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Abstract— The paper investigates the properties of general 

reduced order models obtained by projection of a high order 
system. It answers questions such as are any two models of 
different orders related by a projection? Is it possible to obtain 
the same reduced order model using different projections? 
How to find, if it exists, a projection that relates the two 
models? Etc. It is shown that answers to those questions can be 
obtained by investigating the properties of a certain matrix 
pencil. In case the system is square the problem becomes that 
of a generalized eigenvalue, and in non-square systems the key 
tool is the Kronecker Canonical Form.  

I. INTRODUCTION 
OST of the order reduction methods include the 

following two steps. The first one is a state 
transformation into a state space realization in which the 
state variables can be ranked according to some measure of 
importance. The second step is truncation of the least 
important state variable. The two operations together 
constitute a projection into a lower dimension, and are 
therefore called Projection Order Reduction (POR). Their 
outcome is a Projection Reduced Order Model (PROM). 

The various POR methods differ in the criterion that is 
used for ranking the state variables. Probably the simplest 
method is partial fraction expansion, which is equivalent in 
the state space to transforming the system into a diagonal 
realization. The method is widely used for lightly damped 
systems, where it is known as ‘modal truncation’ [2], [8]. 
The most popular POR method is Truncated Balanced 
Realization [11], with all of its extensions [2], [4], [10], 
[13], [17]. In the basic formulation of the method [11], the 
system in the new realization has controllability and 
observability gramians that are diagonal and equal. State 
variables that correspond to larger diagonal elements are 
more controllable and observable, and are therefore 
retained in the reduced order model. In other variations the 
goal is to balance other matrices, yet the structure of 
transformation followed by truncation still remains. Another 
POR method is Component Cost Analysis [14] where the 
contribution of each state variable to a certain cost is 
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investigated.  
While in the methods that have been described so far the 

projection is an intentional part of a heuristic algorithm, in 
other cases it arises naturally. For example, Wilson [15], 
and later Hyland and Bernstein [7], have solved the optimal 
L2 model reduction problem by direct optimization, without 
imposing any structure. It turned out that it is given in terms 
of a projection into a lower order subspace and therefore is 
sometimes referred to as the "optimal projection". That 
projection structure was used in [18] to derive an efficient 
algorithm for a sub-optimal L2 reduced order model. 

Despite the widespread use of POR, very little, if any, 
works dealt with its intrinsic properties. This paper is 
concerned with problems, which apply to POR in its general 
form. For example, given two models of different orders, is 
it always possible to obtain the one with the lower 
dimension by POR of the other? Is it possible to obtain the 
same reduced order model using different projections? Etc. 
The problem was first addresses in [5], [6], with partial 
answers to those questions, for square systems. The current 
paper extends those results into more general framework, in 
particular the case of non-square systems. It is shown that 
the main tool of the analysis is the Kronecker Canonical 
Form of a certain matrix pencil. The structure of that pencil 
reveals if a reduced order model can be a PROM and if the 
projection leading to it unique. 

II. ORDER REDUCTION VIA PROJECTION 
The model order reduction problem for linear systems is 

usually defined as follows. Given the n-th order linear, time 
invariant, system G(s), find an r-th order (r<n) system 
Gr(s), with the same number of inputs and outputs, which is 
an approximation of it. Most of the existing order reduction 
methods are defined in state space. They start with a state 
space realization of G(s)  
 )()()( tButAxtx +=&  (1a) 

 )()()( tDutCxty +=   (1b) 

where x∈Rn, u∈Rm, y∈Rp, and look for a reduced order 
model 
 )()()( tButxAtx rrr +=&   (2a) 

Can Any Reduced Order Model Be Obtained 
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 )()()( tuDtxCty rrr +=  (2b) 

where xr∈Rr. The common, two steps, structure consists of 
a state transformation into a more insightful realization, 
followed by truncation of the ‘less important’ state 
variables. The various existing methods differ by the 
transformation that is used and the criterion for ranking the 
state variables. Let the n×n nonsingular matrix T, and its 
inverse, be partitioned as 
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with R∈Rn×r , L∈Rr×n. The state transformation x=Tx’ leads 
to the following realization. 
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 [ ] )()(')( tDutxRCCRty +=  (4b) 

Suppose that, using any criterion, x’1 is more important 
than x’2. Then it is assumed that x’2≈0 and the reduced 
order approximation of the system (1) is  
 )()()( tLButLARxtx rr +=&  (5a) 

 )()()( tDutCRxty r +=  (5b) 

It is evident from (5) that the direct transmission term Du(t) 
plays no role in this order reduction procedure. It will be 
therefore assumed from now on, for convenience, that D=0. 
Since L and R are sub-blocks of T and its inverse they 
satisfy 
 rILR =  (6) 

The model (5), with any L and R satisfying (6) is known 
as Projection Reduced Order Model (PROM). To see the 
origin of this name, define the matrix 
 LRP = , (7) 
and the pseudo full order state vector 
  )()()(ˆ tPxtRxtx r == , (8) 

which is xr expressed in the coordinates of the n-th order 
space of x. From (6) it follows immediately that P2=P, 
hence P is a projection matrix. Multiplying eq. (5a) by R, 
the reduced order model can be written as  

 ))()(ˆ()(ˆ tButxAPtx +=&  (9a) 

 )(ˆ)( txCty =  (9b) 

Hence P projects obliquely the time derivative of the state 
vector into a certain subspace. The PROM is therefore a 
minimal realization of the system (PA,PB,C). The identity 

)(ˆ)(ˆ txtxP =  implies that the reduced order model is also a 
minimal realization of (PAP,PB,CP). The latter form is 
sometimes preferred since it resembles the familiar 
similarity transformation.    

Despite their wide use, PROM’s have very few generic 

properties. They do not preserve stability or instability, 
relative degree, and even minimality or non-minimality.  
The following easily proven results discuss the invariance 
properties of under state transformations.  

Property 1: The projection P that relates (A,B,C) and 
(Ar,Br,Cr) is invariant under state transformation of the 
reduced order realization. 

Property 2: The projection P that relates (A,B,C) and 
(Ar,Br,Cr) changes under state transformation of the full 
order realization into TPT-1. 

Assuming that (Ar,Br,Cr) is minimal, Property 1 means 
that P is a projection into all minimal realizations of Gr(s). 
Property 2 means that if there exists a projection relation 
between certain (A,B,C) and (Ar,Br,Cr), there exists a 
projection relation between any pair of minimal realizations 
of G(s) and Gr(s). However the specific projection is not 
preserved. Hence for systems, rather than realizations, the 
only relevant question is whether a projective relation 
exists.  

So far we have discussed the properties of two models, 
with different order, which are known to be related by a 
projection. We would like now to consider the inverse 
problem, i.e. finding the projection that relates two given 
models. In particular, the existence and uniqueness of such 
projection. The questions can be phrased as follows: Given 
the system G(s), is any r-th order Gr(s), with the same 
dimensions, a PROM of it? And if so, can Gr(s) be reached 
from a single realization of G(s) by more than one 
projection?  

Remark 2.1: Throughout this paper we consider only real 
projections, so expressions like “a projection does not 
exist” should read as “a real projection does not exist”, etc. 
This distinction is important especially in square systems 
where a certain (real parameter!) Gr(s) may be obtained 
only by a complex projection matrix P. 

The simplest possible case, second to first order, can be 
analyzed in using a direct approach and elementary 
algebraic and geometrical operations [5]. This line of 
analysis, however, does not seem promising for higher 
order systems. In the next section the same problems are 
addressed for the general case.  

III. EXISTENCE AND UNIQUENESS  
As was shown in section II, the existence of a projection 

is independent of specific realizations. Let (A,B,C) and  
(Ar,Br,Cr) be any realizations of G(s) and Gr(s) respectively. 
Then for Gr(s) to be a PROM of G(s) the following 
relationships must hold. 
 rrrr CCRBLBALARILR ==== ,,,  (10a-d) 

Considering L and R as the unknowns, equations (10) are 
a set of (2r+m+p)r equations with 2nr unknowns. The 
number of equations and unknown will be the same for  



 
 

 

 r*=n-(m+p)/2 (11) 
There are three possible cases.  
1. r < r*, i.e. more unknowns than equations. Seemingly 

that means that the equations have infinitely many 
solutions, hence generically any Gr(s) is a PROM of a 
given G(s), and can be obtained via infinitely many 
projections. It will be shown later that this is indeed the 
case for square systems, but not necessarily true for 
non-square systems. 

2. r = r*, i.e. same number of equations and unknowns. 
Seemingly that means that the equations have a finite 
number of solutions, possibly zero. Not every Gr(s) is a 
PROM of a given G(s). Those who are, can be obtained 
by a finite number of projections. Again this is 
generically true only for square systems. 

3. r > r*, i.e. more equations than unknowns. That 
means that generically the equations have no solution. 
For a given G(s), the class of models Gr(s) that are 
PROM has measure zero.  

As an example for case 3 (which is possible only in 
MIMO system), let 
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It can be easily shown that the a projection relationship 
between these second and first order systems exists only for 
(a, b1, b2) satisfying  

 ( ) 021
2

21 =−−+ babbb   

Hence the PROMs constitute a two-dimensional surface in 
the three dimensional space of 2×1 first order models. Case 
3 implies that in some cases the class of reduced order 
models that can be obtained by projection is very narrow. In 
heuristic methods the question is whether it is justified to 
look only at that narrow class. Even more surprising is the 
fact that the optimal L2 reduced model belongs to that class. 

Eqs. (10) have a clear structure. (10c,d) are linear, while 
(10a,b) are bilinear, i.e. contain only cross product terms 
between the two groups of unknowns (L and R). The linear 
equations can be replaced by 

 YCCCRXBBBL rr ⊥
+

⊥
+ +=+= ,  (12a,b) 

where B+∈Rm×n is a left inverse of B, and B⊥∈R(n-m)×n is a 
basis for the left null-space of B. Similarly, C+∈Rn×p is a 
right inverse of C, and C⊥∈Rn×(n-p) is a basis for the left null-
space of C. X∈Rr×(n-m) and Y∈R(n-p)×r are the new unknown 
matrices. Substituting them into (10a,b) and rearranging, the 
equivalent equations are  
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Defining [ ]rIXX =~ , T
r

T IYY ][~ = , these equations can 
be written as 

 2,10~~ == iYHX i  (14)  

where H1, H2∈R(n-m+r)×(n-p+r) are the coefficient matrices. Eq. 
(14) implies that  

 CYHHX ∈∀=− λλ 0~)(~
21  (15) 

The solution will therefore be obtained by investigating the 
properties of the linear matrix pencil λH1-H2. We therefore 
recall some facts regarding linear matrix pencils taken from 
[1], [9], and [12].  

For every h×q pencil λE-A there exist square and 
nonsingular S and V such that 

 { }


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=−= 00

0)()()( 21
λλλ iFblockdiagVHHSF  (16) 

where the linear pencils Fi(λ), i=1,…,K, which are unique, 
assume one of four possible structures 

 



















−
λ

−
λ

=














−λ

−λ
=

1

1,
1

1

O
O

OO type2type1

 FIor,IJ −λ=−λ= type4type3 . 

J  is a nilpotent Jordan matrix and F  is in Jordan form. 
This is known as the Kronecker Canonical Form (KCF). 
When h≠q almost all matrix pencils λE-A have the same 
KFC depending only on h and q. This is the Generic 
Kronecker Structure (GKS). A precise definition of that 
notion can be found in [1], but we will continue with the 
intuitive definition stated above. The explicit structure of 
the GKS will be discussed in Section V. The normal rank of 
λE-A is defined as 
 00)( lhrqAEnrk −=−=−λ  (17) 

 where r0 and l0 are the number of type1 and type2 elements 
respectively. In accordance with considering the generic 
case, we make the following assumption regarding λH1-H2. 

Assumption 3.1: The matrix pencil λH1-H2 has full 
normal rank, i.e. nrk(λH1-H2)=min(h,q). Equivalently, there 
exists a scalar λ0 such that λ0H1-H2 has full rank. 

Assumption 3.1 implies that there exists a scalar λ0 such 
that λ0H1-H2 has full rank. Notice the pencil is only a tool 
for solving (13). Hence it can be assumed, without loss of 
generality, that H1 has full rank. Because if it is not, it can 
be replaced by λ0H1-H2, which is then labeled as H1.  

The sparse form of F(λ) is the key to the derivations 
throughout this paper. We will use the notation FIk,Jq(λ) to 



 
 

 

denote the sub-matrix obtained by selecting only the rows 
and columns belonging to the sets Ik={i1, … , ik} and Jq={j1, 
… , jq} respectively. In particular, FIk,Jq(λ)=0 means that 
Fij(λ)=0 ∀ i∈ Ik, j∈ Jq 

Lemma 3.2: Let Ir={i1, … , ir} and Jr={j1, … , jr} be two 
sets such that FIr,Jr(λ)=0 and let 
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consist of rows of S and columns of V belonging to Ir  and 
Jr  respectively. If 2Ŝ and 2̂V  are nonsingular, then 
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is a solution of (13). 
Proof: It follows from (15) that Fij(λ)=0 implies siH1vj= 

siH2vj=0, hence .0ˆˆˆˆ
21 == rrrr VHSVHS The structure of X~  is 

recovered by pre-multiplying by 1
2

ˆ−S . Similar operation 
gives Y.                                                                          

The solution given by (19) is independent of pre-
multiplying rŜ and post-multiplying rV̂  by nonsingular 
matrices. However, in general it is not unique, as explained 
in the next corollary. 

Corollary 3.3: Let Ir and Jr satisfy Lemma 3.1 (including 
the invertiblity of 2Ŝ and 2V̂ ). If there exists sets Ir1 and Jr2, 
with max(r1,r2)>r, such that Ir⊆Ir1, Jr⊆Jr2 and FIr1,Jr2(λ)=0, 
then (13) has infinitely many solutions.   

Proof: Assume first that r1=r+1, r2=r. Then there exists a 
solution based on rr VS ˆ,ˆ and one can construct 1

ˆ
+rS , i.e. a 

matrix with the properties of rŜ , by adding one more row. 
Adding the r+1 row, multiplied by any constant, to any of 
the other rows, yields a new “ rŜ ”, while 2Ŝ  will become 
singular only for at most one value of that constant. In 
general, create 1

ˆ
rS and 2r̂V of all rows and columns in Ir1 

and Jr2. Then 11
ˆ

rSU and 22
ˆ UVr can be used instead of 

rŜ and rV̂ for almost all full rank U1∈ Rr×r2, U2∈ Rr1×r.                 
The next lemma, whose proof is immediate from the 

construction of the KCF, characterizes the rows and 
columns that satisfy Lemma 3.2.  

Lemma 3.4: Let Sk and Vk denote the sets of rows of S and 
the columns of V, respectively, which correspond to the 
block Fk(λ), where SK+1 and VK+1 correspond to zero rows 
and columns, if exist. Then siH1vj=siH2vj=0 if one of the 
following holds 

1) lkVvSs ljki ≠∈∈ ,, .  

2) si is the ik row of Sk, vj is the jk column of Vk and 
.0),( =kkk jiF   

At this point we distinguish between square, i.e. same 
number of inputs and outputs, and non-square systems, as 
their analyses take somewhat different routes.  

IV. PROM’S OF SQUARE SYSTEMS 
This case has already been discussed in [5], [6] and its 

results will therefore be given in a concise manner. When 
the system is square, i.e. m=p, the pencil λH1-H2 is square 
as well and Hi∈ Rq×q where q=n+r-m. The problem reduces 
then to that of generalized eigenvalues and eigenvectors. 
Assumption 3.1 means in this case that the matrix pencil is 
regular [9], and the discussion following it leads to 
assuming that H1 is nonsingular. (in terms of Section III the 
GKS in this case consists of one type4 element). Consider 
the generalized eigenvalue problem 
 0)( 21 =− vHHλ  (20)   

which has N distinct (in the geometrical sense) eigenvalues, 
each of multiplicity Nk. S and V are square, nonsingular, real 
matrices such that 

},,{)()( 121 NJIJIdiagVHHSF −−=−= λλλλ L  (21) 

and Jk are real Jordan block.  The analysis then uses a 
microscopic form of Lemma 3.4, where Jk, the subblocks of 
the type4 element play the same role as the sub-pencils Fk. 

The following Theorem, which is the main result of this 
section, gives the maximum value of r, and the number of 
projections relating the full and the educed order models.  
Theorem 4.1:  
a) Generically, any model with order r < r* (r*=n-m) is a 

PROM of the full order system, and it can be obtained by 
infinitely many projections. 

b) No model of order r > r* that leads to the pencil (21) is a 
PROM. A PROM of order r > r* leads to a singular 
pencil. 

c) If r= r*, then  
1) All the solutions of (13) are of the form (19). 
2) The maximum number of real solutions of (13) 

(equivalently, of (10)) is   
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3) If n-m is odd and all the eigenvalues of (20) are 
complex then (13) has no solution. 

Proof: see [5]. 
 The following result sheds new light on Theorem 4.3. 
Lemma 4.2 [16]: The generalized eigenvalues of (H2,H1) 

are zeros of G(s)-Gr(s). 
Two topics get a clear answer using this result. First, the 

pencil F(λ) is singular when each value of s is a zero of 
G(s)-Gr(s), namely when det(G(s)-Gr(s))≡0. In SISO 
systems this means that G(s) and Gr(s) are two realizations 
of the same system, hence G(s) is necessarily nonminimal. 



 
 

 

In MIMO systems the situation may occur with minimal 
G(s) as well. The second topic that gets an immediate 
answer is the question in the title of this paper. In a square 
system with r=n-m, a reduced model cannot be obtained via 
projection if r is odd and all the zeros of G(s)-Gr(s) are 
complex. 

V. PROM’S OF NON-SQUARE SYSTEMS 
In this section the generic situation in a non-square 

system is considered. The dimensions of Hi are h×q, where 
h=n+r-m, q=n+r-p. To simplify the notation, we assume 
that m>p (the system has more inputs than outputs) which 
means that q > h. Clearly all the results apply to the other 
case by interchanging ‘columns’ and ‘rows’ everywhere. 
Assumption 3.1 implies in this case that the KCF does not 
include type2 and type3 elements, as well as zero rows. This 
is automatically included in the GKS.  

Define the integers α=[h/(q-h)] and β=h mod (q-h), i.e.  
 βα +−= )( hqh   (22)  

For q<2h The GKS has the following structure [1].   
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where Lk as a type1 block with dimensions k×(k+1). In the 
(highly unlikely in reality) case where q>2h (equivalently q- 
h >h), α=0, β=h, and F(λ) assumes the following structure 
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In both cases, permutation of rows and columns gives the 
following structure.  
 ]0[]0[)(' )()( hhqhhqhh IIF −×−× −= λλ  (25)  

The diagonals overlap in case the pencil is in form (23). As 
in the square system case we ask what is the maximum 
order of a model that guarantees it to be a PROM. The 
problem is more complicated than in the square case since 
there is no single simple formula that relates the maximal 
zero sub-pencil to the dimensions h and q. Adding to that 
the fact that those dimensions depend on r itself only 
increases the complexity.  

The strategy for extracting the maximum zero sub-pencil 
is to use as many rows as possible that belong to same 
block. This is because while choosing a single row into the 
set Ir eliminates two columns from belonging to the set Jr , 
choosing l rows from the same block disqualifies only l+1 
columns. The dependence on the block structure is thus 
evident. Suppose the rows of Ir come from M separate 
blocks, each one contributing li rows. In order to have 
enough columns for a square matrix of zeros, the following 

must hold  

 Mrqlqlr
M

i
i

M

i
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== 11
)1(  (26) 

Recalling that q=n-p+r we have 
 Mpnr −−≤  (27) 

This is not a closed form formula since M is a function of r, 
but it allows easy computation of the maximum r. Results 
for some typical cases are shown in Table 1. r* in the last 
column is the number obtained in Section III by simply 
counting the number of equations. Expressing r* in (11) in 
terms of h and q, it immediately follows that 

 4/)( hqr +=∗  (28) 

TABLE I 
THE MAXIMUM ORDER OF A GENERIC PROM 

n m p rmax r* 

100 80 80 20 20 
100 80 40 37 40 
100 80 20 40 50 
100 80 10 45 55 
100 80   5 47 57 
100 80   1 49 59 
100 50 50 50 50 
100 50 25 62 62 
100 50 10 67 70 
100 50   5 71 72 
100 50   1 74 74 

     

 
As can be seen the actual maximum possible value of r is in 
general less than that predicted by the number of equations. 
This is unlike the square system case where the two values 
were in accordance. The discrepancy cannot be explained 
by the requirement of a real solution since the GKS is 
completely structural. The only possible explanation is that 
for values of r between rmax and r*, the left-hand sides of 
the set of equations (10) have inherent nonlinear 
dependence that causes the set to contain contradictions.  
The relationship between rmax and r* can be explored for a 
special case. Assume that h is a whole multiple of q-h, so 
that α=h/(q-h), β=0. The GKS has then q-h identical 
α×(α+1) blocks. Assume also that that r consists of M full 
blocks, hence M=r/α=r(q-h)/h. Then 
 hhqrrqMrqr /)( −−−=−−≤ , (29) 

leading to 
 )/(max hqqhr +=  (30) 

Comparing the values in (28) and (30) we have 
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Hence the actual maximum r is smaller than r*. Other 
special cases yield the same result. 

As a final remark we note that the GKS leads to the 
smallest possible zero sub-pencil, and any deviation from it 
tends to increase the zeros area. This is what happens with 
reduced order models, which are PROM, but having a 
dimension greater than rmax. As an example consider a 
fourth order system with three inputs and two outputs, i.e. 
n=4, m=3, p=2.  In this case rmax =1. The GKS for second 
order models is  
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and clearly there is no 2×2 sub-pencil of zeros. A second 
order PROM will have the following KCF. 
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where the fij represent a real Jordan block of two real, a 
complex pair or two identical eigenvalues. In any event, the 
2×2 sub-pencil of zeros exists in the bottom left corner. In 
this case the normal rank of the pencil is 3, but it has two 
eigenvalues. Such a situation can be easily detected by 
calculating the eigenvalues of the square pair (H1U,H2U) 
for two arbitrary values of a q×h matrix U. The eigenvalues 
of (H1, H2), if exist, are eigenvalues in both cases.  For r=3 
the GKS is 
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and a third order PROM will result in 
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VI. CONCLUSION 
The properties of the projection relationship between two 

models of different orders have been investigated. An 
algorithm to calculate all the projections that relate the two 
models, as well as conditions for the existence and 
uniqueness, have been presented. In the case of a generic 
square system, any reduced model whose order is less than 
n-m can be obtained by infinitely many projections, any 
reduced model whose order is greater than n-m cannot be 
obtained by projection, and the case of exactly n-m depends 
on the eigenvalue structure of a certain pencil. In the non-
square case the maximum value of projectable models 
depends on the Generic Kronecker Structure of the matrix 

pencil. In general, larger difference between the number of 
inputs and outputs leads to a smaller maximal order than is 
predicted by counting equations and unknowns. 
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