system (4) by augmenting the state space. In the online part
(Section III-B), we use the information obtained through
the offline problem to specify an efficient optimizing,
constraint-handling controller.

A. Augmenting the state space for enlarging the region of
attraction

The unconstrained LQ controllerK will typically have
a rather small region where it does not hit the constraints
(and hence stability is guaranteed). The objective of this
section is to enlarge this region of attraction by augmenting
the state space, inspired by a similar approach in [2] (see
below). Denoting this augmented variablez = (x, f), the
augmenting variablef ∈ R

p is imposed with the following
dynamics:

fk+1 = Fxk + Gfk. (5)



Let ck be computed byck = Dfk. The overall dynamics is
then described by

zk+1 = Ψzk, Ψ =

(

Φ BD
F G

)

. (6)

Note that in the special case ofD = I, F = 0 andG = 0
we recover the original LQ controller. ForF = 0, G = M
whereM has the “time recession” structure

M =





0 I 0 ··· 0
0 0 I ··· 0

...
0 ··· 0 0 I
0 ··· 0 0 0



 , (7)

and D = [I 0 · · · 0] we recover the offline problem of
ERPC [2]. In this case the variablef is interpreted as
the future ci’s, i.e. fT

k = (cT

k , cT

k+1
, . . . , cT

k+nc−1
) thus

the dimension isp = nu · nc. This predictive control
interpretation is not so straightforward in the general case
of (5), but a connection can still be made. We obtain (in
general) an infinite horizon (but note; the control degrees
of freedomfk is still finite) as opposed to the finite horizon
given by the time recession matrix (7): For a givenxk

and fk, the future ck+i’s are given asck+i = Dfk+i,
i = 0, 1, . . . wherefk+i+1 = Gxk+i + Ffk+i.

We want to findD, F andG that gives the largest possi-
ble region of attraction for the original system. We do this
by looking for invariant ellipsoidsEz := {z | zTQ−1

z z ≤
1}, where the projection of the ellipsoidEz onto the state
space (see [2]),Exx := {x|xT(TQzT

T)−1x ≤ 1} where
the matrix T is defined by the coordinate transformation
x = Tz, should be as large as possible.

The size ofExx, the region of attraction in thex-space,
is proportional to ln det(TQzT

T). Thus, the following
optimization problem maximizes the region of attraction:

min
Qz,F,G

ln det(TQzT
T)−1 (8a)

subject to

(

Qz QzΨ
T

ΨQz Qz

)

≥ 0 (8b)

ū2
j − [−KT

j eT

j ]Qz[−KT

j eT

j ]T ≥ 0, j = 1, . . . , nu (8c)

Condition (8b) guarantees invariance ofEz, while (8c)
guarantees that the control insideEz is feasible. Hereej

is the jth column of the identity matrix, and̄uj and Kj

correspond to thejth input. With constantD, F andG (as
in ERPC), this is a convex problem, for which efficient
algorithms exist [3]. However, treatingD, F and G as
variables makes the problem non-convex, since they are
multiplied with Qz. This increase in complexity can be
rewarded by significantly larger ellipsoids, as pointed out
in [4] and to be seen in the examples.

State constraints can be handled by adding LMI condi-
tions to (8a). This is omitted for reasons of space limitations,
but it should be noted that while the LMI offline problem
of ERPC can handle LMIs involvingQz only, the solver
discussed in Section III-C can handle LMIs involvingPz =
Q−1

z as well.

B. Online problem: minimizing cost

Although the augmented part of the autonomous system
specifies a valid controller, it is not optimizing (apart from

when f = 0, when it is the same as the unconstrained
LQ controller). In this section we look at how the cost
can be minimized (although sub-optimally) while retaining
stability. We briefly first present one that is akin to the
method used in [2], where the minimizingf is found from
the feasible ones (inside the ellipsoidEz). Then we present
a new method, that searches forf ’s in a larger set; the ones
that ensure feasibility at thenext sample.

In this section, we will assume that the structural con-
straint F = 0 is imposed in (8). This means thatfk+1 =
Gfk, and thus not dependent on the evolution ofxk. This
assumption is mainly done for simplicity of presentation.

1) Feasibility now:As future control flexibility (thef ) is
part of the current augmented state, the ellipsoidal stability
constraint can be applied at current time rather than at the
end of the control horizon, as is common in other (e.g. QP-
based) MPC approaches. This reduces online optimization
to minimizing a performance index based on the future
degrees of freedom in the input,Jf , subject to membership
of the precomputed ellipsoid

min
f

Jf subject to zTQ−1
z z ≤ 1, (9)

with z = (xk, f).
Here,Jf penalizes the future control perturbations,

Jf =
∞
∑

i=0

cT

k+iWck+i (10)

whereW > 0 is given by

W = BTPB + R, P = Q + KTRK + ΦTPΦ.

In [5] it is shown thatJf and the LQ cost (2) differ by a bias
term, thus minimizing the two indices is equivalent. Further,
note that by standard arguments, the infinite sum (10) has
a limit that is readily computed,

∞
∑

i=0

cT

k+iWck+i = fTΓf (11)

where Γ is the positive definite solution of the discrete
Lyapunov equationGTΓG − Γ = −DTWD.

This turns the online problem into minimizing a quadratic
function subject to one ellipsoidal constraint, which can
be solved extremely efficiently using a Newton-Raphson
method to determine one Lagrange multiplier [5].

2) Feasibility at next sample:The ellipsoidal constraint
in (9) leads to sub-optimality. According to [5], this sub-
optimality can be reduced by allowing a line search outside
the ellipsoid subject to feasibility at the next time instant
(i.e., by “scaling” f ). As this “scaling” can be performed
explicitly, it only adds marginally to computational com-
plexity. In view of the improved performance due to the
“scaling” of f , it is tempting to look for other algorithms
that search forf outsideEz in more general ways, subject
to feasibility at the next time instant. The straightforward
convex optimization problem that solves this, is

min
f

Jf subject to







zTΨTQ−1
z Ψz ≤ 1

Df ≤ ū + Kxk

−Df ≤ ū − Kxk

(12)



where two constraints are added to ensure that the computed
control satisfies input constraints. Denoting the optimal
solution of (9) byf⋆

(9) and the optimal solution of (12) by
f⋆

(12), it is clear thatJf (f⋆
(12)) ≤ Jf (f⋆

(9)). In practice, the
eigenvalues ofΨ will be strictly less than 1, in which case
the inequality is strict. For the rest of this section, this is
assumed.

Apart from the two linear constraints, this optimization
problem has the same structure as (9). It is solved relatively
fast and reliable by for instance thefmincon-algorithm of
Matlab. However, using a general optimization routine does
not enjoy the same efficiency as using a Newton-Raphson-
method to solve (9).

We therefore propose a more efficient method of solv-
ing (12), but where the solution might not always be the
optimal. Letffeas be a feasible solution of (12). This can be
found by solving (9), or it can be obtained from the solution
at the previous time-step via (5). Such affeas exists at the
first iteration, if we start insideExx.

Algorithm 1:
i) Solve the optimization problem obtained by removing

the linear constraints from (12) using e.g. a Newton-
Raphson method. Call the solutionf⋆. Obtainffeas

(e.g. by solving (9)).
ii) Check if f⋆ satisfies the linear constraints of (12). If

they do, thenf⋆ is the optimal solution to (12), and
we are finished. If they do not, then go to iii).

iii) Pick the f on the line betweenf⋆ and ffeas that is
closest tof⋆ and satisfies the constraints.

The properties of the solution are as follows (the proof is
omitted for space reasons):

Theorem 1:The f produced by Algorithm 1 guarantees
feasibility at next time step, satisfies the control constraints,
and when it is not equal tof⋆, at least one input is at a
constraint. FurthermorefTΓf < fT

feasΓffeas, thus f is
always a better solution thanffeas.

The “line-search” forf in Algorithm 1 can be imple-
mented explicitly, and hence very efficiently. Ifnu = 1 and
f⋆ exists but violates the input constraints, then it merely
amounts to choosing the right input constraint, andffeas is
not needed at all.

3) Algorithm and stability:The overall approach can be
summarized as follows:

Algorithm 2:
Offline: Find an optimalK for the unconstrained case. Use
the optimization problem (8) to findnc, D, G andQz that
give a suitable invariant set.
Online: At each time step, find the minimizingf of (9),
(12) or Algorithm 1, and implementuk = −Kxk + ck,
whereck = Df .
The (omitted) proof of stability of Algorithm 2 is similar
to that of Algorithm 4.1 of [2], with a slight difference due
to the minimization of the “infinite horizon cost” (11).

Theorem 2 (Closed loop stability):If for system (1)
there existK, Qz, p, D and G such thatxk ∈ Exx,
the closed-loop application of Algorithm 2 is feasible and
asymptotically stabilizing.

C. Solving the non-convex offline problem

As mentioned above, the problem (8) to be solved offline
is non-convex, and hence hard to solve. However, for a

given problem, it only has to be solved once. Also, if
specific requirements on the desired region of attraction
exists, it might not be necessary to solve the problem to
optimality, merely that the region is large enough might
suffice.

The non-convexity arises since the Lyapunov matrix is
multiplied by theF andG variables. This makes the prob-
lem minimizing a convex function subject to bilinear (and
linear) matrix inequalities. Similar optimization problems
frequently arise in the literature, for instance for the “static
output feedback” problem.

We choose to adapt “sequential semidefinite program-
ming” as proposed in [6] for the problem at hand. To
do this, we must use a standard trick to transform the
bilinear matrix inequality (8b) into a linear matrix inequality
but with an additional non-convex inequality constraint.
Then, the problem is solved in a manner similar to the
“augmented Lagrangian” approach from the SQP world,
by augmenting the Lagrangian by weighting the quadratic
deviation from the inequality constraint, approximate it by a
second-order Taylor expansion and minimize it sequentially
by semidefinite programming. See [7] for further details.

Since this is a second-order algorithm, the convergence
properties are better than algorithms merely relying on
gradient information. Thus, it is a significant advantage
that exact expressions for the gradient and Hessian of the
augmented Lagrangian are readily computable.

IV. EXAMPLES

In this section we will present two examples, where
the performance of the suggested control algorithm will
be compared to two control schemes that also are tailored
towards efficient predictive control under constraints. We
will first briefly review these.

Efficient robust predictive control . As mentioned
above, the offline problem of ERPC as proposed in [2] is a
special (convex) case of the GERPC offline problem. The
online problem has the same structure as (9).

Explicit MPC . Explicit MPC (referred to as eMPC)
refers to the explicit solution of the finite horizon con-
strained LQR problem as piecewise affine functions (con-
trollers) defined on polytopic partitions of the state space,
as derived in [1]. The offline problem of finding these
controllers and the corresponding polytopes can be solved
as a multi-parametric QP problem, see [8] for a recent
algorithm.

The online problem consists of finding which poly-
tope the present state is within. If done with a brute
force-approach, this might involve a significant number
of arithmetic operations when the number of polytopes is
large. However, by using smart data structures to store the
problem data and exploiting the structure, it is possible
to significantly reduce the online computational effort [9].
Nevertheless, storing all the polytopes and corresponding
controllers might require a significant amount of memory.

A. Double integrator example

Consider the discretized double integrator model [8],

A =

(

1 Ts

0 1

)

, B =

(

T 2
s

Ts

)
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Fig. 1. The shaded area (the polytopes) are the region where the eMPC
controller with horizon 5 is defined. The dotted ellipsoids are the region of
attraction for ERPC (horizon 2 and 5) and the outer ellipsoids the region
of attraction for GERPC (horizon 2 and 5). The innermost ellipsoid is the
largest invariant ellipsoid where the LQ controller is unconstrained.

whereTs = .05s is the sampling time. There are constraints
on input,|u| ≤ 1, and on velocity,|x2| ≤ 1. The weighting
matrices are chosen asQ = diag{1, 0} andR = 1.

We will in the following compare the region of attraction,
online (and offline) computational demand, online memory
use and sub-optimality of GERPC, ERPC and eMPC.

1) Offline: Region of attraction. The obtained “regions
of attractions” for the three approaches are shown in Fig-
ure 1. We immediately observe that the computed region is
significantly larger for eMPC (which stretches indefinitely
in the x1-direction) than for GERPC, which again is larger
than for ERPC. For ERPC, increasing the horizon only
marginally increased the region of attraction beyond the
region of attraction for the LQ-controller. This is not typical
in our experience, but must be attributed to the effect of
the state constraint. The fixed structure ofG in the case
of ERPC seemingly makes enlargement most pronounced
in one particular direction, and in this case this comes
in conflict with the state constraint. This example clearly
shows the importance of flexibility inG since the GERPC
ellipsoids are both rotated and “fattened” as compared to
ERPC.

Offline computational complexity. The difference in
offline computing time between ERPC and GERPC is
large, even though the number of optimization variables are
not very different different. The offline problem of ERPC
is convex [3], while solving a non-convex optimization
problem is NP hard. The fact that one usually does not
require optimality helps considerably, and allows the use of
local search algorithms with a guaranteed upper complexity
limit. These local algorithms are however more complex
than the ERPC problem. As for the approach suggested in
Section III-C, the convex problem solved at each iteration
is about three times as large in number of optimization
variables than the corresponding ERPC problem, and also
has more constraints.

As mentioned above, the eMPC solution is found using
multi-parametric quadratic programming (mpQP). For this
type of problem, the computational complexity depends on

the number of statesnx, the control freedomnu · nc, and
especially the constraints, since the constraints must hold
on the entire control horizon. The computational complexity
grows exponentially with problem size.

In conclusion, it is probably safe to say that the ERPC
offline problem has least complexity for a given system and
horizon, while mpQP and the local algorithm in Section III-
C are harder to compare. In our experience the mpQP
problem is faster than our implementation of the local BMI
algorithm for the same control horizon.

2) Online: Memory usage. The demand on online mem-
ory is about the same for ERPC and GERPC (there is a
slight difference due to the size of theΓ matrix). Therefore,
we compare GERPC with eMPC.

eMPC has to store all the piecewise affine controllers
online, but in addition it has to store the inequalities that
define the polytopes. Ifr is the number of polytopes, and
s is the number of inequalities, the total number of reals to
be stored arer ·(nu ·nx+nu)+s ·(nx+1). This is an upper
bound that does not take into account that the controllers in
several regions are the same, and other symmetry effects.
GERPC must as a minimum store two symmetric matrices
(Γ andQ−1

z ), of dimensionnx + p, giving a total number
of 2 · 1

2
(p + nx)(p + nx + 1) reals to be stored.

The memory requirements for horizons ofnc = 5 can be
summarized as follows1:

GERPC
(reals)

“crude” explicit MPC
(reals, controllers plus

polytopes)

“smart” explicit MPC
(reals plus integers)

56 182 + 756 240 + 255

As we can see, the difference is considerable in favor of
GERPC, and will be even larger for longer horizons, as the
size of the matrices grows quadratically while the number
of polytopes grows exponentially. In the rightmost column,
we see that by using smart data structures and exploiting
problem structure [9], “smart” eMPC considerably reduces
memory demand as compared to the straightforward imple-
mentation.

Online computational complexity. A count of “worst
case” floating point operations is shown below for the given
example (initial condition at(−4, 0)):

GERPC “crude” eMPC “smart” eMPC

12896 1008 44

For the Newton-Raphson method used by GERPC (for solv-
ing the optimization problem (9)), the worst case number
of iterations were 13 in our implementation, with 992 float-
ing point operations (counted with theflops-command
of Matlab 5) per iteration. Enhancing performance using
scaling [5] or Algorithm 1 only adds about 1% to this
number.

We see that the “smart” eMPC-controller is extremely
quick in this case. However, all these numbers are small

1For GERPC, it is advantageous to store the results of some matrix
calculations done offline for efficiency reasons. In our implementation, this
amounts to two symmetric matrices of dimensionp and one of dimension
p + nx, which together withK give 82 extra variables to be stored.
Furthermore, the memory requirement for GERPC does not take into
account “intermediate variables” that can be introduced in the iterations.
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Fig. 2. The states, and control inputu and perturbationc. Solid line is
ihMPC and eMPC (they are barely distinguishable), dotted line is GERPC
(with scaling), and dashed line is GERPC with Algorithm 1.

considering present-day computing power. A QP MPC
controller (implemented usingquadprog in Matlab) with
horizon 5 uses about 106000 floating point operations.

Sub-optimality. Simulations of the system from initial
condition (−4, 0) with infinite horizon MPC (ihMPC),
eMPC and GERPC with “scaling” and the new algorithm in
Section III-B are shown in Figures 2. We would expect that
both eMPC and GERPC for initial conditions far from the
origin will show sub-optimality. However, for this example
it is hard to find initial conditions where eMPC shows
significant sub-optimality. GERPC on the other hand, is
far from optimal, probably due to the fact that it stays
away from the constraints. As we see from the table below,
the scaling-technique of [5] reduces sub-optimality slightly,
while Algorithm 1 reduces it significantly.

Initial
condition Cost

GERPC
(9)

GERPC
w/scaling

GERPC
Alg. 1 eMPC ihMPC

(-4,0) 832.72 831.72 677.89 609.44 609.39
(-2,.6) 378.24 374.57 234.63 204.46 204.46

The fact that “scaling” is not as effective as reported in [5]
for ERPC, is probably mostly due to the state constraint
(state constraints were not considered in the examples
in [5]), and that we are able to start further away from
the origin due to larger ellipsoidal regions of attraction.

B. Lab helicopter example

This example compares GERPC and ERPC. They were
used to control a laboratory helicopter (Quanser 3-DOF
Helicopter). Using two “local” PD controllers to decouple
pitch and elevation, the following 6 states (λ is “travel”,
p is pitch angle of helicopter ande is elevation angle), 2
inputs (setpoints to pitch and elevation controllers) model
is used:







λ̇

λ̈
ṗ
p̈
ė
ë






=





0 1 0 0 0 0
0 0 −0.45 0 0 0
0 0 0 1 0 0
0 0 −19.8 −7.28 0 0
0 0 0 0 0 1
0 0 0 0 −3.09 −4.98









λ

λ̇
p
ṗ
e
ė



+





0 0
0 0
0 0

19.8 0
0 0
0 4.98



[ pc

ec
]

The weighting matrices are chosen asQ =
diag{1, 1, 1, 10, 1, 10} andR = diag{95, 95}.

A comparison of the volumes obtained by GERPC and
ERPC is shown in the table below. The volume factorVf =
√

det(TQzTT)−1 is a measure of the size of the ellipsoids.
A three-dimensional projection of the ellipsoids is shown

in Figure 3 (most of the other projections showed similar
proportions). We clearly see that even for an extremely short
control horizon, GERPC is able to obtain significantly larger
regions of attractions than ERPC.

Algorithm nc Offline calc. time dimQz Vf [×103]

GERPC 2 600s 10×10 55.3
ERPC 2 0.9s 10×10 0.6
ERPC 5 8.9s 16×16 1.0
ERPC 8 48.7s 22×22 1.4
ERPC 10 134s 26×26 1.8
ERPC 13 560s 32×32 2.7

Fig. 3. Projections of 6-dimensional ellipsoids. GERPC withhorizon
nc = 2 (outer ellipsoid) and ERPC fornc = 13 (the ellipsoids for ERPC
for nc = 2, 5, 8, 10 lies inside thenc = 13 ellipsoid).

We have not performed a detailed comparison with eMPC.
However, in [8] an example with a similar model of the
same dimension is used. There the horizon 4 offline case
was solved in 1830 s (not directly comparable to our
numbers, since another computer was used) and the number
of regions found were 12223.

In order to get a reasonable region of attraction we had to
increasenc for ERPC. For the given system environment,
however, the online optimization problem of ERPC with
nc ≥ 10 was too computationally demanding, and lead to
computer exceptions and hence controller failure. It should
be noted that the implementation used in this example can
be further optimized with respect to efficiency. Figure 4

Fig. 4. A projection of two ellipsoids (the GERPC region of attraction
and the largest invariant ellipsoid for unconstrained LQ) and one state
trajectory, and (right) a (rotated) zoom. The point whereck becomes zero
is marked with a dot.

shows three of the states from a laboratory trial starting
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Fig. 5. At top, the first input (the pitch reference,u1) with the constraint
(-20◦ in radians), with the correspondingc1 (cf. (3)).

outside the invariant ellipsoid given by the LQ-controller,
and entering it after about 0.4s. This is confirmed by
Figure 5, where we see that the “perturbation” to the first
control also is zero after 0.45s.

V. D ISCUSSION

Offline problem. The examples clearly indicates that the
generalized offline problem achieved considerably larger
regions of attractions than ERPC. The generalization of
the offline problem gives more freedom in “shaping” the
ellipsoid, which can be especially helpful in the presence
of state constraints as in the first example. Furthermore, we
believe that the generalized offline problem in the multiple
input case (as in the second example) has more freedom
for exploiting possible couplings between the inputs than
the ERPC offline problem has, sinceG is a general matrix
as opposed to the “diagonal structure” of theM matrix
of ERPC. However, the regions of attraction obtained by
GERPC and ERPC will always be a subset of the set where
the explicit MPC controller is defined, but this set is not
necessarily a region of attraction as discussed below.

The non-convexity of the offline problem makes it harder
and less tractable than the convex problem of ERPC. We
proposed a local solver of the non-convex BMI problem,
which uses the exact Hessian of the optimization criterion.
As is common for second-order algorithms, the algorithm
must be started reasonably close to a feasible solution - this
is achieved by using the ERPC solution as starting point.

Online problem. The first example reveals that while
GERPC/ERPC requires limited memory online, explicit
MPC performs better as far as computational complexity
and sub-optimality is concerned. However, it is not hard
to imagine examples where the memory requirements of
explicit MPC is prohibitive. In this respect, suboptimal
implementations of explicit MPC could be an interesting
alternative to compare with GERPC.

In the first example, we were able to reduce sub-
optimality in GERPC considerably by the new online algo-
rithm suggested in Algorithm 1. Of course, this algorithm
could also be used to reduce sub-optimality for ERPC.

Since longer “control horizons”nc (= p/nu) might have
to be used to obtain a suitable region of attraction for ERPC,

the online problem might demand a higher computational
load than for GERPC, since the computational complexity
grows linearly withnc [5].

Stability and robustness. It is important to keep in
mind that GERPC/ERPC gives stability guarantees. On the
other hand, it is well known that finite horizon MPC (as
implemented by explicit MPC) might enter “blind alleys”
if the horizon is not long enough, and thus the fact that the
controller is defined for an initial condition does not imply
that this initial condition is within the region of attraction.
However, the stability of the piecewise affine controller can
be checked (conservatively) using e.g. piecewise quadratic
Lyapunov functions and LMIs, or one can enforce stability
by design, by either finding the horizon length that guaran-
tees stability, or adding stability constraints (at the cost of
a more complex controller).

While GERPC/ERPC straightforwardly can handle un-
certainty by the use of polytopic models, this is not so
straightforward for explicit MPC. Some results in that
direction have appeared recently [10], however restricted
to 1- and∞-norm type objective functions.

VI. CONCLUSION

By considering feasibility through a non-convex opti-
mization problem offline, we are able to pose efficient
online optimization algorithms for constrained optimiza-
tion of linear systems and systems described by polytopic
uncertainty models. Compared to ERPC larger regions of
attractions were achieved. Further, a less sub-optimal online
problem was proposed. The new approach offers few ad-
vantages to explicit MPC in terms of online computational
efficiency or sub-optimality, but it uses less online memory.
In addition, the new approach gives (in the same way as
ERPC) stability guarantees, and model uncertainty can be
handled.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, January 2002.

[2] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans, “Efficient robust
predictive control,” IEEE Trans. Aut. Control, vol. 45, no. 8, pp.
1545–1549, 2000.

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix
Inequalities in System and Control Theory, ser. SIAM Studies in
Applied Mathematics. SIAM, 1994, no. 15.

[4] S. Drageset, L. Imsland, and B. A. Foss, “Efficient model predictive
control with prediction dynamics,” inProc. 7th European Control
Conference ECC’03, Cambridge, England, 2003.

[5] B. Kouvaritakis, M. Cannon, and J. A. Rossiter, “Who needsQP for
MPC anyway?”Automatica, vol. 38, no. 5, pp. 879–884, 2002.

[6] B. Fares, P. Apkarian, and D. Noll, “An augmented Lagrangian
method for a class of LMI-constrained problems in robust control
theory,” Internat. J. Control, vol. 74, no. 4, pp. 348–360, 2001.

[7] N. Bar, “Efficient model predictive control using sequential semi-
definite programming,” Master’s thesis, Department of Engineering
Cybernetics, NTNU, 2003, http://www.itk.ntnu.no/ansatte/Imsland-
Lars Struen/Barthesis.pdf.

[8] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit MPC solu-
tions,” Automatica, vol. 39, pp. 489–497, 2003.

[9] ——, “Evaluation of piecewise affine control via binary search tree,”
Automatica, vol. 39, pp. 945–950, 2003.

[10] A. Bemporad, F. Borrelli, and M. Morari, “Min-max controlof
constrained uncertain discrete-time linear systems,”IEEE Trans. Aut.
Control, vol. 48, no. 9, pp. 1600–1606, 2003.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeA08.1
	Page0: 222
	Page1: 223
	Page2: 224
	Page3: 225
	Page4: 226
	Page5: 227


