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Abstract— Model reduction problem was investigated for
singular systems. To solve the problem, the Silverman-Ho
algorithm was given, and based on this algorithm, an optimal
model reduction method for the fast subsystem was presented
to obtain reduced-order stable models for singular systems.
Sequentially, theH∞ suboptimal model reduction algorithm
was obtained for singular systems. The advantage of the
presented algorithm is that the impulsive nature of singular
system is preserved in the reduced-order models. Then some
necessary and sufficient conditions for the existence of a stable
reduced-order system were given and these conditions can be
verified numerically. Finally, illustrative examples were given
to show the effectiveness of the proposed approach.

I. INTRODUCTION

In recent years, singular systems have been investigated
extensively due to their applications in modelling and con-
trol of electrical circuits, power systems and economics, etc.
Some important characteristics of singular systems include
combined dynamic and static solutions, impulsive behaviors
and large dimensionality. Thus model reduction is vital for
analysis and design of controller for such systems [3], [5].

The initial investigation of model reduction for singular
systems was the chained aggregation method in [6]. The
authors there developed a generalized chained aggregation
algorithm and gave an intuitive interpretation of the exact
aggregation conditions for singular systems. The aim of the
proposed method is to remove the unobservable subspace.
Initial behavior of singular systems was also taken into
consideration while performing model reduction. However,
as pointed out in [7], the main drawback of this method is
the high level of computational effort.

In 1994, Perev and Shafai [7] considered model reduction
for singular system via balanced realizations and gave
a model reduction algorithm. Unfortunately, their method
ignored the impulsive behavior which is of paramount
importance to singular systems. The reduced order model
may become a normal state space system, which has no
impulsive behavior and does not track the original system
response properly. Liu and Sreeram [4] used the Nehari’s
approximation algorithm and overcome the problem. The
reduced-order model is a really singular system and the
approximation has been obtained as desired. For discrete
singular systems, Zhang et al. [3] discussed the same
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problem withH2 norm. Recently, Zhang et al. [8] discussed
theH∞ suboptimal model reduction problem for singular
systems and some sufficient conditions are obtained when
the original singular system is not impulsive free. However,
it requires that the transfer function matrix of the error
system is rational in order to guarantee thatH∞ norm
exists. Anyway, the existence problem for theH∞ norm
of the error system has not been solved there. Along
this line of research, recently, the existence problem was
investigated and a model reduction algorithm was proposed
in [12]. When the original singular system is impulsive
free, the model reduction problem for singular systems
were investigated in [10], [11] respectively for the cases
of continuous time and discrete time via linear matrix
inequalities (LMI) approach.

In this paper, we will discuss the model reduction prob-
lem for singular systems based on the results in [12] and
will present a new approach for theH∞ suboptimal model
reduction via solving the minimum rank problem for a
matrix set. In order to preserve the impulsive nature of
singular systems, we will use reduced-order fast subsystems
to approximate the fast subsystems. Some necessary and
sufficient conditions will be obtained for the existence of
a stable reduced-order system. Further, an algorithm has
been designed for theH∞ suboptimal model reduction if
the existence condition is met.

The organization of this paper is as following. In section
2, some preliminaries and the suboptimal model reduction
problem will be presented. In section 3, the Silverman-
Ho algorithm will be given. In section 4, the main results
about theH∞ suboptimal model reduction will be given
and the proposed algorithm will be illustrated in section 5.
Conclusions will be given in section 6.

II. PROBLEM FORMULATION

Consider the following singular systems

Eẋ(t) = Ax(t) + Bu(t), x(0−) = x0,

y(t) = Cx(t);
(1)

wherex(t)∈Rn is the state vector,u(t)∈Rq is the input
vector andy(t) ∈ Rm is the output vector.E ∈ Rn×n,
A∈Rn×n, B∈Rn×q, C∈Rm×n are constant matrices with
E possibly singular. Assume that the matrix pair(E,A) is
regular (i.e.,|sE − A| 6≡ 0). In this paper, the realization
quadruple(E, A,B, C) is used to represent the system
(1). All the matrices in this paper are assumed to have
appropriate dimensions.

From [2], it is known that there exist two square non-
singular matricesQ and P such that system (1) can be



transformed into the Weierstrass canonical form:

ẋ1(t) = A1x1(t) + B1u(t), x1(0−) = x1,0,

y1(t) = C1x1(t);

Nẋ2(t) = x2(t) + B2u(t), x2(0−) = x2,0,

y2(t) = C2x2(t);

(2)

wherex1(t)∈Rn1 , x2(t)∈Rn2 , n1 + n2 = n, N∈Rn2×n2

is nilpotent, and

QEP = diag(I,N), QAP = diag(A1, I),

CP = [C1 C2], P−1x(t) = [xT
1 (t) xT

2 (t)]T ,

QB = [BT
1 BT

2 ]T , y(t) = y1(t) + y2(t).

System (1) is called system restricted equivalent(s.r.e) to
system (2). The transfer function matrixG(s) is invariant
under the s.r.e. transformation, i.e.,

G(s) = C(sE −A)−1B = CP (sQEP −QAP )−1QB

= C1(sI −A1)−1B1 + C2(sN − I)−1B2, (3)

and

C2(sN − I)−1B2

= −C2B2 − sC2NB2 − · · · − sh−1C2N
h−1B2,

whereC2N
h−1B2 6= 0.

The aim of this paper is to investigate theH∞ suboptimal
model reduction for singular systems. Suppose the reduced-
order singular system is

Erẋr(t) = Arxr(t) + Bru(t),

y(t) = Crxr(t);
(4)

which is assumed to be regular. Then there are two matrices
Qr andPr such that

ẋ1r(t) = A1rx1r(t) + B1ru(t), x1r(0−) = x1r,0,

y1r(t) = C1rx1r(t);

Nrẋ2r(t) = x2r(t) + B2ru(t), x2r(0−) = x2r,0,

y2r(t) = C2rx2r(t);
(5)

where x1r(t) ∈ Rn1r , x2r(t) ∈ Rn2r , n1r + n2r = nr,
Nr ∈ Rn2r×n2r is nilpotent, and

QrErPr = diag(I, Nr), QrArPr = diag(A1r, I),

CrPr = [C1r C2r], P−1
r xr(t) = [xT

1r(t) xT
2r(t)]

T ,

QrBr = [BT
1r BT

2r]
T , y(t) = y1r(t) + y2r(t).

The associated error system between the original system
and the reduced-order system will be

Eeẋe(t) = Aexe(t) + Beu(t),

ye(t) = Cexe(t);
(6)

wherexT
e (t) = [xT (t) xT

r (t)]T , ye ∈ Rm, and

Ee = diag(E, Er), Ae = diag(A, Ar),

BT
e = [BT BT

r ]T , Ce = [C − Cr].

Let

Qe = diag(Q, Qr), Pe = diag(P, Pr).

Then theH∞ norm of the transfer function matrixGe(s)
for the error system is

‖Ge(s)‖∞
= ‖CePeP

−1
e (sEe −Ae)−1Q−1

e QeBe‖∞
= ‖C1(sI −A1)−1B1 − C1r(sI −A1r)−1B1r

+C2(sN − I)−1B2 − C2r(sNr − I)−1B2r‖∞. (7)

Now the problem of theH∞ suboptimal model reduction
is to find a reduced-order singular system(Er, Ar, Br, Cr)
with dim(Er) < dim(E) such that for a given positive
numberγ, the following holds:

‖Ge(s)‖∞ < γ.

First, it is known from [7] that||Ge(s)||∞ is finite if and
only if

C2(sN−I)−1B2−C2r(sNr−I)−1B2r = −C2B2+C2rB2r,

i.e.,

C2N
iB2 = C2rN

i
rB2r, i = 1, 2, · · · , h− 1, (8)

C2rN
i
rB2r = 0, i ≥ h. (9)

In this case,

‖Ge(s)‖∞
= ‖C1(sI −A1)−1B1 − C1r(sI −A1r)−1B1r

−C2B2 + C2rB2r‖∞.

Therefore, if (8) and (9) are satisfied, theH∞ suboptimal
model reduction problem can be solved via using the
conventional approaches. As indicated by previous analysis,
the main concern for the model reduction problem is to find
suitable(Nr, B2r, C2r) such that equations (8) and (9) are
satisfied simultaneously.

In addition, it is known that the transfer matrix for a
system is determined only by the controllable and observ-
able subsystem. Therefore, the core issue in this paper
is to discuss the model reduction of the fast subsystems
(N, I,B2, C2) which is controllable and observable, i.e., to
find the fast subsystem(Nr, Ir, B2r, C2r) with n2r < n2

satisfying (8) and (9).
The approach adopted in [8] is to findNr first, then one

tries to solve (8) and (9) for obtainingB2r and C2r. The
proposed approach has some significant disadvantages. In
one hand, for a givenNr, (8) and (9) may not have solutions
B2r,C2r. On the other hand, even the solutions for these
equations exist, it may be still very hard to solve them
due to their nonlinear nature. In [12], a new approach was
proposed with necessary and sufficient conditions obtained
for the solving (8) and (9) and a model reduction algorithm
was designed. However, those given conditions are not
explicit since they are expressed by decomposed matrices.



In this paper, the following questions related to the model
reduction problem will be addressed. The existence problem
of (Nr, Ir, B2r, C2r), n2r < n2 satisfying (8) and (9) is
given explicitly. Their solutions will be further investigated
based on the results in [12]. Here we adopt a different
approach based on the minimum rank for a matrix set
instead of matrix decomposition. The lowest bound for the
dimension ofNr is given and finally a model reduction
algorithm will be presented.

In order to address all these problems, the following
algorithm will be presented first and it will be used in the
sequel.

III. SILVERMAN-HO ALGORITHM

We introduce the following lemma before presenting a
useful algorithm.

Lemma 1: [1] For any polynomial matrixP (s), there
always exist matricesN , B, andC, with N nilpotent, such
that P (s) = C(sN − I)−1B.

Next, we will show the procedure to deriveN, B, C for
a given polynomial. For a given polynomial matrix,

P (s) = P0 + P1s + · · ·+ Ph−1s
h−1,

where Pi ∈ Rr×m, 0 ≤ i ≤ h − 1. The above lemma
assures the existence ofB,C, and the nilpotent matrixN
satisfyingP (s) = C(sN − I)−1B. Let

M0 ,




−P0 −P1 · · · −Ph−2 −Ph−1

−P1 −P2 · · · −Ph−1 0
· · · · · · · · · · · · · · ·

−Ph−2 −Ph−1 · · · · · · 0
−Ph−1 0 · · · · · · 0




∈ Rhr×hm, (10)

M1 ,




−P1 −P2 · · · −Ph−1 0
−P2 −P3 · · · 0 0
· · · · · · · · · · · · · · ·

−Ph−1 0 · · · · · · 0
0 0 · · · · · · 0




∈ Rhr×hm, (11)

and ñ , rank[M0].
M0 can be denoted asM0(P0, P1, · · · , Ph−1). Now one

can decompose
M0 = L1L2,

whereL1 ∈ Rhr×ñ, L2 ∈ Rñ×hm are of full column and
row rank, respectively. Further, let̃B and C̃, respectively,
be the firstm columns ofL2 and the firstr rows of L1.
Then one can prove that

Ñ =
(
LT

1 L1

)−1
LT

1 M1L
T
2

(
L2L

T
2

)−1
,

will be nilpotent and(Ñ , B̃, C̃) will be a minimal realiza-
tion for P (s) [2].

This procedure will be very useful for us to design a
model reduction algorithm for the fast subsystems.

IV. MAIN RESULTS

From previous analysis, it can be seen that the order
of the minimal realization forP (s) is determined by the
rank of M0. For a given system(N, I,B2, C2), let Pi =
C2N

iB2, i = 0, 1, · · · , h−1. Then the suboptimal model
reduction problem is equivalent to finding a suitablẽP0

to replaceP0, such thatn2 = rank[M0] > rank[M̃0] =
n2r, where M̃0 corresponds toP̃0, P1, · · · , Ph−1. So the
existence issue of such̃P0 will determine whether a given
fast subsystem can be reduced or not. The following theo-
rem will give a necessary and sufficient condition for the
existence of such̃P0. If such P̃0 exists, the lowest order of
the reduced system can also be found.

Without loss of generality, suppose thatM0 is partitioned
as

M0 =
[ −P0 K1

K2 K3

]
,

and

[
K2 K3

]
=




γ1 β1

γ2 β2

...
...

γ(h−1)m β(h−1)m


 .

In order to find suitableP̃0 for the possible model
reduction, one can decompose

[−P0 K1

]
=

[
P01 K11

P02 K12

]
=




η01 α1

η02 α2

...
...

η0(m−d) αm−d

η0(m−d+1) αm−d+1

...
...

η0m αm




,

whereK12 consists of the row vectors ofK1 with the fewest
vector number satisfying

rank

[
K12

K3

]
= rank

[
K1

K3

]
.

This is possible since one can choose the maximal indepen-
dent vector set includingK3. Then one can show that

rank

[
K12

K3

]
= rank[K3] + d,

i.e., any αi (1 ≤ i ≤ m − d) is a linear combination
of αm−d+1,αm−d+2, · · · , αm andβ1, β2, · · · , β(h−1)m. So
one can obtain

αi=
m∑

j=m−d+1

aijαj +
(h−1)m∑

k=1

bikβk, for all 1 ≤ i ≤ m−d.

(12)
From the choice of the matrixK12, one can derive that

rank

[
P02 K12

K2 K3

]
= d + rank[K2 K3]. (13)



The above equation indicates thatP02 has no effect on
the rank for the matrix in left side of equation (13). Now
the following theorem can be obtained.

Theorem 2:Given (N, I,B2, C2), there exists a
reduced-order, controllable and observable system
(Nr, Ir, B2r, C2r) with its dimension n2r < n2, such
that theH∞ norm of the error system exists if and only if

n2 > d + rank[K2 K3].
From Theorem 2, one can see thatd plays an important

role in the existence issue for the reduced order systems.
Next, this problem for the finiteH∞ norm of the error
system will be investigated in different point of view and
we will give an explicit formula ford. First, the following
two lemmas will be presented.

Lemma 3: [13] Let A ∈ Rm×n, B ∈ Rm×p, C ∈
Rq×n be constant,F ∈ Rp×q be variable. Then

min
F

rank

[
A B
C F

]

= rank[A B] + rank

[
A
C

]
− rank[A] .

Lemma 4: [13] Let rmin = min
K

rank[A + BKC],
rmax = max

K
rank[A + BKC]. Then for anyr0 within

rmin ≤ r0 ≤ rmax, there existsK ∈ Rp×q, such that

r0 = rank[A + BKC] .
From the above two lemmas, one can easily get the

following lemma and theorem. The following theorem gives
another necessary and sufficient condition for the existence
of P̃0 such that the rank ofM0(P̃0, P1, · · · , Ph−1) is
reduced. If it exists, the minimum order of the reduced
system can also be found.

Lemma 5:Let A ∈ Rm×n, B ∈ Rm×p, C ∈ Rq×n be
constant,F ∈ Rp×q be variable,

rmin = min
F

rank

[
A B
C F

]
,

rmax = max
F

rank

[
A B
C F

]
,

then for anyr0 satisfyingrmin ≤ r0 ≤ rmax, there exists
F ∈ Rp×q, such that

r0 = rank

[
A B
C F

]
.

Now Theorem 2 can be interpret in another way.
Theorem 6:Given (N, I,B2, C2). There exists a

reduced-order, controllable and observable system
(Nr, Ir, B2r, C2r), with n2r < n2, such that theH∞
norm of the error system is finite if and only if

n2 > n2r ≥ rank

[
K1

K3

]
+ rank[K2 K3]− rank[K3] .

The proof for this theorem is obvious from Theorem 2
and Lemma 3. Here the necessary and sufficient condition
is given by the parametersK1,K2 andK3.

Corollary 7: The numberd in Theorem 2 is

d = rank

[
K1

K3

]
− rank[K3].

Though the necessary and sufficient conditions for the
existence for the finiteH∞ norm of the error system are
given in previous theorems, it is still hard to construct
an effective algorithm for obtaining the lower order fast
system. Next, we will present a constructive procedure for
the model reduction problem. In other words, with givenn2r

satisfying the requirements, one needs to design a procedure
for finding P̃0.

According to Theorem 6, one only needs to discuss two
cases respectively.

Case 1.n2r > d + rank[K2 K3]
From (12), one can replaceη0i with

η̃0i=
m∑

j=m−d+1

aijη0j+
(h−1)m∑

k=1

bikγk, for all 1 ≤ i ≤ m−d,

(14)
and obtain a newP̃01. The associatedM̃0 will satisfy
rank[M̃0] = d + rank[K2 K3]

With the aboveM̃0, one can see that

M0 = M̃0 + M0 − M̃0

= M̃0 +
[

P01 − P̃01 0
0 0

]

= M̃0 +
m−d∑

i=1

pi,

where

pi =
[

p̃i 0
0 0

]
,

in which thei-th row of the matrixp̃i is η0i− η̃0i, with all
the other rows being zeros. Note that rank[M̃0 + pi] is one
more than rank[M̃0] at most. Therefore, there existsr such
that rank[M̃0 +

∑r
i=1 pi] = n2r, r < m− d due to

rank[M0] = n2,

and

rank[M̃0] = d + rank[K2 K3] < n2r < n2.

In order to reduce the computation cost, one can first
compute

rank

[
M̃0 +

p∑

i=0

pi

]
= n

(1)
2r ,

wherep = n2r−d− rank[K2 K3]. If n
(1)
2r < n2r, one can

further compute

rank


M̃0 +

p+n2r−n
(1)
2r∑

i=0

pi


 = n

(2)
2r ;

Otherwise one can deduce thatr = p. If n
(2)
2r < n2r, one

computes

rank


M̃0 +

p+n2r−n
(1)
2r +n2r−n

(2)
2r∑

i=0

pi


 = n

(3)
2r ;



Otherwise,r = p+n2r−n
(1)
2r , and so on. After finite steps,

r must be able to be reached such that

rank[M̃0 +
r∑

i=0

pi] = n2r.

Actually, It can be seen that the maximal number of steps
is ⌊

m− d

p

⌋
+ m− d− p

⌊
m− d

p

⌋
,

where
⌊

m−d
p

⌋
is the largest integer less thanm−d

p .

Case 2.n2r = d + rank[K2 K3]
In case 1,P02 keeps unchanged, but from the choice of

K12, P02 doesn’t affect the rank of
[

P02 K12

K2 K3

]
.

Thus,P02 can be taken as free variables. In this case, one
can replaceη0i in P01 with

η∗0i=
m∑

j=m−d+1

aijη0j+
(h−1)m∑

k=1

bikγk, for all 1 ≤ i ≤ m− d.

(15)
In (15), η0j is regarded as free parameters to be deter-

mined in the following optimization process,m− d + 1 ≤
j ≤ m. This indicates that the updated matrixP ∗01 is the
function with variableP02. In order to differentiate with the
original P02, here the notationQ is used to replaceP02 and
denoteP ∗01 asP ∗01 (Q) . Then

−P ∗0 =
[

P ∗01 (Q)
Q

]
,

whereQ is a free parameter to be determined. Now, one
can see that the suboptimal model reduction problem is
equivalent to findingAr1, Br1, Cr1, andQ such that

‖C1(sI −A1)−1B1 − C1r(sI −A1r)−1B1r

−C2B2 − P ∗0 (Q)‖∞ < γ, (16)

for a given positive numberγ. As discussed previously,P ∗0
can be obtained as a function of the matrixQ if the fast
system can be reduced and the conventional approach in
[9] can be used to solve this unconstrained optimization
problem.
With previous analysis, one can obtain the following con-
clusion.

Corollary 8: The lowest order of the reduced-order sys-
tem isd + rank[K2 K3].

Now it is time to present a procedure for constructing a
lower order fast subsystems.

Algorithm
Step 1. To decompose the original system and obtain the
fast subsystem. If there exists controllable and observable
fast part, denote it as(N, I, B2, C2), else stop.
Step 2. To computePi = −C2N

iB2, and obtainM0.

Step 3. To testify whether the fast system can be reduced
according to Theorem 2 or Theorem 6. If yes, continue, else
stop.
Step 4. To find outP01andP02. If

n2r > d + rank[K2 K3],

one can obtainP ∗0 as in case 1 in the previous section, and
go to Step 6. Otherwise, one can obtainP ∗0 as a function
of free variableQ in case 2.
Step 5. To solve the unconstrained optimization problem
(16) and findA1r, B1r, C1r, Q1 andP ∗0 .
Step 6. To obtain the minimal realization
(Nr, I2r, B2r, C2r) via the Silverman-Ho algorithm for

P ∗(s) = P ∗0 + P1s + · · ·+ Ph−1s
h−1.

Step 7. The following system will be the reduced-order
system for the original system;

ẋ1r(t) = A1rx1r(t) + B1ru(t), x1r(0−) = x1r,0,

y1r(t) = C1rx1r(t);

Nrẋ2r(t) = x2r(t) + B2ru(t), x2r(0−) = x2r,0,

y2r(t) = C2rx2r(t).

V. ILLUSTRATIVE EXAMPLE

In this section, we will present an example to show the
effectiveness of the proposed algorithm. Also we will do
some comparisons with the results in [8]. Consider system
(N, I, B, C) with

N =




0.2532 −0.0273 0.1175 −0.0267
0.0207 −0.3704 0.0195 0.1147
−0.0304 −0.8768 0.0096 0.2827
−0.8642 0.0412 −0.3995 0.1075


 ,

B =




−0.5996 −0.7491
0.7287 −0.5638
−0.2961 0.2501
−0.1478 −0.2418


 ,

C =



−14.0707 −2.2387 −0.1650 −0.9886
−4.7730 2.8568 −0.0778 −0.2263
−12.7743 1.1680 1.2586 0.9315


 .

It can be verified thatN is nilpotent and this system is
a minimal realization. Now, one can compute

−P0 = CB =




7 12
5 2
8 9


 , − P1 = CNB =




3 1
0 1
2 3


 ,

−P2 = CN2B =




1 0
1 0
3 0


 ,

and

K1=[ −P1 −P2 ], K2=
[ −P1

−P2

]
, K3=

[ −P2 0
0 0

]
.

Then, one can obtain that

d = 1, rank[K2 K3] = 2,

d + rank[K2 K3] = 3 < 4,



so this system can be reduced according to Theorem 2. Let
n2r = 3 = d + rank[K2 K3], one can use the approach in
case 2 to obtain a lower order model.

Let Q = [ q1 q2 ] be free variable, whereq1 and q2

are to be determined. Then one can change[ 8 9 ] to

3[ q1 q2 ] + 2[ 0 1 ] = [ 3q1 3q2 + 2 ],

and change[ 7 12 ] to

[ q1 q2 ] + 3[ 0 1 ] = [ q1 q2 + 3 ].

Then one will derive that

−P ∗0 =




q1 q2 + 3
q1 q2

3q1 3q2 + 2


 .

By using the Matlab function fminunc(), one can achieve
the optimal solution[ q1 q2 ] = [ 3.1241 3.0072 ] with
the minimalH∞ norm of the error system

‖Ge(s)‖2∞ = ‖CB − CrBr‖2∞ = 56.9381.

Implementing the Silverman-Ho algorithm, the parame-
ters of the reduced order fast system are obtained as the
following:

Br =



−0.6101 −0.7252
0.6357 −0.3916
−0.4729 0.4091


 ,

Cr =




−7.2234 −2.1531 −0.1818
−4.4328 0.9827 0.4336
−15.1587 0.8577 0.8906


 ,

Nr =




0.2860 0.0505 0.1324
0.3177 −0.5067 0.2912
0.0582 −0.7463 0.2207


 .

It should be noted that

N3
r = (1.0e−15)×




0.0945 −0.1249 0.0763
−0.0928 0.1284 −0.0781
−0.2134 0.3053 −0.1735


 ≈ 0,

which indicates thatNr is nilpotent. Then the system
(Nr, Ir, Br, Cr) can be taken as the approximation of the
original system.

In order to compare the effectiveness of the proposed
algorithm, one can obtain the reduced order system with
the algorithm in [8] as below

Nr =




0 1 0
0 0 1
0 0 0


 , Cr =




1 2 2
1 −1 0
3 −1 2


 , Br =




2 1
1 1
1 0


 .

The correspondingH∞ norm of the error system is

‖Ge(s)‖2∞ = ‖CB − CrBr‖2∞ = 138.7694 > 56.9381.

This verifies that the proposed algorithm improves theH∞
norm significantly.

VI. CONCLUSIONS

In this paper, we developed a new procedure ofH∞
suboptimal reduction algorithm for singular systems. Some
necessary and sufficient conditions are obtained which can
guarantee the existence of a reduced-order system with
finite H∞ norm of the error system. The contribution of
this paper can be concluded as following.

First, the existence of the reduced order system with finite
H∞ norm of the error system was investigated thoroughly.
Some necessary and sufficient conditions are obtained.

Second, a design procedure is designed for obtaining the
reduced order systems. The core contribution is that a free
parameter is identified in the optimization process. This free
parameter can reduce theH∞ norm of the error system
significantly as evidenced in the illustrative example.

Finally, the results in this paper can be extended to the
case for discrete singular systems without much difficulty.

Compared to the results in [10], [11], one can see that the
disadvantage of this paper is that the system decomposition
is used in this paper in stead of the original parameters.
This is due to the difference that the singular systems with
impulsive behavior are treated in this paper and the results in
[10], [11] only deal with singular systems without impulsive
dynamics.
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