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H. Suboptimal Model Reduction for Singular Systems

Jing Wang Qingling Zhang Wanquan Liu  XinXin and V. Sreeram

Abstract—Model reduction problem was investigated for problem withHs norm. Recently, Zhang et al. [8] discussed
singular systems. To solve the problem, the Silverman-Ho the 7, suboptimal model reduction problem for singular
algorithm was given, and based on this algorithm, an optimal - gystems and some sufficient conditions are obtained when
model reduction method for the fast subsystem was presented . . . . .
to obtain reduced-order stable models for singular systems. .the 0“9'”6" singular system is not |_mpuIS|ve_ free. However,
Sequentia”y‘ theHoo Suboptima| model reduction a|gorithm it I’equn’es that the transfer funCtlon matrix Of the error
was obtained for singular systems. The advantage of the system is rational in order to guarantee ttidt, norm
presented algorithm is that the impulsive nature of singular exijsts. Anyway, the existence problem for th&, norm
system is preserved in the reduced-order models. Then some of the error system has not been solved there. Along
necessary and sufficient conditions for the existence of a stable . . .

this line of research, recently, the existence problem was

reduced-order system were given and these conditions can be | ) : ;
verified numerically. Finally, illustrative examples were given investigated and a model reduction algorithm was proposed

to show the effectiveness of the proposed approach. in [12]. When the original singular system is impulsive
free, the model reduction problem for singular systems
I. INTRODUCTION were investigated in [10], [11] respectively for the cases

In recent years, singular systems have been investigat@fj continuous time and discrete time via linear matrix
extensively due to their applications in modelling and coninequalities (LMI) approach.
trol of electrical circuits, power systems and economics, etc. In this paper, we will discuss the model reduction prob-
Some important characteristics of singular systems includeém for singular systems based on the results in [12] and
combined dynamic and static solutions, impulsive behaviotill present a new approach for tté., suboptimal model
and large dimensionality. Thus model reduction is vital fofeduction via solving the minimum rank problem for a
analysis and design of controller for such systems [3], [5jnatrix set. In order to preserve the impulsive nature of
The initial investigation of model reduction for singularsingular systems, we will use reduced-order fast subsystems
systems was the chained aggregation method in [6]. TH@ approximate the fast subsystems. Some necessary and
authors there deve|0ped a genera”zed chained aggrega’[ﬁ“‘fﬁdent conditions will be obtained for the existence of
algorithm and gave an intuitive interpretation of the exac stable reduced-order system. Further, an algorithm has
aggregation conditions for singular systems. The aim of tHeeen designed for thé/., suboptimal model reduction if
proposed method is to remove the unobservable subspalte existence condition is met.
Initial behavior of singular systems was also taken into The organization of this paper is as following. In section
consideration while performing model reduction. However2, Some preliminaries and the suboptimal model reduction
as pointed out in [7], the main drawback of this method i®roblem will be presented. In section 3, the Silverman-
the high level of computational effort. Ho algorithm will be given. In section 4, the main results
In 1994, Perev and Shafai [7] considered model reductiodoout the ., suboptimal model reduction will be given
for 5ingu|ar System via balanced realizations and ga\ﬂ;ﬂd the proposed algorithm will be illustrated in section 5.
a model reduction algorithm. Unfortunately, their method>onclusions will be given in section 6.
ignored the impulsive behavior which is of paramount
importance to singular systems. The reduced order model Il. PROBLEM FORMULATION
may become a normal state space system, which has naConsider the following singular systems
impulsive behavior and does not track the original system
response properly. Liu and Sreeram [4] used the Nehari's Ei(t) = Az(t) + Bu(t), «(0—) = o,
approximation algorithm and overcome the problem. The y(t) = Cx(t);
reduced-order model is a really singular system and the ) ) _
approximation has been obtained as desired. For discré¥@erez(t)eR" is the state vector(t)cR? is the input
singular systems, Zhang et al. [3] discussed the san¥gCtor andy(i) € R™ is the output vectorE € R™*",
AeR™* ™ BER™™4, CeR™*™ are constant matrices with
Jing Wang and Qingling Zhang are with Institute of Sys-F possibly singular. Assume that the matrix p@f, A) is
tem Science, Northeastern University, Shenyang, 110004, P.R.Chiaggmar (i.elsE — A| # 0). In this paper, the realization

glzhang@mail.neu.edu.cn .
Wanquan Liu is with School of Computing, Curtin University of quadruple (E7A7B7C) is used to represent the system

Technology, WA 6102, Australisvangquan@cs.curtin.edu.au (1). All the matrices in this paper are assumed to have
Xin Xin, Dept. of Communication Eng., Okayama Prefectural U”iver'appropriate dimensions.

sity, Okayama, Japan L .
V. Sreeram, Dept. of Electrical Eng., University of Western Australia, From [2], it is known that there exist two square non-

WA, 6002, Australia singular matrices) and P such that system (1) can be
0-7803-8335-4/04/$17.00 ©2004 AACC 119

@



transformed into the Weierstrass canonical form:
z1(t) = A121(t) + Byu(t),
y1(t) = Cray(t);
Nio(t) = x2(t) + Bau(t),
Y2(t) = Coma(1);
wherex (t)eR™, z2(t)ER™?, n1 + ny = n, NER™2*"2
is nilpotent, and
QEP = diag(I,N), QAP = diag(41,1),
CP=[C1 Co], P~ la(t) =[z](t) 23 (1)]",
QB =B BJ]", y(t)=yi(t) + ya(t).

21(0—) = x1 0,

)

x2(0—) = x2,0,

Let
Qe = diag(Q, Qr),

Then theH ., norm of the transfer function matrik. (s)
for the error system is

1Ge(5)]loo

= |C.P.P Y (sE. — A) 7 Q. Qe B oo

= ||Cy(sI — A1) ™' By — Cy.(sI — Ay,) By,
+Cy(sN — I)*lBQ — Oy (s8N, — I)*1B2T||OO. @)

P, = diag(P, P,).

Now the problem of thé<{., suboptimal model reduction
is to find a reduced-order singular syst¢h., A,., B,., C..)

System (1) is called system restricted equivalent(s.r.e) #ith dim(E;) < dim(E) such that for a given positive

system (2). The transfer function matriX(s) is invariant

under the s.r.e. transformation, i.e.,

G(s) = C(sE—A)"'B=CP(sQEP — QAP)"'QB
= C1(sI — A) "' By + Ca(sN — I) "' By, (3)

and

CQ(SN— [)_1B2
= —CyBy — sSCoNBy — -+ — s" 1O, NP1 By,

where Cy, N 1By #£ 0.

number~y, the following holds:

1Ge(8)lloo < -

First, it is known from [7] that|G.(s)|| is finite if and
only if

Co(sN—I)"'By—Cy,.(sN.—I) "' By, = —CoBo+C, Bo,,
ie.,

CoN'By = Cop N} By, i=1,2,--
CQ’I‘NZBQ’I‘ =0,

The aim of this paper is to investigate theg, suboptimal )
model reduction for singular systems. Suppose the reduced-" this case,
order singular system is 1Ge(5)]|o

Eyi.(t) = Ayz,(t) + Bru(t), = ||Cy(sI — A)) " By — Cy(sI — Ay,) 1By,
y(t) = C’rwr(t); _C2BZ + CZTBZT‘||00~

which is assumed to be regular. Then there are two matricesTherefore, if (8) and (9) are satisfied, th&, suboptimal
@, and P, such that model reduction problem can be solved via using the
10 (1) = Anyzie(t) + Bryult), conven.tlonal approaches. As |nd|cated_ by previous analy3|s,
the main concern for the model reduction problem is to find
yir(t) = Crrarr (2); suitable(N,., Ba,., Co,.) such that equations (8) and (9) are
N,io,(t) = 2o, (t) + Boru(t), satisfied simultaneously.
yor(t) = Copxar(t);

(4)

z1r(0—) = Z1r0,

.I‘27-(O—) = T2r,0,
In addition, it is known that the transfer matrix for a
(5) system is determined only by the controllable and observ-
where z1,.(t) € R™r, 2o,.(t) € R™", ny, + no, = n,, able subsystem. Therefore, the core issue in this paper
N, € Rn2r*n2r is nilpotent, and is to discuss the model reduction of the fast subsystems
) ] (N, I, By, Cs) which is controllable and observable, i.e., to
QrEy Py = diag(I, Ny),  QrArFr = diag(Aur, ), find the fast subsystert,., I, Ba,, Cs,) With nz, < 12
Cr P = [C1r Carl, Pflxr(t) = [x%;(t) 'rgr(t)]Tv

satisfying (8) and (9).
Q,B, = [BL. BLIT, y(t) = yir(t) + y2r (1) _The approach adopted in [8] is f[o_ fimd, first, then one
) . tries to solve (8) and (9) for obtaining,, and Cs,.. The
The associated error system between the original syst§§foposed approach has some significant disadvantages. In
and the reduced-order system will be one hand, for a givedV,., (8) and (9) may not have solutions
Bio(t) = Aczo(t) + Beu(t), BQ,,A,C_Q,,A. On Fhe _other hand, even the solutions for these
D = G (t)- (6) equations exist, it may be still very hard to solve them
Ye(t) = Cee(t); due to their nonlinear nature. In [12], a new approach was
wherez? (t) = [#7(t) 2T (t)]7, y. € R™, and proposed with necessary and sufficient conditions obtained
. ‘ for the solving (8) and (9) and a model reduction algorithm
E. = diag(E, E;), Ac=diag(A, Ay), was designed. However, those given conditions are not
BT =[BT BNT, C.=[C -G, explicit since they are expressed by decomposed matrices.
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In this paper, the following questions related to the model IV. MAIN RESULTS
reduction problem will be addressed. The existence problem gy, previous analysis, it can be seen that the order
of (Ny, I, Bar, Car), nar < mo satisfying (8) and (9) IS f the minimal realization forP(s) is determined by the
given explicitly. Their solutions will be further investigated . of Mo,. For a given systeniN, I, B, Cs), let P =
based on the results in [12]. Here we adopt a different, nip, ;= 1.... h—1. Then the s[;bop'timal model

approach based on the minimum rank for a matrix Sebgyction problem is equivalent to finding a suitabif
instead of matrix decomposition. The lowest bound for thg, replace P, such thatn, = ranKM] > rankM,] =

dimension of N, is given and finally a model reduction nar, Where M, corresponds taBy, Py,--- , P_1. So the

algorithm will be presented. _ existence issue of such, will determine whether a given
In order to address all these problems, the following,st sypsystem can be reduced or not. The following theo-

algorithm will be presented first and it will be used in the,ey will give a necessary and sufficient condition for the
sequel. existence of suct,. If such P, exists, the lowest order of

1. SILVERMAN-HO ALGORITHM the reduced system can also be found.

) ) . Without loss of generality, suppose thh, is partitioned
We introduce the following lemma before presenting a¢

useful algorithm. Mo — -Py K;
Lemma 1:[1] For any polynomial matrixP(s), there YT Ky, K3 |
always exist matrice®/, B, andC, with N nilpotent, such

that P(s) = C(sN — )"\ B. and
Next, we will show the procedure to derivg€, B, C for gt h
a given polynomial. For a given polynomial matrix, [ % ‘ K } "2 B2
2 3 = . .
P(s)=Py+Pis+-+ Prs" ", - :
. Yh-1)m | Bh—1)m
where P, €¢ R™™, 0 < 4 < h — 1. The above lemma ~
assures the existence &, C, and the nilpotent matrixV In order to find suitableR, for the possible model
satisfying P(s) = C(sN — I)™'B. Let reduction, one can decompose
[ o1 Qi |
-P —P1 - —Pho P 702 o
-, -P, - =Py, 0 . .
]\/_[Oé P01 Kll
Py =Ppq - - 0 =5 | Kl]:{ Poz | K12 }: o) et
—Py_4 0 0 No(m—d+1) | Am—d+1
c thth’ (10) . .
i - P - —P,_1 0 L TNlom Qm J
. —P, —P5 - 0 0 whereK 5 consists of the row vectors @&f; with the fewest
My = vector number satisfying
—P,4 0 - - 0
L 0 0 e 0 rank{Km}:rank{Kl}
c thth, (11) K3 K3
and7 2 rank M. This is possible since one can choose the maximal indepen-

Mo can be denoted a&lo(Py, P1,--- , Py_1). Now one dent vector set including(s. Then one can show that

can decompose
P rank[ K1 } = rank[K3] + d,

My = L1 Lo, K3

where L; € R"™ 7%, L, € R™"™ are of full column and i.e., anye; (1 < i < m —d) is a linear combination
row rank, respectively. Further, |€8 and C, respectively, of . —aq1,am—aq2, -+, am @andpy, Ba, -+, Bip—1ym- SO
be the firstm columns of L, and the firstr rows of L;. one can obtain
Then one can prove that m (h—1)m

N— (L{Ll)—lL{Mng (LQLg)il, Oéi:- Z ;i + Z bixBr, forall 1 <i<m-—d.

j=m—d+1 k=1
will be nilpotent and(N, B, C) will be a minimal realiza- . he choice of th _ deri t(112)
tion for P(s) [2]. rom the choice of the matriX’;», one can derive that
This procedure will be very useful for us to design a Py Ki2 |

model reduction algorithm for the fast subsystems. rank Ky, Ks | d+ranki, K. (13)
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The above equation indicates th&t, has no effect on Though the necessary and sufficient conditions for the
the rank for the matrix in left side of equation (13). Nowexistence for the finité¢<,, norm of the error system are
the following theorem can be obtained. given in previous theorems, it is still hard to construct

Theorem 2:Given (N,I,B,,(Cs), there exists a an effective algorithm for obtaining the lower order fast
reduced-order, controllable and observable systesystem. Next, we will present a constructive procedure for
(Ny, I, Ba,, Cy) with its dimensionngy,. < no, such the model reduction problem. In other words, with given
that theH.. norm of the error system exists if and only if satisfying the requirements, one needs to design a procedure

for finding P.

From TheorerTrL122>, gn: ?;nwége tifwgglays an important According tg Theorem 6, one only needs to discuss two
role in the existence issue for the reduced order systen%"?ses respectively.

Next, this problem for the finite<,, norm of the error Case Ly > d + rankKK K3]_
system will be investigated in different point of view and oM (12), one can replaog; with

we will give an explicit formula ford. First, the following m (h—=1)m
two lemmas will be presented. o= Z ai;Noj+ Z bikve, forall 1 <i<m-—d,
Lemma 3:[13] Let A € R™*", B € R™*P, C € j=m—d+1 k=1
RI*" be constantF’ € R*4 be variable. Then : 3 (14)
B and obtain a newFy;. The associatedV/, will satisfy
m}n rank[ cF ] ranMo] = d +rankKK, K3]

With the aboveM,, one can see that
=ranA B]+ rank é —rank[A] .
Lemma 4:[13] Let ryni, = m}én rank[A + BKC],
Tmax = MAX rank[A + BKC]. Then for anyr, within
Tmin < 70 < Tmax, there exists € RP*4, such that

ro = rank[A + BKC].
From the above two lemmas, one can easily get the
following lemma and theorem. The following theorem gives b 0
another necessary and sufficient condition for the existence pi = { 0 0 ] )
of P, such that the rank ofMy(Py, P, - ,Py—1) is . T )
reduced. If it exists, the minimum order of the reduced? Which thei-th row of the matrixp; is 70; — 7joi, with all

My = My + My — My
~ Py — P, 0
:M()+|: 010 01 O:|
~ m—d
:M0+Zp27
=1

ere

system can also be found. the other rows being zeros. Note that rgvlk + p;] is one
Lemma 5:Let A € R™*" B ¢ R™*P, (' ¢ Ri*n pe More than rankl/,| at most. Therefore, there existssuch
constant,F € RP*4 be variable, that rankMo + >=7_, p;] = na,, 7 <m — d due to
. A B rank M| =
Tmin = 10 rank{ cF } , - ank My = no,
Tmax = Max rank[ 4 B } ~
F ¢ F |’ ranMoy] = d + rankKs Ks| < nar < na.

then for anyrg satisfyingrmin < 79 < Tmax, there exists

In order to reduce the computation cost, one can first
F € RP*4, such that

compute
A B - P
ro=rank| - o |. rank | My + Zpil =ndY,
Now Theorem 2 can be interpret’in another way. i=0

Theorem 6:Given (N, I,B,,C5). There exists a
reduced-order, controllable and observable syste
(Ny, I, Bay, Ca,), With ng,. < ng, such that theH
norm of the error system is finite if and only if p+na,.—ndl)
rank | My + Z pi| = néi);

=0

wherep = ny. —d—ranK, Kj]. If ngi) < ns,, ONE can
Hrther compute

K +ranK, Kj] —rank[K3].
K3

The proof for this theorem is obvious from Theorem 2 _ )
and Lemma 3. Here the necessary and sufficient conditigAtnerwise one can deduce that= p. If n,," < na., one

ng > na, > rank

is given by the parameters;, K, and K. computes
Corollary 7: The numberd in Theorem 2 is S O )
Y OO
d= rank{ §1 ] — rank K. rank | Mo + ZO pi| =ns,’;
3 =
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Otherwise; = p+na, —néi), and so on. After finite steps, Step 3 To testify whether the fast system can be reduced

r must be able to be reached such that according to Theorem 2 or Theorem 6. If yes, continue, else
r stop.
ranNMO + Zp,] = Noyr. Step 4 To find out Py;and Py». If
=0 noy > d+rankK, Ks),

: Actually, It can be seen that the maximal number of St®PShe can obtairP; as in case 1 in the previous section, and

m—d m—d go to Step 6. Otherwise, one can obtd as a function
{J +m—d—p { J ) of free variableQ) in case 2.
Step 5 To solve the unconstrained optimization problem
(16) and findA,,, By,, Ci,, @1 and Fy.
Step 6 To obtain the minimal realization
T(Nr, I5,, Ba,, Cs,) via the Silverman-Ho algorithm for

where VT‘dJ is the largest integer less tha#-.

Case 2.ny, = d +rankK, Kj|
In case 1,P); keeps unchanged, but from the choice o

K19, Py, doesn't affect the rank of P*(s)=P; +Pis+- + Py_1s" "
Py Kis Step 7. The following system will be the reduced-order
{ Ky, K } : system for the original system;

Thus, Py, can be taken as free variables. In this case, one 210(t) = Apa1e(t) + Brru(t),  21,(0-) = 2110,
can replace)y; in Py; with Y1r(t) = Crrz1,(t);
Nri2r(t) = x2r(t) + BQru(t)7 xZT(O_) = T2r,0,

m (h—1)m
7781: Z aijn0j+ Z bzk'Wm for all 1 <i1<m-—d. y2r(t) = CQTxQT(t)'
j=m—d+1 k=1 V. ILLUSTRATIVE EXAMPLE

(15) : : .
In (15), 10, is regarded as free parameters to be deter- In t_hls section, we will present an example to ShOW the
mined in the following optimization process; — d + 1 < effectiveness of the proposed algorithm. Also we will do
j < m. This indicates that the updated mati;, is the Some comparisons with the results in [8]. Consider system

function with variablePy,. In order to differentiate with the (V> 1, B, C) with
original Py, here the notatiod) is used to replacéy, and [ 0.2532 —0.0273 0.1175 —0.0267
denotePy; as Pj; (Q). Then N 0.0207 —0.3704 0.0195 0.1147
. —0.0304 —0.8768 0.0096 0.2827 |’
-P; = { POlQ(Q) ], | —0.8642 0.0412 —0.3995 0.1075
[ —0.5996 —0.7491
where @ is a free parameter to be determined. Now, one 0.7287 —0.5638
can see that the suboptimal model reduction problem is | —0.2961 0.2501 ’
equivalent to findingA,1, B,1, C,1, and@ such that —0.1478 —0.2418
IC1(sT — A))"1By — Cip(sI — Ay) 1By, [ —14.0707 —2.2387 —0.1650 —0.9886
. C = —4.7730 2.8568 —0.0778 —0.2263
—C2B2 — Ky (@)l <, (16) | 127743 11680 1.2586  0.9315
for a given positive numbey. As discussed previously; It can be verified thatV is nilpotent and this system is
can be obtained as a function of the mat€if the fast a minimal realization. Now, one can compute
system can be reduced and the conventional approach in 712 31
[9] can be used to solve this unconstrained optlmlzanonfp0 —CB=|52 |, -P=CNB=|01 |,
problem. 8 9 93
With previous analysis, one can obtain the following con- 10
clusion.
Corollary 8: The lowest order of the reduced-order sys- ~P=CN*B=|10 |,
tem isd + ranK, K3]. 30
Now it is time to present a procedure for constructing &nd
lower order fast subsystems. —-P; -P, 0
Algorithm Ki=[ =P =Py ], KQ:{ —P, } : KF{ 0 0 } '
Step 1 To decompose the original system and obtain th‘?hen, one can obtain that
fast subsystem. If there exists controllable and observable
fast part, denote it a6N, I, By, C,), else stop. d=1, ranKK, K3]=2,
Step 2 To computeP; = —C, N?B,, and obtainM. d+rankK, K3l =3 <4,
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VI. CONCLUSIONS

In this paper, we developed a new procedureHbf
suboptimal reduction algorithm for singular systems. Some
necessary and sufficient conditions are obtained which can
guarantee the existence of a reduced-order system with
finite H., norm of the error system. The contribution of

so this system can be reduced according to Theorem 2. Let
nor =3 =d+ranfK, Kj|, one can use the approach in
case 2 to obtain a lower order model.

Let @ = [ 1 ¢z ] be free variable, where; and ¢-
are to be determined. Then one can chahge 9 | to

o @ ]+2[0 1]=[3n 3@p+2], this paper can be concluded as following.
and changé 7 12 ] to First, the existence of the reduced order system with finite
H~ norm of the error system was investigated thoroughly.
(g1 @ |+3[0 1]=[qg ¢+3] Some necessary and sufficient conditions are obtained.

Second, a design procedure is designed for obtaining the

Then one will derive that reduced order systems. The core contribution is that a free

o +3 parameter is identified in the optimization process. This free
—Pr=1 q 0 parameter can reduce tHé.. norm of the error system
31 3qs+2 significantly as evidenced in the illustrative example.

Finally, the results in this paper can be extended to the
By using the Matlab function fminunc(), one can achievease for discrete singular systems without much difficulty.
the optimal solutiorf q1 g2 | = 3.1241 3.0072 | with Compared to the results in [10], [11], one can see that the
the minimal’H., norm of the error system disadvantage of this paper is that the system decomposition
is used in this paper in stead of the original parameters.
This is due to the difference that the singular systems with
impulsive behavior are treated in this paper and the results in

|Ge(s)|2. = |CB — C,B,||>, = 56.9381.

Implementing the Silverman-Ho algorithm, the parame
ters of the reduced order fast system are obtained as t
following:

], [11] only deal with singular systems without impulsive
ynamics.
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