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Abstract— The Bayesian approach provides the most gen-  This paper presents a novel approach for estimation in
eral formulation of the recursive state estimation problem. constrained dynamic systems with non-Gaussian pdfs. The
Except for linear-Gaussian systems, the solution is seldom ¢,,qamental difference between the Bayesian cell filter and
amenable to implementation. This paper poses the estimation - - - .
problem in discretized state space. A novel approach is existing me-thod.s is the separgtlon of the modellng task
used to model probabilistic dynamics as finite state Markov from the estimation problem. Unlike the Monte Carlo filters,
chains. The Bayesian cell filter can handle nonlinearities, non- modeling is performed offline thereby significantly redugin

Gaussian process and measurement noise and constraints. the cost of implementing recursive estimation online.
The filter splits the problem into offline modeling and online L i i
estimation tasks. The cell filter is compared with Monte Carlo In principle, the evolution of the state pdf is represented

based particle filter for accuracy and efficiency. by a Foias operator, which is difficult to obtain analyti-
| INTRODUCTION cally. Th_is difficul_ty na_lturally leads t(_) the popularity of
o o assumptions of linearity and Gaussianity. The proposed
Rectification and estimation reduces measurement eroggproach relaxes these assumptions. It is suboptimal aince
and estimates the true values of states. In general, thgntinyous pdf is approximated by a discretized probabilit
errors may be non-additive with non-Gaussian distrib&ion,ector. To this end, the state space is discretized into @ fini
The system may be nonlinear, accompanied by algebraigmper of intervals called cells. This is a more realistic
constraints. Nonlinearity renders the probability densitqantification of the states, considering the uncertairitie
function (pdf) of the states into time-varying non-Gaussiamqgels and limits on sensor resolution. Then, the original
pdf. Process uncertainties are typically bounded since pgaterministic/stochastic system is converted into a finite
rameters and disturbances are normally bounded. Algebraigte Markov chain. A discretized Foias operator is com-
constraints also place bounds on the domains of the pdfyted using Monte Carlo techniques by Generalized Cell
The Bayesian approach provides a rigorous solution fqfapping [6]. The Markov chain can describe the evolution

estimation by fusing data with priori information in the ot the state pdf very accurately by following the evolution
context of models and constraints. However, generaliz# ihe probability vector in cell space [7].

solutions for nonlinear/non-Gaussian constrained system ) ) L
are impossible. Methods such as the extended Kalman '€ Proposed Bayesian cell filter can readily incorpo-
filter (EKF) [L], Moving Horizon Estimator (MHE) [2], rate algebraic me_quallty and equa_llty constraints. At the
are special cases of the Bayesian approach, which rely 8Ht7°‘et' a .con.stramed cell space 1S created_ only for the
simplifying assumptions about models, constraints and.pdf €9i0n satisfying all the constraints. The Foias operators
EKF uses linearization while assuming Gaussian pdfé'® computed only for the constrained cell space. Thus,
and cannot include constraints. MHE reformulates the esfi’® €stimated states will automatically satisfy all the ap-
mation problem as a quadratic programming problem in glicable constraints. Features of non-Gaussian systese noi
fixed-size window. MHE inherently assumes Gaussian pdfgre readily incorporated into the transition matrix of the

which leads to a convenient least squares problem. Althoué\ﬁarkov Chain. Since Monte-Carlo sampling for computing

it can include constraints, MHE is computationally interesi € transition matrix can be done offline, a great number of
and it is not easy to determine an optimal window size. S&MPles can be used to obtain high accuracy as opposed

Monte Carlo based methods such as the particle filidp the on-line computational burden of PF. The pdf of

(PF) [3,4] approximate non-Gaussian pdfs with Samp|e§_on—Gaussian measurement noise appears explicitly in the
PF follows the evolution of pdfs by simulating partiC|eIikeIihood function so that it can be handled directly. The

trajectories in state space. However, the issue of congtrai Bayesian cell filter is general enough to handle any type of

is yet to be explored in PF [5]. Insufficient sampling and denonlinearity, non-Gaussian pdf and algebraic constraint.
generacy are of concern for constrained PF since discardingSimulation examples are included to demonstrate the
samples violating the constraints can worsen these issugsoposed approach for non-Gaussian measurement noise,
Furthermore, passing a great number of samples to tleenstraints on process noise and constraints on states1 Mea
nonlinear system at each sampling time entails consideratdquared error of estimation and CPU demands are compared
computational burden for online estimation. with particle filters.
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Il. ESTIMATION IN STATE SPACE C. Update

Consider the following discrete-time dynamic system and If the measurement magh, and its inverse maph?,

measurement equation, are continuously differentiable, the likelihood functids
explicitly obtained as follows [1],

X = Flxe1,Wie1), o

where f : (R" x R™) — R" and h: (R" x RP) — RP are
nonlinear functionswy € R™ and v, € RP are i.i.d. white
noise with known pdfgy(wg) and p, (vk) respectively. The
initial condition xg is known via pdfp(xg). The states are

=Ln(XY)- (9

Except for linear or scalar systems, it is generally not
possible to compute the likelihood functioty (X, Yk).
analytically since the inverse map ! may not be well

furth bject to algebrai traint behaved.
uriher subject 1o algebraic constraints, The recursive Bayesian estimation solution is the updated
0(x) = 0O, (3) a posteriori conditional state pdf,
%) < O (4) P(Xk|Yi) O Ln (X, Yic) P P(Xk—1|Yk—1)- (10)
A. Bayesian Estimation D. Inference
Bayesian gstimation constructs the conditional pdf of the The optimal inference is typically drawn by a conditional
state according to Bayes rule, expectation on the posterior,
P(XIYi) O P(YiIXe) PO Yk-1). (5) R =E{@(x)} = / O(x) PO|yk) X, (11)

where thea priori knowledge is represented Ipfxy|yk-1), . . . .
which is modified into the posteriori pdf p(xc|yx), in light where ¢(-) is any smtaple real function. The COI’]dItIOI’]?J
mean, mode and median are commonly used as optimal

of the data represented by the likelihood functiafy|x«). . . : Lo o
: T . inferences according to various optimality criteria.
Recursive estimation is performed in three stages at eac . . .
. . - : : he state of the nonlinear, non-Gaussian and constrained
time instant, (1) sprediction stage, where the prior pdf is estimator is represented by the entire conditional pdf
generated, (2) anpdate stage, where the posterior pdf is hence infinite inpsize The coym utational burden of findFi)n ’
computed using prior and likelihood and (3) enference the entire pdf at ea.ch sam Iirﬁ) time is formidable Thg
stage where the estimatex,” is drawn as an inference > P . piing o )
- ; L T computation of its moments is also a nontrivial task. In
from thea posteriori pdf. Bayesian estimation is intuitively . S : . .
. : e . view of these limitations, the suboptimal Bayesian celéfilt
appealing, yet poses formidable difficulties for systenthwi comorising a finite set of quantities is defined 7
nonlinearities, non-Gaussian pdfs and constraints. prising a fini quantities 1 ! [71.

B. Prediction 1. ESTIMATION IN CELL SPACE

The initial pdf, p(xp), is distorted, translated and spreadA' Cell Soa(-:e _ o
due to the magf, and the nature of the system noise. The Many estimation problems of practical interest are posed
evolution of the state pdf is described by a linear integraNlth constraints on states, which lead to finite state space.

operator,P;, known as the Foias operator [8], Consider a finite regioRC R", where the system dynamics,
subject to (3) and (4), are likely to be observed. Rebe
P(Xk) = Prp(Xk-1), (6) partitioned into a collection of finite number of connected

sets called cells{Z, i = 1,2,...,N}. State space outside the
region of interest is a single infinite sized cell called thks
_ cell zy. The continuous state spaf® is approximated by
/Pf P(X-1) = //fil{pW(Wk—l) AWk 1} P(%k-1) dXk_1. the discrete cell space— {2} o. andZ —» &1 asN — e,

. o ] ) (_7) State transitions from point to point described by (1) pssse
The integration is further constrained by applicable etyal anaj0gous cell transitions in cell space. Transitions from
and/or inequality constraints placed on the domains of tf}ge||s{zi7 i=1,2,...,N} into the sink cellz are considered
state pdfs. An extension of (6) may be used for propagatingrminal. The evolution of the system as a finite state
the posterior pdf conditioned on measurements upto tim@arkoy chain over the constrained cell space represents
k—1 into a conditional prior pdf at timé&, coarse-grained dynamics of the system.

where the operator is defined as

Consider a region of interes C RP, where measure-
Xk|Yk—1) = P, “1|Yke1)- 8 '
POYic-1) *P0c-1/Yie-1) ® ments ofx € Rare likely to be obtained. Le&3 be discretized
Unfortunately, P is difficult to obtain analytically, since into a set of finite measurement cel{g', i =1,2,...,M}.

the inverse map off on constraint spaceg; and gz A measurement sink cellly represents the infinite space
may have complicated geometry even for relatively simpleutsideS. The collectionD = {d;}M,, coarsely represents
nonlinearities and constraints. the set of values likely to be obtained as measurements.
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B. Prediction IV. CELL-TO-CELL MAPPING
Let the state pdf,p(x), be approximated as a cell

probability vectorp(z), The difficulty in obtaining the Bayesian inference in cell
mg space is not decision theoretic, it is centered on realiting
1 probability transition matrixP, and the likelihood matrix,
p(z) = mk , (12) L. They can be approximately computed using Monte Carlo
: integration based on Generalized Cell Mapping (GCM)
m,'}' [6]. A constrained cell space is constructed. A number of

wherem, is the cell probability mass. Given the current'tﬂltIal C:’”d't."’”.s arletucr;lIorIme tsatr;:pbd n eac.htcelll'anf
p(z_1), it is desired to predict the futur@(z). The € system IS simuiated 1o focate Ihe image points .(.'g' )-
. . VY i : The transition probability masgyj, in the cell transition
relationship between the initiah_, in cell 2 and the final I . : . .
L - . ! probability matrix, P, is computed via this Monte Carlo
m in cell Z is obtained by a discrete analogue of (6), ) . .
sampling and simulation as follows,

N ,
M=% pijms, (13) n
J; pij ~ n_l-’ (18)
_ _ i
where p;j is the probability of transition from celt! to Z,

o _ weZlxe 7Y dx 14 wheren; are the number of sampled initial conditions in
Pij /2 pxez|xez)) dx (14) a cell, Z, and n; are the number of mapped images in
The evolution of cell probability vectors over cell space idh€ image cellz. The approach is completely general for
thus, described by a linear transformation, any type of discrete-time nonlinear system, non-Gaussian
process noise and algebraic constraints. A similar mapping
P(z) = Pp(z-1). (15) is performed to compute the likelihood masg, in the

where the transition probability matri® = [pj] is a dis- likelihood matrix, L, for any type of measurement model

cretized representation of the linear integral operdor 2a"d non-Gausgan noise. o _
in continuous state space occuring in (6). Equation (15) Small cell sizes are the key to obtaining high resolution

represents a Markov model for the evolution of probabilitynformation. An accurate mapping of the space inside each
mass in the cell space. cell is of paramount importance for the determination of

transition probabilities. Ifn initial conditions are sampled
C. Update in each ofN cells, GCM requiresiIN computations of the
The likelihood of obtaining a measurement cellwhen map f. For instance, 50 samples per cell in a Q00 cell
the state cell isz is given by the cell likelihood matrix, space will require half a million computations éf The
L, which is a discrete analogue of the likelihood functiorcomputational burden grows with the dimensionality of the
Lh in (9). Given a measurement cel} at timek, the cell system. In principle, the sampling and simulation is simila
likelihood vector,l(d; |z), is represented by the appropriateto following the evolution of trajectories in particle fite

row in the likelihood matrix. = [ljj]. The likelihood mass, Cell mapping is an exercise in large scale simulation to

lij, with respect to the measurement adlland the cellZZ  precompute all possible state transitions. The computatio

is obtained by integrating the likelihood over the cell, cost is one time for any given resolution. The efficiency of
| i J. the cell filter stems from the fact that the computationally
ij = /di p(y e d'[xe ') dy. (16)  intensive modeling problem is solved off line. The online

Bayesian estimation in cell space is the problem of recuP-OSt is limited to large matrix multiplications.

sively constructing the posterior probability vecm(z|dl)
given the current likelihood vectd(d,|z) and the previous

posterior probability vectop(z1|d_,), ol 18 14 15 18
p(addy) Dl(dja) ©PpEcld ). (A7) L1/
where® is the Haddamard product. / // / 17
7
D. Inference | / /

Each cell is represented by the coordinates of the cell
center to which the probability mass is assigned. The cell
centers form the elements of the cell vector. An estimate

of the statexy, is obtained by computing the necessary ex- 1 2 3 4 x
pectations on cell posterior vector using simple dot produc
with the appropriate function of the cell vector. Fig. 1. Generalized cell mapping
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TABLE |
AVERAGE MSE AND CPUTIME FOR EXAMPLE V-A.

V. SIMULATION EXAMPLES
A. Non-Gaussian Measurement Noise

Consider the following one dimensional linear system [ Method [ MSE | CPU sec]
with zero mean Gaussian process noisgr~ N(0,1) [9], Cell Filter, 200 cells 02 [ 017
Particle Filter, 1000 samples 0.2 71.7
X = X1t W1, 19)
Yk = XtV (20) N
The measurements are corrupted with additive non-

Gaussian errors. The probability density function of the
measurement noise is a sum of two Gaussians,

vk ~ 0.9N(0,1) +0.1N(0,10?). (21)

200 data points are simulated with an initial condition 0.
The state space € [—20,20] is discretized into 200
uniformly defined cells. Generalized Cell Mapping is used
with 400 uniformly sampled maps in each cell to compute

the cell probability transition matriXg. The sparsity pattern
of the matrix,P, is shown in Fig. 2 for a coarser cell space.
Results of the Bayesian cell filter initialized with a
Gaussian priong ~ N(0, 1), are shown in Fig. 3. The mean M 20 40 60 80 100 120 140 160 180 200
squared error of estimation is defined as,

State x

Fig. 3. Bayesian cell filter results for example V-A.

1 X Tl .
MSE—szl(Xk—Xk) R (% — %), (22)

whereK is the number of data points ands the length where A — 0.99620.1949:0.1949 0.3815
of the state vector. The extended Kalman filter and Moving '~ [0.03393;01949 and C — il _’3] .Wk N N(O 1)’

Horizon Estimator are shown to yield poor results for thi%nd Vi ~ N(0,0.12). The constrained non-Gaussian pdf
system when compared to the particle filter [5]. The average: o proces7s noise is shown in Fig. 4, whose mean is

M§E O.f estérggtli\cﬂjg and thﬁ CPU tir‘r;]e for 10_? rslalilzegior;]s OE/\/ZTE and variance ig1— 2m). Note that only one linear
a pentium Z machine are shown in Table |. Both ce ombination of the states is measured. The simulated

f|IFer af‘d the'parncle filter y|elld about the same MS.E’ pu ata consists of 100 data points with the initial condition
with widely different computational costs. The cell filter i 2.5:0]
more efficient since the modeling task with dense samplinh Y

is performed offline. The region of the state space boundxf§) € [0, 3] and

X(2) € [-1,1] is discretized into 66 40 uniformly defined

B. Constraints on Process Noise cell space. The Generalized Cell Mapping (GCM) with 400
Consider the following linear dynamic system with a nonuniformly sampled maps per cell is used to compute the
negative constraint on the process noise [2], transition probability matrix,P. The maps are simulated
with process noise sampled from the constrained pdf. The
X = AXc1+BWwi1l, (23) sparsity pattern of a coarser resolut®iis shown in Fig. 5.
Yo = CX¢+ W, (24)

)
=
S
3 2
E Es
2 g
c
°
(&S]
40 h e 0
0 cell number (columns) 40 -4 w, 0 4
Fig. 2. Sparsity pattern d?, for example V-A. Fig. 4. Non-Gaussian process noise pdf.
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x(3)

cell number (rows)

X(1)+x(2)+x(3)=1 x(1)
2
b N

Fig. 7. Constrained region in state space

Fig. 5. Sparsity pattern d?, for example V-B.

Estimation is initialized with Gaussian priopg(1) ~ €. Constraints on Sates

N(2.5,0.3%) andxo(2) ~ N(0,0.3%). The results are shown Consider the following three state linear dynamic system

in Fig. 6. The cell filter yields better results that the exteth  with zero mean Gaussian process noise,
Kalman filter and the Moving Horizon Estimators, which

show significant biases [2,5]. The average mean squared X = A1t Bwia, (25)
error (MSE) and CPU time for 100 realizations are shown Yo = OXc+ Wk (26)
in Table Il. Even Wlth 100.0 samples, the particle f'lter_fa'ISWhere A — [9,2.01.05.7,1,05.1,89, B —
to match the cell filter. Evidently larger number of particle —05-05;1 and C = I, wg ~ N(0,008%) and all
are necessary for online simulation, which deteriorates tr{hre.e’me-as,urements are é:orrIL(thed b);\j.kdrv N(0,0.12)
computational efficiency of the particle filter. The states are further constrained according to o
0<x <1 : (27)
TABLE Il % (1) +X(2) +x(3) = 1. (28)

State x(2)

AVERAGE MSE AND CPUTIME FOR EXAMPLE V-B.

[ Method

[ MSE | CPU sec]

Cell Flter, 60x 40 cells

Particle Filter, 1000 samples 0.79 | 77

045 | 24

w

Fig. 6. Bayesian cell filter results for example V-B.

The simulated data consists of 64 data points with initial
condition[0.25;05;0.25.

The region of state space bound by the unit cube is
discretized into 4& 40x 40 uniformly defined cell space.
Although the system is three dimensional, the constraints
limit the states to occupy a triangular plane shown in Fig. 7.
The constrained cell space consists of only the cells throug
which the constraint plane passes, by virtue of which,
the size of the cell space is significantly reduced. Using
coordinate transformations, the cell space can be reduaced t
a two dimensional triangular plane. The Generalized Cell

— "true" data
= 25% Mapping (GCM) with 400 uniformly sampled maps per
= 1 cell is used to compute the transition probability matrix,
gl-f” P. Fig. 8 shows the sparsity patterns of a codPse
1 The estimation is initialized with three Gaussian priors
00 30 3 40 20 e 90 8 99 100 with the respective initial conditions as the mean and a

variance of 2 each. Fig. 9 shows the estimation results
for a typical realization. The adherence to constraintésig a
shown against the failure of the Kalman filter to include the
constraints in the estimation procedure. Average MSE and
CPU time in Table Il illustrate the computational efficignc

of the Bayesian cell filter over the particle filter.

VI. CONCLUSIONS

Bayesian estimation of dynamic systems in cell space
offers many advantages over traditional suboptimal method
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cell number (rows)

0 cell number (columns) 200

Fig. 8. Sparsity pattern d?, for example V-C.

— "true" data
o estimate

State x(1)
State x(2)

o . — Cell filter
) X 1.1h - - Kalman filter
=3 * \ -
Q N \ VPR
© X 1
3 X B}
@ S
< 0.9
x
0.8
0 20 40 60
Time k

Fig. 9. Bayesian cell filter results for example V-C

such as the extended Kalman filter and the Moving Horizon

Estimator. Multivariate relationships typically restrithe
applicable mappings in state space. Physical bounds

TABLE Il
AVERAGE MSE AND CPUTIME FOR EXAMPLE V-C.

[ Method | MSE [ CPU sec|
Cell Filter, 40x 40x 40 cells | 0.11 | 0.22
Particle Filter, 500 samples | 0.11 | 10.8

and likelihood vector are given to the Bayesian inference
problem, it does not matter whether the problem is lin-
ear, nonlinear, constrained or non-Gaussian. The system
dynamics are modeled as a finite state Markov chain. The
Markov models in cell space can be constructed offline,
leading to considerable computational savings in online
implementation of Monte Carlo based filters. The cell filter
is a viable tool for recursive rectification primarily besau

of the separation of probabilistic modeling task from the
rectification task.
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