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Abstract 

Rotational-angle is a natural clock for the internal 
combustion engine.  Many of the engine control problems 
involve controlling actuators or mechanisms to track or 
reject signals that are periodic in the rotational-angle 
domain.  However a periodic signal in the rotational-angle 
domain becomes cyclic but aperiodic in the time domain as 
the rotational speed changes.  This phenomenon poses a 
great challenge for achieving asymptotic tracking or 
disturbance rejection.  To take advantage of the fact that the 
signal is periodic in the rotational-angle domain, we can 
transform the actuator dynamics into the rotational-angle 
domain and design the controller correspondingly.  
However the linear time invariant (LTI) actuator model 
becomes linear time varying (LTV) after the 
transformation.  Time varying repetitive control is then 
proposed to drive the time varying plant to track or reject 
periodic signals.  The periodic signal internal model is 
embedded in the time varying feedback loop to ensure 
asymptotic performance.  Simulation results demonstrate 
the effectiveness of the proposed algorithms.   
 
1. Introduction 

Many industrial applications involve controlling 
actuators or mechanisms to track or reject signals that are 
periodic in the rotational-angle domain.  To name a few, 
rejection of position-dependent disturbances for DC motors 
[1], control of radial runout in face milling [2], transmission 
disturbance rejection for laser printers [3].  If the rotational 
speed doesn’t change, those problems can be solved by 
using repetitive control [4-6].  However a periodic signal in 
the rotational-angle domain becomes cyclic but aperiodic in 
the time domain as the rotational speed changes.  This 
phenomenon poses a great challenge for achieving 
asymptotic tracking or disturbance rejection.   
 

Among different industrial applications, internal 
combustion engine presents a very interesting yet 
challenging problem.  On one hand, many of the engine 
subsystems demonstrate rotational-angle dependent 
behavior; On the other hand, engine rotational speed 
changes all the time, and the change is not necessarily small 
or periodic.  Chin and Coats [7] examined the air to torque 
dynamics, fuel to torque dynamics, engine rotational 
dynamics and the exhaust gas transport delay in both time 
domain and rotational-angle domain and concluded that 

most engine dynamics except the fuel are rotational-angle 
dependent.  So the rotational-angle is indeed a natural clock 
for the internal combustion engine.  Inspired by this 
intrinsic characteristic, control designs in the rotational-
angle domain have been investigated by a number of 
researchers.  However, a linear time invariant actuator 
model becomes linear time varying when converted from 
time domain to rotational-angle domain, which greatly 
complicates the control design process.  Yurkovich and 
Simpson [8,9] compared different linear and nonlinear 
control designs for engine idle speed control in the 
rotational-angle domain.  The nonlinear controllers 
outperformed the linear ones due to the intrinsic time 
varying plant dynamics in the rotational-angle domain.  
Scotson and Heath [10] developed a rotational-angle based 
dynamic model for the speed control of diesel engines.  As 
a result, the resonance dynamics become dependent on the 
rotational speed.  A linear time invariant controller was 
designed in the rotational-angle domain to regulate engine 
speed subject to load disturbances.  However, the control 
authority is only limited to the low frequency range due to 
the limitation of the LTI controller.  Song and Grigoriadis 
[11] presented diesel engine speed regulation using linear 
parameter varying control, where the engine speed control 
problem was formulated as an L2 gain optimization 
problem.  To achieve asymptotic tracking or disturbance 
rejection regardless of the varying rotational speed, we 
were motivated to develop time varying repetitive control 
design. 
 

Tsakalis and Ioannou [12] presented the internal model 
principle based tracking control design for linear time 
varying systems.  Sun and Tsao presented nonlinear 
internal model principle control and predictive internal 
model control for linear [13, 14] or nonlinear systems [15] 
with nonlinear disturbance dynamics, especially chaotic 
disturbances, in the discrete and continuous time domains 
respectively.  Based on these results, Sun and Tsao [16] 
presented repetitive control design for linear time varying 
systems in the continuous-time domain.  A constructive 
algorithm was proposed to embed the periodic signal 
internal model in the time varying feedback loop.  
Necessary and sufficient conditions for asymptotic 
disturbance rejection were then derived.  Similar to the LTI 
repetitive control design, it is shown that asymptotic 
performance cannot be achieved with a finite dimensional 



 

controller in the continuous-time domain.  Analytical 
results on the achievable performance bound with finite 
dimensional controllers in the continuous-time domain are 
also presented.  
 

This paper addresses the problem of controlling 
actuators or mechanisms to track or reject signals that are 
periodic in the rotational-angle domain while the rotational 
speed varies in real-time.  To take advantage of the fact that 
the signals to be tracked or rejected are periodic in the 
rotational-angle domain, we transform the actuator 
dynamics into the rotational-angle domain and design the 
controller correspondingly.  However the linear time 
invariant actuator model becomes linear time varying in the 
rotational-angle domain.  Time varying repetitive control is 
then applied to drive the time varying plant to track or 
reject periodic signals.  The periodic signal internal model 
is embedded in the time varying feedback loop to ensure 
asymptotic performance.  Simulation results on engine 
variable valve actuation control demonstrate the 
effectiveness of the proposed algorithms.   
 

The rest of this paper is organized as follows.  Section 2 
describes the control problem; Section 3 addresses the 
conversion of plant dynamics from time domain to 
rotational-angle domain; Section 4 presents the time 
varying repetitive control design; Section 5 presents the 
simulation results and conclusions are in Section 6. 
 
2. Problem Description 

We consider the problem of controlling an actuator to 
track or reject signals that are periodic in the rotational-
angle domain while the rotational speed varies in real-time.  
The linear time invariant (LTI) plant model is shown as 
follows: 

)()()( tButAxtx +=&  (1) 

)()()( tdtCxty +=  

where mRtx ∈)( , Rtu ∈)(  and Rty ∈)(  are the state, input 

and output signals respectively.  Rtd ∈)(  is the bounded 
but unmeasurable disturbance. 
 
The rotational-angle )(tθ  is defined as: 

∫=
t

dt
0

)()( ττωθ  

where )(τω  is the rotational speed. 
 
Since the disturbance is periodic in the rotational-angle 
domain, it satisfies the following model: 

)()2( θπθ dkd =+  (2) 

where k  is an integer. 
 
To take advantage of the periodicity of the disturbance, we 
sample the plant in the rotational-angle domain, i.e. sample 
the system at )0(θ , )1(θ , LL )(, kθ . Correspondingly, the 

state, input and output signals become )(kx , )(ku  and 

)(ky . 
 

The control laws we are considering are output 
feedback. Detailed control structures will be presented 
later.  The control objective is to achieve asymptotic 
disturbance rejection, i.e. the unforced system is uniformly 
asymptotic stable and the steady state output of the forced 
system goes to zero, 0)(lim =

∞→
ky

k
, for any initial 

conditions of the plant and disturbance. 
 
Remark: The asymptotic tracking problem )()(lim krky

k
=

∞→
 

can be easily formulated as the asymptotic disturbance 
rejection problem by letting )()( krkd −= , where )(kr  is 
the desired reference signal. 
 
3. Formulation of the Linear Time Varying Plant in 
Rotational-Angle Domain 
 To design the controller in the rotational-angle domain, 
we need to convert the continuous-time plant model (1) into 
the rotational-angle domain first. 
 

Let 1+= ktt  at )1( +kθ , based on the plant model (1), 
we have: 
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Similarly we can get: 
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Define kk ttkT −= +1)(  and multiply )(kATe  to both sides of 
the above equation, 
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Let kt−= τλ  and assume )()( ktuu =τ  for 1+<≤ kk tt τ , 
we have: 
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Assume the matrix A  is non-singular, we get: 
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Assume the rotational speed )(tω  stays constant during the 

time interval )[ 1+kk tt  and designate it as )(kω , then 
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We can rewrite the above discrete rotational-angle domain 
state space model as: 



 

)()()()()1( kukGkxkFkx +=+  (4) 

)()()( kdkHxky +=  

where )()( kATekF = , BAIekG kAT 1)( )()( −−= , CH = . 
 
Remark: Changing either the sampling interval )(kθδ  or 
the speed )(kω  in real-time will cause the above model to 
be time varying. 
 

The time varying repetitive control that will be 
presented in next section is designed using the input-output 
representation.  So we need to convert the state space 
model (4) into fractional representation.  Fractional 
representation used to describe the I/O properties of 
discrete LTV systems has been extensively investigated in 
[17], [18] and [19].  The following definitions on 
polynomial delay operator (PDO) and polynomial 
summation operator (PSO) will be used in this paper. 
 
Definition 1: Let 1−q  represent the one step delay 
operator.  The left polynomial delay operator (PDO) 

),( kqP  is defined as: 
n

n qkaqkakakqP −− +++= )()()(),( 1
10 L  

Similarly, the right PDO is defined as: 

)()()(),( 1
1

0 kaqkaqkakqP n
n−− +++= L  

where )(kai , ni ,,1,0 L=  are bounded and 0)( ≠kan  

for some 0≥k .  If 1)(0 =ka , 0≥∀k , the above PDO is 
said to be monic. 
 
Definition 2: A left (right) polynomial summation operator 

(PSO) ),(1 kqP−  is defined as the operator that maps the 
input )(ku  to the zero state response of the difference 

equation uykqP =])[,(  where ),( kqP  is the left (right) 
monic polynomial delay operator (PDO). More specifically, 

∑
=

− +Φ=
k

j

jujGjkkHkukqP
0

1 )()()1,()()]()[,(  

where ),( jkΦ , )(kG , )(kH  are the state transition 
matrix, the input and output matrix, respectively, 
corresponding to the observer (controller) realization of the 
difference equation. 
 
Definition 3: The PSO ),(1 kqP−  is said to be uniformly 

asymptotically stable (UAS) if and only if for any 0>ε  

there exists a positive integer εn  such that the state 

transition matrix ),( jkΦ , associated with the linear 
difference equation uykqP =])[,( , satisfies 

ε≤+Φ ||),(|| jij , for all Zj ∈  and all εni ≥ . 
 
Definition 4: Given the following two PDO’s ),( kqP  and 

),( kqQ :  
n

n qkaqkakakqP −− +++= )()()(),( 1
10 L  

n
n qkbqkbkbkqQ −− +++= )()()(),( 1

10 L  

We say ),(),( kqQkqP =  if and only if )()( kbka ii =  for 

ni ,,1,0 L= . 
 

Now we are ready to transform the plant model (4) into 
the following fractional representation: 

dukqBkqAy pp += − ])[,(),(1  (5) 

)()}({),(),( 11 kGkFqIHkqBkqA pp
−− −=  (6) 

where ),( kqBp  and ),(1 kqAp
−  are the PDO and PSO as 

defined in Definitions 1 and 2 respectively.   
 

The periodic disturbance model (2) can be transformed 
into the following SISO linear time invariant (LTI) 
dynamic model:  

0])[( =Λ dq  (7) 

where Nqq −−=Λ 1)(  is a time invariant PDO and N  is 
the period of the signal. 
 
Remark: The plant model (5) and disturbance model (7) are 
the input-output representations of the original plant and 
disturbance models (1) and (2) in the discrete rotational-
angle domain. 
 
4. Time Varying Repetitive Control Design 

As shown in Figure 1, the output feedback control law 
is as follows: 

])[(),( 21
1 uuqQkqPu −= −  (8) 

])[,(),( 1
1 ykqMkqNu −= −  

])[,(),(1
2 ukqBkqAu pp

−=  

where ),( kqP , ),( kqN  are PDO’s as defined in Definition 

1.  ),(1 kqM −  is a PSO as defined in Definition 2.  )(1 qQ−  
is a time invariant UAS PSO as defined in Definition 3.  
The motivation behind control structure (8) is that we need 
to embed a self-excitation mechanism in the feedback loop 
so that it will drive the plant to cancel out the persistent but 
bounded disturbance once the output goes to zero.  The 
fundamental reason that we include the plant model 

),(),(1 kqBkqA pp
−  in the feedback structure (8) is due to the 

non-commutative properties of the time varying operators.  
More detailed explanations can be found in [16], where the 
necessary and sufficient conditions for achieving 
asymptotic performance were derived in the continuous-
time domain. 
 

The following theorem provide the sufficient conditions 
for achieving asymptotic performance: 

 
Theorem: Consider the plant model (5), disturbance model 

(7) and the control law (8), if )(),( 1 qQkqP −  and 

),(),( 1 kqMkqN −  satisfy the following conditions, 
asymptotic disturbance rejection can be achieved: 



 

)(),(),(),()(),( qkqXkqPkqBqQkqA pp Λ=+  (9) 

++ ),(
~

),(),(),(
~

)(),( kqMkqPkqBkqMqQkqA pp  

                        ),(),(
~

),(),( * kqAkqNkqPkqB p =  (10) 

where ),(1
* kqA−  is an UAS PSO, MQM

~= , NQN
~= , 

),( kqX , ),(
~

kqM  and ),(
~

kqN  are PDO’s as defined in 
Definition 1. 
 
Proof: As shown in Figure 1, the output of the system is: 

duBAy pp += − ][1  

From (8), we have 

][])[1( 1
111 uPQuBAPQ pp

−−− =+  

So ][)1( 111111 yNMPQBAPQBAdy pppp
−−−−−− +−=  

][])(1[ 111111 dNMPQPQABy pp
−−−−−− ++=  

][]
~

)([ 11 dNPBPBQAQMMy ppp
−−++=  

By condition (9), we get 

][]
~

)([ 11 dNPBXQMMy p
−−Λ+=  

][]
~

[ 111 dQXNPBMQXMy p
−−− Λ+Λ=  

][]
~~

[ 11 dXQNPBMXMy p Λ+Λ= −−  

From the disturbance model (7), we have 0][ =Λ d , 

together with condition (10) we conclude 0)(lim =
∞→

ky
k

. 

 
It is well known from the internal model principle [20-

22] that the disturbance model need to be included in the 
feedback loop to ensure asymptotic performance.  
Condition (9) is designed to embed the periodic disturbance 
model in the time varying feedback loop.  Condition (10) is 
to ensure the asymptotic stability of the closed loop system. 
 
5. Simulation Results 
 In this section, we simulate the variable valve actuation 
control for the internal combustion engine using the 
proposed schemes.  As we know, engine valve motion is 
periodic in the rotational-angle domain and a simplified 
valve profile is shown in Figure 2.  There are three key 
parameters for the valve profile: lift, phase and duration.  
However, the valve motion becomes cyclic but aperiodic in 
time domain as rotational speed changes.  We apply the 
time varying repetitive control to achieve asymptotic 
performance. 
 
 Consider the following linear time invariant plant 
model: 

)()()( tButAxtx +=&  (11) 

)()()( tdtCxty +=  

where Rtu ∈)( , Rty ∈)(  and Rtx ∈)(  are the input, output 

and state signals respectively.  1−=A , 1=B , 10=C . 
 

Sampling the above system in the rotational-angle 
domain, we get the following linear time varying plant 
model: 

)()()()()1( kukGkxkFkx +=+  (12) 

)()()( kdkHxky +=  
where 

)()()( kTkAT eekF −== , )(1)( 1]1[)( kTkAT eBAekG −− −=−=  
and CH = .  )(kT  is defined in (3). 
 
We can then calculate the input-output representation of the 
system using (6): 

dukqBkqAy pp += − ])[,(),(1  (13) 

where )(1),( 1
1 kaqkqAp

−+= , )(
1 )( kTeka −−=  

)(),( 1
1 kbqkqBp

−= , )1(10)( )(
1

kTekb −−=  

 
The control objective is to achieve asymptotic tracking, 

i.e. )()(lim krky
k

=
∞→

, where )(kr  is the desired reference 

signal shown in Figure 2.  As we mentioned before, the 
asymptotic tracking problem can be easily transformed into 
asymptotic disturbance rejection problem by letting 

)()( krkd −= .  Since the reference signal is a square wave 
in the rotational-angle domain, we only need to sample it 
twice every engine cycle, i.e. one sample per 360 degrees 
( 360)( =kθδ ).  The corresponding disturbance model is as 
follows: 

21)( −−=Λ qq  (14) 
 
 Now we are ready to solve for the linear time varying 
controllers to satisfy the sufficient conditions (9) and (10). 
 

Step 1: Solve )(),( 1 qQkqP −  to satisfy condition (9): 

Let 1=X , 15.01 −−= qQ  and )()( 1
1

0 kpqkpP −+= , plug 
them into (9): 

2
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Solve the above time varying polynomial equation, we get: 
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Step 2: Solve ),(

~
),(

~ 1 kqMkqN −  to satisfy condition (10): 

Choose )()(),(
~

1
1
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~

1
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321
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Solve the above time varying polynomial equation: 
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It is worth to point out that )(1 kp , )(1 km , )(0 kn  and 

)(1 kn  all require certain length of preview of the speed 

signal )(kω .  The reference signal and the rotational speed 
in both rotational-angle domain and continuous-time 
domain are shown in Figures 3 and 4 respectively.  As it is 
shown, the rotational speed surges at about 70 second and 
ramps up quickly after that.  The reference signal remains 
periodic in the rotational-angle domain regardless of the 
varying rotational speed, but it becomes aperiodic in the 
time domain when rotational speed changes.  Figures 5 
shows the tracking error and the control signal.  Obviously 
asymptotic tracking has been achieved.  Figures 6 shows 
the parameters of the time varying controllers. 
 
6. Conclusions 

This paper presents the discrete time-varying repetitive 
control design and its application for tracking or rejecting 
rotational-angle dependent signals.  To take advantage of 
the fact that the signal is periodic in the rotational-angle 
domain, we first convert the linear time invariant plant 
model into the rotational-angle domain.  However, the LTI 
plant model becomes linear time varying after the 
conversion.  A periodic signal internal model is then 
embedded in the feedback loop to ensure asymptotic 
tracking or disturbance rejection.  Sufficient conditions for 
achieving asymptotic performance are presented in the 
form of two time varying Diophantine equations.  
Simulation results on engine variable valve actuation 
control show the effectiveness of the proposed scheme. 
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Figure 1. Time Varying Repetitive Control Block Diagram 
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Figure 2. Engine Valve Profile in the Rotational-Angle 
Domain 
 

 
 
Figure 3. Reference Signal and Rotational Speed in 
Rotational-Angle Domain 
 

 
 
Figure 4. Reference Signal and Rotational Speed in 
Continuous Time Domain 
 

 
 
Figure 5. Tracking Error, Control Signal and Rotational 
Speed 
 

 
 
Figure 6. Parameters of the Time Varying Controllers 
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