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Electrical Engineering Department - University of São Paulo at São Carlos
C.P.359, São Carlos, SP, 13566-590, Brazil

E-mail: {ishihara, terra, jcteles}@sel.eesc.sc.usp.br

Abstract— This paper is concerned with the problem of
state estimation for descriptor systems subject to uncertainties.
Kalman type recursive algorithms for robust filtered, predicted
and smoothed estimates are derived. A numerical example
is included to demonstrate the performance of the proposed
robust filter.

I. INTRODUCTION

Analysis and design of descriptor systems (also known
as singular systems or implicit systems) have received
great attention in the literature. This is because systems
in descriptor formulation frequently arises naturally in the
process of modeling of economical systems [4], image
modeling [2], and robotics [6]. Besides, the descriptor
formulation contains the usual state space system as a
special case and can describe some dynamical systems for
which state space description does not exist [14].

The estimation algorithms for descriptor systems consid-
ered so far in the literature assume that the model of the
plant is known exactly. However, models in engineering sys-
tems are only approximate. For usual state space systems,
generalizations of the classical Kalman filter to encompass
systems with norm bounded system uncertainty have been
the focus of a number of papers ([11], [10], [9], [12],
and references therein). For the case when uncertain noise
covariances are considered on descriptor system filtering,
a guaranteed estimation performance filter is deduced in
[13]. To the best of authors knowledge, robust descriptor
filters have not been considered in the literature when there
exist uncertainties in the matrices Ei+1, Fi, and Hi (see the
model (1), Section II).

In this paper we apply for descriptor systems a robust
procedure for usual state space systems developed by [9].
With this, we obtain robust Kalman type recursions for
filtered, predicted, and smoothed estimates. We show that
the proposed filters reduce to usual descriptor Kalman filters
when the system is not subject to uncertaints. When reduced
to usual state space systems, our filters provide alternative
recursions to that presented by [9] (see more details in
Remark 4.2).

This paper is organized as follows. In Section II, we state
the problem of robust estimation as a problem of optimal
estimation for systems subject to uncertainties. We start
revisiting the descriptor Kalman filter for systems without
uncertainties in Section III. In this section we re-state

the stochastic framework as a deterministic optimal fitting
problem. Then we propose a solution to the recursive robust
fitting problem as a generalization for the Kalman filter for
uncertain descritor systems in Section IV. In Section V we
present simulation results to demonstrate the performance
of our descriptor robust filter.

The notation is standard: < is the set of real numbers, <n

is the set of n-dimensional vectors whose elements are in <,
<m×n is the set of m×n real matrices, AT is the transpose
of the matrix A, P > 0 (P ≥ 0) denotes that P is a
positive definite (semi-definite) matrix, ‖x‖ is the Eucledian
norm of x, ‖x‖P is the weighted norm of x defined by

‖x‖P =
(
xT Px

)1/2
.

II. PROBLEM STATEMENT

Consider the uncertain discrete-time linear stochastic
descriptor system

(Ei+1 + δEi+1)xi+1 = (Fi + δFi)xi + wi, i = 0, 1, ...

zi = (Hi + δHi)xi + vi (1)

where xi ∈ <
n is the descriptor variable, zi ∈ <

p is the
measured output, wi ∈ <

m and vi ∈ <
p are the process

and measurement noises, Ei+1 ∈ <
m×n, Fi ∈ <

m×n

and Hi ∈ <
p×n are the known nominal system matrices,

and δEi+1, δFi and δHi are time-varying perturbations to
the nominal system matrices. The initial condition and the
process and measurement noises, {x0, wi, vi}, are assumed
uncorrelated zero-mean random variables with second-order
statistics

E
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
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=




P0 0 0
0 Qiδij 0
0 0 Riδij


 > 0 (2)

where δij = 1 if i = j and δij = 0 otherwise. The
perturbations are assumed with the following structures

δFi = Mf,i∆iNf,i; (3)

δEi+1 = Mf,i∆iNe,i+1; (4)

δHi = Mh,i∆iNh,i; (5)

‖∆i‖ ≤ 1 (6)

where Mf,i, Mh,i, Ne,i+1, Nf,i, Nh,i are known matrices
and ∆i is a bounded matrix (with norm less or equal to 1)
but otherwise arbitrary.



In this paper, we consider the problem of finding a
recursive robust state estimation algorithm in the presence
of modeling uncertainty. More precisely, given a sequence
of measured outputs {z0, z1, . . . zi}, the main objective is
to develop robust estimates (with the criteria in Section IV)
robust estimate for the filtered estimate x̂i|i, the predicted
estimate x̂i+1|i, and smoothed estimate x̂i−1|i.

III. OPTIMAL DATA FITTING AND THE STANDARD

KALMAN FILTER FOR DESCRIPTOR SYSTEMS

In our companion paper also presented in ACC04, [3],
we have shown that the standard descriptor Kalman filter
can be obtained with data fitting arguments. This approach
is convenient to provide not only the filtered estimate
recursions, but also the predicted and smoothed estimate
recursions. Most of the literature on descriptor Kalman
filters considers only the filtered estimate recursion. The
predicted and smoothed filters are more involved and were
considered only by few works ([15], [7]). In particular,
the expressions presented in [15] are valid only to regular
time-invariant systems while our result considers general
rectangular systems. Comparing with the result of [8], our
result does not need the Gaussian noises assumption.

We first present the usual descriptor Kalman filter in
filtered and predicted forms ([1], [8], [7], [3]).

Theorem 3.1: Suppose that

[
Ei

Hi

]
has full column rank

for all i ≥ 0. The optimal filtered estimates x̂i|i can be
obtained from the following recursive algorithm:

Step 0: (Initial Conditions):

P0|0 :=
(
P−1

0 + HT
0 R−1

0 H0

)−1
; (7)

x̂0|0 := P0|0H
T
0 R−1

0 z0 (8)

Step i: Update {x̂i|i, Pi|i} to {x̂i+1|i+1, Pi+1|i+1} as fol-
lows

Pi+1|i+1 :=
(
ET

i+1

(
Qi + FiPi|iF

T
i

)−1
Ei+1

+HT
i+1R

−1
i+1Hi+1

)−1

; (9)

x̂i+1|i+1 := Pi+1|i+1E
T
i+1(Qi + FiPi|iF

T
i )−1Fix̂i|i

+ Pi+1|i+1H
T
i+1R

−1
i+1zi+1 (10)

�

Theorem 3.2: Suppose that Ei has full column rank for
all i ≥ 0. The optimal predicted estimates x̂i+1|i can be
obtained from the following recursive algorithm:

Step 0: (Initial Conditions):

P0|−1 := P0

x̂0|−1 := x̄0 = 0 (11)

Step i: Update {x̂i|i−1, Pi|i−1} to {x̂i+1|i, Pi+1|i} as fol-

lows

Pi+1|i :=

([
Ei+1

0

]T

×

[
Qi + FiPi|i−1F

T
i −FiPi|i−1H

T
i

−HiPi|i−1F
T
i Ri + HiPi|i−1H

T
i

]−1

×

[
Ei+1

0

])−1

(12)

x̂i+1|i := Pi+1|i

[
Ei+1

0

]T

×

[
Qi + FiPi|i−1F

T
i −FiPi|i−1H

T
i

−HiPi|i−1F
T
i Ri + HiPi|i−1H

T
i

]−1

×

[
Fix̂i|i−1

zi −Hix̂i|i−1

]
. (13)

�

The Kalman recursions of Theorems 3.1 and 3.2 can be
alternatively obtained considering a deterministic optimiza-
tion problem which corresponds to the original stochastic
formulation. In [3] we have shown that the descriptor filter
is derived by solving

min
xi,xi+1

[∥∥xi − x̂i|i

∥∥2

P−1

i|i

+ ‖Ei+1xi+1 − Fixi‖
2
Q−1

i

+ ‖zi+1 −Hi+1xi+1‖
2
R−1

i+1

]
.

(14)

And to update the optimal predicted estimate of xi

from x̂i|i−1 to x̂i+1|i we have considered the following
optimization problem

min
xi,xi+1

[
‖xi − x̂i|i−1‖

2
P−1

i|i−1

+ ‖Ei+1xi+1 − Fixi‖
2
Q−1

i

+ ‖zi −Hixi‖
2
R−1

i

]
. (15)

IV. ROBUST FILTERING FOR DISCRETE TIME

DESCRIPTOR SYSTEMS

Let us first state the optimal robust fitting problem for the
filtered estimates. Assume that at step i we have a priori
estimate for the state xi. We shall denote this initial estimate
by x̂i|i. Assume further that we have also a positive-definite
weighting matrix Pi|i for the state estimation error xi−x̂i|i,
along with the new observation at time (i+1), i.e., zi+1. To
update the estimate of xi from x̂i|i to x̂i+1|i+1, we propose
the following sequence of robust data fitting problems:

For i = 0 solve

min
x0

max
δH0

[
‖x0‖

2
P−1

0

+ ‖z0 − (H0 + δH0)x0‖
2
R−1

0

]
(16)

and for i > 0 solve

min
{xi,xi+1}

max
{δEi+1,δFi,δHi+1}

[∥∥xi − x̂i|i

∥∥2

P−1

i|i

+ ‖(Ei+1 + δEi+1)xi+1 − (Fi + δFi)xi‖
2
Q−1

i

+ ‖zi+1 − (Hi+1 + δHi+1)xi+1‖
2
R−1

i+1

]
(17)



where the uncertainties are modeled as (3)-(6).
Using similar arguments used for the robust filtered esti-

mates, we propose to update the robust predicted estimate
of xi from x̂i|i−1 to x̂i+1|i by solving for i > 0

min
{xi,xi+1}

max
{δEi+1,δFi,δHi}

[
‖xi − x̂i|i−1‖

2
P−1

i|i−1

+ ‖(Ei+1 + δEi+1)xi+1 − (Fi + δFi)xi‖
2
Q−1

i

+ ‖zi − (Hi + δHi)xi‖
2
R−1

i

]
(18)

where the initial conditions are x̂0|−1 := x̄0 = 0 , P0|−1 =
P0, and the uncertainties are modeled as (3)-(6).

The optimization problems are now in the form that we
can use the following fundamental lemma [9] (we present
here a version suited for our case; for the various versions
of this lemma see [10]).

Lemma 4.1: Consider the problem of solving

min
x

max
{δA,δb}

[‖x‖2Q + ‖(A + δA)x− (b + δb)‖2W ] (19)

where A is the data matrix, b is the measurement vector
which are assumed to be known, x is the unknown vector,
Q = QT ≥ 0 and W = W T > 0 are given weighting
matrices, {δA, δb} are perturbations modeled by

[
δA δb

]
= H∆

[
Na Nb

]
, ‖∆‖ ≤ 1. (20)

The solution of the optimization problem (19), (20) is given
by

x̂ = [Q̂ + AT ŴA]−1[AT Ŵ b + λ̂NT
a Nb] (21)

where the modified weighting matrices {Q̂, Ŵ} are defined
by

Q̂ := Q + λ̂NT
a Na, (22)

Ŵ := W + WH(λ̂I −HT WH)†HT W (23)

and λ̂ is a nonnegative scalar parameter obtained by fol-
lowing optimization problem

λ̂ = arg min
λ≥‖HT WH‖

G(λ) (24)

where

G(λ) := ‖x(λ)‖2Q + λ‖Nax(λ) −Nb‖
2

+ ‖Ax(λ)− b‖2W (λ). (25)

The auxiliary functions are defined by

x(λ) := [Q(λ) + AT W (λ)A]−1[AT W (λ)b + λ̂NT
a Nb], (26)

Q(λ) := Q + λNT
a Na, (27)

W (λ) := W + WH(λI −HT WH)†HT W. (28)

�

A. Robust Filtered Estimates

Once we have defined an appropriate corrector functional,
the recursive equation for the robust estimates is obtained
by proper application of Lemma 4.1. Consider the following
identifications between the parameters in (17) and the
parameters in Lemma 4.1 :

A ←

[
−Fi Ei+1

0 Hi+1

]
; b←

[
Fix̂i|i

zi+1

]
(29)

δA ←

[
−δFi δEi+1

0 δHi+1

]
; δb←

[
δFix̂i|i

0

]
(30)

Q ←

[
P−1

i|i 0

0 0

]
; W ←

[
Q−1

i 0
0 R−1

i+1

]
(31)

Na ←

[
−Nf,i Ne,i+1

0 Nh,i+1

]
; Nb ←

[
Nf,ix̂i|i

0

]
(32)

H ←

[
Mf,i 0

0 Mh,i

]
. (33)

For the initial condition, we consider the following identi-
fications between the parameters in (16) and the parameters
in Lemma 4.1 :

A ← H0; b← z0; (34)

δA ← δH0; δb← 0; (35)

Q ← P−1
0 ; W ← R−1

0 ; (36)

H ← Mh,0; Na ← Nh,0; (37)

Nb ← 0. (38)

With the above identifications, we can state the following
theorem.

Theorem 4.1: The optimal robust filtered estimates x̂i|i

resulting from (17) can be alternatively obtained from the
following recursive algorithm:
Step 0: (Initial Conditions): If Mh,0 = 0 then

P0|0 :=
(
P−1

0 + HT
0 R−1

0 H0

)−1
; (39)

x̂0|0 := P0|0H
T
0 R−1

0 z0. (40)

Otherwise determine the optimal escalar parameter λ̂−1 by
minimizing the function G(λ) of (25) corresponding to
(34)-(38) over the interval λ >

∥∥MT
h,0R

−1
0 Mh,0

∥∥ and set

R̂0 := R0 − λ̂−1
−1Mh,0M

T
h,0; (41)

P0|0 :=
(
P−1

0 + HT
0 R̂−1

0 H0 + λ̂−1N
T
h,0Nh,0

)−1
;(42)

x̂0|0 := P0|0H
T
0 R̂−1

0 z0. (43)

Step 1: If Mf,i = 0 and Mh,i+1 = 0 then λ̂i := 0.
Otherwise determine the optimal scalar parameter λ̂i by
minimizing the function G(λ) of (25) corresponding to
(29)-(32) over the interval

λ̂i > λl,i :=

∥∥∥∥∥

[
MT

f,i 0

0 MT
h,i+1

]

[
Q−1

i 0
0 R−1

i+1

][
Mf,i 0

0 Mh,i+1

]∥∥∥∥∥; (44)



Step 2: If λ̂i 6= 0, replace the given parameters
{Qi, Ri+1, Pi|i, Ei+1} by the corrected parameters

Q̂i := Qi − λ̂−1
i Mf,iM

T
f,i; (45)

R̂i+1 := Ri+1 − λ̂−1
i Mh,i+1M

T
h,i+1; (46)

P̂i|i := (P−1
i|i + λ̂iN

T
f,iNf,i)

−1; (47)

Êi+1 := Ei+1 − λ̂iFiP̂i|iN
T
f,iNe,i+1. (48)

If λ̂i = 0, there is no correction:

{Q̂i, R̂i+1, P̂i|i, Êi+1} := {Qi, Ri+1, Pi|i, Ei+1} (49)

Step 3: Update {Pi|i, x̂i|i} to {Pi+1|i+1, x̂i+1|i+1} as fol-
lows:

Pi+1|i+1 :=

(
ÊT

i+1(Q̂i + FiP̂i|iF
T
i )−1Êi+1

+ HT
i+1R̂

−1
i+1Hi+1

+ λ̂i

[
NT

h,i+1Nh,i+1

+ NT
e,i+1(I + λ̂iNf,iPi|iN

T
f,i)

−1Ne,i+1)
])−1

(50)

x̂i+1|i+1 := Pi+1|i+1

([
ÊT

i+1(Q̂i + FiP̂i|iF
T
i )−1Fi

+ λ̂iN
T
e,i+1Nf,i

]
(I − λ̂iP̂i|iN

T
f,iNf,i)

)
x̂i|i

+ Pi+1|i+1H
T
i+1R̂

−1
i+1zi+1. (51)

Proof : Omitted. �

The filter expression can be simplified if we can define
the disturbances (3)-(5) such that NT

e,i+1Nf,i = 0. With this
assumption (50) and (51) turns to be

Pi+1|i+1 :=
(
ET

i+1(Q̂i + FiP̂i|iF
T
i )−1Ei+1

+ HT
i+1R̂

−1
i+1Hi+1

+ λ̂i

[
NT

h,i+1Nh,i+1 + NT
e,i+1Ne,i+1

])−1

.(52)

x̂i+1|i+1 = Pi+1|i+1E
T
i+1(Q̂i + FiP̂i|iF

T
i )−1F̂ix̂i|i

+ Pi+1|i+1H
T
i+1R̂

−1
i+1zi+1 (53)

where

F̂i := Fi(I − λ̂iP̂i|iN
T
f,iNf,i). (54)

Note that from (44), (45), and (46), we have Q̂i > 0 and
R̂i+1 > 0 for all i. That is, the inverse (Q̂i + FiP̂i|iF

T
i )−1

is well defined. Note that

[
Ei+1

Hi+1

]
full column rank is a

sufficient condition for the existence of the robust filter.

Remark 4.1: From (52) and (53), it is easy to verify that
for descriptor systems without uncertainties (that is, Mf,i =
0, Mh,i+1 = 0, Ne,i+1 = 0, Nh,i+1 = 0), the algorithm is
the usual descriptor Kalman filter of Theorem 3.1.

Remark 4.2: The robust filtered estimate algorithm stud-
ied here can be compared with that given by [9] for usual
state space systems (Ei+1 = I) for the case where we have
disturbance only in the matrix Fi. It is only necessary some
care because our auxiliary variables Q̂i and R̂i+1 and the
corresponding Q̂i and R̂i+1 of Table I of [9] are not the
same. We observe that our filter is different from that given
by [9]. This is not completly surprising since the proposed
quadratic functional is different.

Let us show that the proposed update of Pi|i is the same
of Table I of [9]. For the matrices Ei = I and Hi without
disturbances, note that P̂i|i is the same. We have that (52)
and (53) are now

Pi+1|i+1 =
(
(Q̂i + FiP̂i|iF

T
i )−1 + HT

i+1R
−1
i+1Hi+1

)−1

. (55)

x̂i+1|i+1 = Pi+1|i+1(Q̂i + FiP̂i|iF
T
i )−1F̂ix̂i|i

+ Pi+1|i+1H
T
i+1R

−1
i+1zi+1 (56)

where

Q̂i = Qi − λ̂−1
i Mf,iM

T
f,i; (57)

The correspondig equations of [9] are given by

Pi+1|i+1 =
(
Qi + FiP̂i|iF

T
i )−1 + HT

i+1R̂
−1
i+1Hi+1

)−1

. (58)

x̂i+1|i+1 = Pi+1|i+1(Qi + FiP̂i|iF
T
i )−1F̂ix̂i|i

+ Pi+1|i+1H
T
i+1R̂

−1
i+1zi+1 (59)

where

R̂i+1 = Ri+1 − λ̂−1
i Hi+1Mf,iM

T
f,iH

T
i+1 (60)

The expressions for P̂i|i and F̂i are the same for both our
and [9] filters. The interval of optimization for the parameter
λ is also different. It is still early to say which one would
be better, but both are natural versions of robust Kalman
filters to uncertain systems.

B. Robust Predicted Estimates Recursion

For the usual state space systems, the robust predicted
and filtered estimates recursions are simply different forms
of the same filter, and they require only few rearranges
to transform from one form to other [9]. For descriptor
systems, as in the case without disturbances, the robust
predicted filter is more difficult to obtain and has more
complex expression than the correspondent filtered filter.
The difficult is expected since for descriptor systems, the
future dynamics has influence on the present state. Note
that the conditions for existence for the predicted filter is
more stringent than for the filtered estimate. Therefore the
existence of filtered estimate does not assure the existence



of predicted filter. This explains, in part, the fact that in
the literature of descriptor filters, only the filtered case is
more studied. Similarly to the filtered estimate recursion
studied in the previous section, once we have defined an
appropriate corrector functional, the recursive equation for
the robust estimates is obtained by proper application of
Lemma 4.1. Consider the following identifications between
the parameters in the functional in (18) and the parameters
in Lemma 4.1 :

A ←

[
−Fi Ei+1

Hi 0

]
; b←

[
Fix̂i|i−1

zi −Hix̂i|i−1

]
;(61)

δA ←

[
−δFi δEi+1

δHi 0

]
; δb←

[
δFi

δHi

]
x̂i|i−1 (62)

Q ←

[
P−1

i|i−1 0

0 0

]
; W ←

[
Q−1

i 0
0 R−1

i

]
; (63)

H ←

[
Mf,i 0

0 Mh,i+1

]
; Nb ←

[
Nf,i

Nh,i

]
x̂i|i−1.

(64)

Na ←

[
−Nf,i Ne,i+1

Nh,i 0

]
. (65)

With these identifications, we obtain the following result.
Theorem 4.2: Suppose that it is given a sequence

{z0, z1, . . .} and NT
e,i+1Nf,i = 0. The successive optimal

estimates x̂i+1|i resulting from (18) can be alternatively
obtained from the following recursive algorithm:
Step 0: (Initial Conditions):

P0|−1 := P0 (66)

x̂0|−1 := x̄0 = 0 (67)

Step 1: If Mf,i = 0 and Mh,i = 0, then set λ̂i =

0. Otherwise determine the optimal escalar parameter λ̂i

by minimizing the corresponding function G(λ) of (25)
corresponding to (61)-(65) over the interval

λ̂i > λl,i :=∥∥∥∥∥

[
MT

f,i 0

0 MT
h,i

] [
Q−1

i 0
0 R−1

i

] [
Mf,i 0

0 Mh,i

]∥∥∥∥∥;

(68)

Step 2: If λ̂i 6= 0, replace the given parameters
{Qi, Ri, Pi|i−1, Fi} by the corrected parameters

Q̂i := Qi − λ̂−1
i Mf,iM

T
f,i; (69)

R̂i := Ri − λ̂−1
i Mh,iM

T
h,i; (70)

P̂i|i−1 := (P−1
i|i−1 + λ̂iN

T
f,iNf,i)

−1; (71)

F̂i := Fi(I − λ̂i(P̂
−1
i|i−1 + LT

i
ˆ̄R−1

i Li)
−1NT

f,iNf,i).

(72)

If λ̂i = 0, there is no correction:

{Q̂i, R̂i, P̂i|i−1, F̂i} := {Qi, Ri, Pi|i−1, Fi} (73)

Step 3: Update {Pi|i−1, x̂i|i−1} to {Pi+1|i, x̂i+1|i} as fol-
lows:

Pi+1|i :=

([
ET

i+1

[
0 0

] ]

×

[
Q̂i + FiP̂i|i−1F

T
i −FiP̂i|i−1L

T
i

−LiP̂i|i−1F
T
i Ji + LiP̂i|i−1L

T
i

]−1

×




Ei+1[
0
0

]

+ λiN

T
e,i+1Ne,i+1

)−1

(74)

x̂i+1|i := Pi+1|i

[
ET

i+1

[
0 0

] ]

×

[
Q̂i + FiP̂i|i−1F

T
i −FiP̂i|i−1L

T
i

−LiP̂i|i−1F
T
i Ji + LiP̂i|i−1L

T
i

]−1

×




F̂ix̂i|i−1[
zi

0

]
− Lix̂i|i−1


 (75)

where

Ji :=

[
R̂i 0
0 I

]
; Li :=

[
HT

i

λiN
T
h,i

]
. (76)

Proof : Omitted. �

Remark 4.3: From (74) and (75), it is easy to verify
that for descriptor systems without uncertainties (that is,
Mf,i = 0, Mh,i+1 = 0,Ne,i+1 = 0, Nh,i+1 = 0), the robust
algorithm of Theorem 4.2 is the usual descriptor Kalman
filter of Theorem 3.2.

Remark 4.4: We have seen that once we have determined
a one-step corrector functional, the derivation of the robust
version for the filtered and predicted estimators is a simple
task.

The deterministic arguments can also be used to deter-
mine robust versions for the smoothing filters in similar
fashion as it is done for the smoothing filters for the usual
state space systems without uncertainties. In particular, one
can see that the one-lag smoother is a direct byproduct
of our presentation until now. We can obtain the robust
smoother estimate x̂i|i+1 from the solution of (17) as

x̂i|i+1 = (I − λ̂iP̂i|iN
T
f,iNf,i)x̂i|i − P̂i|iF

T
i (Q̂i

+ FiP̂i|iF
T
i )−1

(
I −Ei+1Pi+1|i+1E

T
i+1(Q̂i

+ FiP̂i|iF
T
i )−1

)
F̂ix̂i|i + P̂i|iF

T
i (Q̂i

+ FiP̂i|iF
T
i )−1Ei+1Pi+1|i+1H

T
i+1R̂

−1
i+1zi+1.

(77)

Note that for descriptor systems without uncertainties
(Mf,i = 0, Mh,i+1 = 0, Nf,i = 0, Ne,i+1 = 0), the
one-lag smoothing (77) is exactly the descriptor smoothing
presented in our companion paper [3]. For standard state
space systems without disturbances (Ei = I, Mf,i = 0,
Mh,i+1 = 0, Nf,i = 0, Ne,i+1 = 0), the one-lag (77) is
exactly the classical one-lag smoother (see, e.g., [5]).



V. NUMERICAL EXAMPLE

Consider the descriptor system with uncertainties (1) with

E =




1 0 0
0 1 0
0 0 0


 , F =




0.9 0 0
0 0.8 0

0.2 0.2 0.2


 ,

H =
[

1.4 0.8 1
]
, Q =




1.2 0 0
0 1.6 0
0 0 2


 ,

Ne =
[

0.1 0.1 0.1
]
, R = 1.6,

Nf =
[

0.1 0.2 0.2
]
,

Nh1
=

[
0.659 5.931 0.659

]
,

Mf =
[

0.5 0.5 1.3
]T

, Mh = 0.8. (78)
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Fig. 1. Robust Descriptor (DR) filter, Optimal filter and Maximum
Likelihood (ML) filter of [8] .
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Fig. 2. Robust Descriptor (DR) filter and Maximum Likelihood (ML)
filter of [8].

The Figures V and 2 show the error variance curves
computed via the ensemble-average:

E‖xi − x̂i‖ ≈
1

T

T∑

j=1

‖x
(j)
i − x̂

(j)
i ‖. (79)

Each instant i in each variance curves is the average
over 1000 experiments that are performed j times, fixing
∆ selected randomly from the interval -1 and 1. It is
generated T = 1000 trajectories of length 1000 points each.
The results of Figure V were simulated considering the
matrices (78). The optimal filter is the Maximum Likeli-
hood (ML) filter for the system without uncertainties. The

Descriptor Robust (DR) filter presents better performance,
in presence of uncertainties, than the ML filter in steady-
state (for all cases we are adjusting the parameter λ =
1.5λl, Eq. (44), for all i, if it is adjusted solving the
optimization problem (24), the performance of DR filter
increases). When we change only the matrix Nh1

to Nh2
=[

0.67 5.86 0.67
]
, the error variance curve of the ML

filter goes to the instability and the error variance of DR
filter remains stable, Figure 2.

VI. CONCLUSION

We have developed a Kalman-type recursive formulation
for robust estimation problem for general descriptor sys-
tems subject to uncertainties. One interesting feature for
descriptor system is that, in contrast with usual state space
systems, the filtered and predicted filters are not equivalent
in general.
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