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Balancing & Optimization for Order Reduction of
Nonlinear Systems
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Abstract— This paper considers the problem of passing for a fixed input the state variables trajectories at certain
from a nonlinear time-invariant high-order system to a low- instances of time are measured and saved in the matrix

order approximation. At first, a review of some well-known ; ; : ; ;
methods for order reduction of nonlinear systems is presented I (€ singular values of this matrix decrease rapidly, this

and it is shown that the common feature of many model Matrix could be approximated by a low-order matrix as it

reduction methods is that they are obtained by applying a is shown in (3).

%rOJectlfon tobsystemhmell_trlces.b Ihls r_esem_bkl‘ance led us to the

idea of combining the linear balancing with an optimization _ . x

Broceo_lure for nonlinear systems, resulting in the method of x =UXV" ~ UxZk Vi, k<n 3)
alancing and optimization to be presented here.

| INTRODUGTION whereU andV are unitary matrices ang is diagonal [2].
) The first k leading columns of UJ{;) are used to construct

Typical nonlinear dynamic systems are modelled b P ; : :
means of a set of first-order coupled differential equation)‘{she projection matrix [1], [3]. Dominant subspace in the

together with a set of algebraic output equations as followSense of POD is the part of the state space which absorbs
the most energy from specific inputs, so the POD method

Snontineart : { ng - fl((’;((tt))’ 1111((?))) (1) is an option for assessing a dominant subspace.
_ _ Y= 7 ~Another well known method is nonlinear balancing which
In this paper we will mostly deal with another representatiojs an extension of balancing for linear systems [7] in the
of nonlinear systems as follows: sense that it is based on extended definition of balancing
St : { x(t) = Ax(t) + Bu(t) + Fg(x(t),u(t)) and Hankel singular functions [10], [9]. The main objective
semumear |y (t) = Cx(1) involved in balancing theory are the controllability and

) . o observability energy functions, which their computation
The problem that we will address is to simplify or ap-reqyires solution of an optimal control problem at each
proximate the original nonlinear system with another ONBoint on the state space grid, which is the result of

with smaller number of st_ate variables. Ther(_a are howevef,o nonlinear Lyapunov partial differential equation and
methods for order reduction of general nonlinear systemg,miiton-Jacobi partial differential equation assodiatgth

that we describe them in Section 2. In Section 3 we focUg, optimal control problem. This method similar to the
on the idea of dominant subspaces by reviewing somg,cent of balancing for linear systems finds a coordinate
known model reduction methods for nonlinear systems ang \«tormation of the formx — ¥(z) that balances the
expanding an idea from linear to nonlinear systems. SectiQ)stem due to extended definition of balancing for nonlinear
4 shows the results of applying the idea of dominant sulyy stems. As it is apparent on the one hand the procedure
spaces together with system matrices optimization methgg; honjinear balancing presents computational diffiesiti
and Section 5 contains concluding remarks. which restricts its application to very low order nonlinear

Il. METHODS OFORDER REDUCTION FORNONLINEAR ~ Systems. On the other hand it finds a very meaningful
SYSTEMS coordinate transformation as a point of view of dynamic

One of the most famous methods which is applicable fopyStems which specifies the dorr_1inant subspace Of. state
both linear and nonlinear systemsssigular perturbation space by assuming the effect of input and state variables

. . . n output in the sense of energy.
[4], [8]. This method is based on the assumption that th@ nother method is system matrices optimization [6], [5]

system equations can be separated in two parts so-callggl specific structure of nonlinear systems shown in(4). In
fast and slow modes. This method decreases the order of tfigs method determination of dominant state state vargable
model, first by ignoring the fast modes of the system, thefdominant subspace) plays a significant role in the quafity o
it improves the quality of the approximation by Consideringn0d8| reduction. The first idea for pointing out dominant

boundary layers in reduced order system. In this methodState variables is engineering impression, which could be
helpful in many practical problems but for complex techni-

the concept of dominant subspace is bypassed by assumi'systems, choosing dominant state variables usuallytis n

that in modelling of some dynamic systems, there are somgstraightforward task and some more advanced methods are

fast and slow modes and instead of just trimming the nomequired. Proceeding from the general system description

dominant part, its steady state effect is taken into accour{?) the reduced system is set up as follow:
The Proper Orthogonal Decomposition is another known . _ _ _

method that has been widely used to determine efficient (, . { x(t) = Ax(t) + Bu(t) + Fg(Wx(t),u(t)) @

bases to construct projection matrix [11]. In this method = ° C
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Accordingly, the vectorg of nonlinearities is taken over state variables could be computed based on the linearized
from the original system (2) into the reduced order systemystem. As it is mentioned in Section 2.3 the nonlinear
and no additional nonlinearities are introduced. The fivealancing method [9] has good theoretical background
matricesA, B, F,C and W must subsequently determinedbut its complicated computation restricts its application
such that they optimally fit the snapshots of the originafind the dominant subspace. In this section we propose
system in the sense of Euclidian norm. a method for approximating the coordinate transformation
W(z) (that balances the system) based on linearized system.
There are two methods for obtaining the linearized system,
Our original motivation for undertaking this work arousefirst the analytical evaluation around one operating point,
from a hidden, but significant gap in current model resecond numerical evaluation based on snapshots derived by
duction methods that we call it dominant subspace. Th&imulating the system with the most typical inputs.
concept of dominant subspace is such important that evenTheorem 1: The transformation matrix that balances the
finding it for a system might yield a reduced model withoutinearized system of a nonlinear system is equal to the
any further effort. For instance the balanced and trunoatidinearized coordinate transformatidi(z) that balances the
method evaluates the reduced order system just by truncabnlinear system[9].
ing the non-dominant subspace. In this method the HankBlsed on Theorem1, if we find the transformation matrix of
singular values are gages that indicate the significance tfe linearized system and apply it to the nonlinear system,
each new state variable. Another example is the propé&rapproximately balances the system around the operating
orthogonal decomposition (POD) method which forms thgoint. In our case the linearized system based on snapshots
dominant subspace (by a linear transformation) and sontgis some advantages in comparison to the analytical lin-
the new state variables such that the higher state variablesrized system. The first point is that sgstem matrices
contain more information of the snapshots. In this methogptimization method the snapshots already exists, so it is
the singular values are indicators of importance of eadmuch more convenient to compute the system matrices
new state variable. As it mentioned the quality of model refrom the snapshots than analytically linearizing the o
duction bysystem matrices optimization method is directly system. Second, linearization based on the snapshots often
related to finding the dominant subspace, subsequently gives a "more global linearized system” which is close
automatic method for building dominant subspace seengs various linearized systems in unlike operating points.
indispensable. Our goal in this section is to present af should be noted that the second advantage is based on
automatic method for designating the dominant subspaggis assumption that the linearized systems of the nonlinea
for nonlinear systems. system in different operating points are not very far from

. each other and we can obtain an "average” linear system
A. Sngular Value Decomposition (SVD) by exploiting the snapshots. 9 Y

One approach is to find a linear combination of the : - :
state variables of the original system such that the time After approximately finding the dominant subspace, the

histories of all n state variables of the original system bB€Xt Step is to reduce the order to the dimension of
approximated from the firsi components of the new state the dominant subspace. In [12] the reduced order system
variables in the least square sense. This problem is solvhds obtained by truncating the non-dominant subspace.
by using singular value decomposition of the snapshotgheorem1 shows the idea of that method.

matrix (similar to POD). Applying this method leads to the  Theorem 2: Consider a nonlinear system represented in
orthogonal matricedJ, V and a diagonal matri of the (1), without loss of generality, let (1) be differentiable a

I1l. DOMINANT SUBSPACE

real nonnegative singular values as follow: an equilibrium, say[X,, U,], then the system obtained by
Y= UDV, S — diag(o1, 00, ..., 0m) grsu_aanzmg (1) around this operating point can be written
ONE .
x(t) = Ix(t) + Gu(t),
. (01 >...>03 > 041> ...>0n) E:{ _
zf{ (o1 > y(t) = Hx(t)
Zdomi — (m za) whereJ and G are the system and input Jacobian, respec-
{ Z om_lr;ant. = {Zj; o) (6) tively. Following the procedure in Balanced & Truncation

method for linear systems, a transformation maRigan be
The order of dominant subspacg) (is chosen so that the constructed and be used to transform the linearized system

singular values related to state variabies 1 up ton are INto balanced coordinates as follows:

negligible in comparison to the firsi ones. The first? oF { x(t) = Ax(t) + Bu(t),
columns of the matrix U build the projection matrix (linear y(t) = Cx(t)
combination). where A=P~1JP, B=P!G and C = HP. Since

: the new system is balanced, the balancing criterion can be
B. Balancing the system based on snapshots used to partition the system matrices in two dominant and

Since there are very powerful methods like balanceon-dominant parts as follow:
realization in dominance analysis of linear systems, a A, A B,
transformation matrix which guides us through dominant A= { Az Ao } 2 2= { B, ]
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P=[P Pg},P—lz{

If |X — X;]| is sufficiently small and the reduced order of
linearized system exists, then the nonlinear reduced ord
system is given as:

5 { Ze(t) = P;H(Prze (1) +Xs — PP X5, u(t)),

p-l
Pyt }

shock absorber

car body
= dunping .
= spring oil pump
< damper unit P
] control [&— P
steel — system | —3» )
spring operating e oil flow Q T
cylender oil tank

K3

y(t) = h(Prz,(t)+Xs — PPy ' X5, u(t))

As it mentioned before, finding dominant subspaces is ju:
the first step in order reduction and usually for improving
the reduced order system performance much endeavor
needed. Thus truncation is just the simplest way with les
computation load to reach the reduced order system.
order to obtain more precise results a more powerful methc
is developed subsequently.

IV. BALANCING & OPTIMIZATION

With respect to the idea of dominant subspace we can
take the method of system matrices optimization as a
complement for the task of order reduction. In this paper
we suggest a procedure for the order reduction of nonlinear
systems by combining this two methods and we name it
Balancing & Optimization. Following steps should be put
into practice for accomplishing this method:

1) Producing the snapshots of the original system for
typical inputs and save the numerical values of
state variables and their derivatives, inputs, non-
linear part and outputs, respectively in matrices
X, X, ¥, I'andY . It should be noted that the inputs
should be selected such that they stimulate all active
modes of the system.

4)

x = [x(t1)x(t2) - x(tn)] X = [X(t1)%(t2) - X(tn)]

¥ = [u(t1)u(tz) --u(tn)] T =[g(t1)g(tz) - g(tn)]

Y = [y(ty)y(tz) - y(tn)]

2) Linearizing the nonlinear system which could be

carried out by using snapshots or Jacobian matrices.
Sometimes the first one, due to the advantages men-
tioned in Subsection 3.2, is preferred. The matrices
Ajin, Biin andCy;, in (8) is computed by solving

wheel

Fig. 1. construction of hydropneumatic vehicle suspension

singular values span the dominant subspace. Thus the
first 7 rows of matrix P~ build the matrixP;"
which is used to construct the dominant state variables
and their snapshots as follow:

9)

Applying system matrices optimization method in
order to find the best system matrices that fit the
shapshots of the dominant subspace by solving op-
timization problems shown in (10). The snapshots
of the dominant state variables can be computed by
applying the transformation matrix to the snapshots
of the original system (9) and the result is a reduced
order system like (4).

Xdo = P3'X, Xdo=P3'X, Xdo=P3'X

~ ~ ~ Xdo
min || Xao —[A B F][ LA

M

min || * — Cxdo ||, min | x — Wxao || (10)
C W

V. ILLUSTRATIVE EXAMPLE

In this part we apply our new method to the model of an

3)

active hydropneumatic suspension [5]. This device in@gas
comfortableness and safety by significantly reducing the
incongruous movements of the car body compared to a
traditional passive spring shock-absorber system. The in-
ﬁuts of this system are the in and outflow of oil in the
ydropneumatic system which should be regulated by the
controller using measurement data from sensors. In order to
design and simulate such a controlled system a modelling of
the system is necessary. The simulation can be accelerated
through order reduction and furthermore it simplifies all
control a(lj%orlthms which directly use the model, such as

tate fge ac obsei__r.ve orﬂbinat'ons or model based feed
orward controllers. |g.§135 ows the mechanical cormstru

tion of the suspension for a single wheel and the mass of
the related part of the car body. We define the three first
state variables (with scaling) as outputs of the system, so
H1e matrixC in original model has the following value:

optimization problem (7).

X

min | x — [Atin  Biin) { T

M

JI il 7 - i

After linearization, the original nonlinear system is
approximated with a linear system as shown in (8).

P { %x(t) = Ax(t) + Bu(?) + Fg(x,u)
" y() =Cx(t)
iin { X(t) = Aunx(t) + Bunu(t)

~

y(t) = Cimx(1) ®)
Finding the dominant subspace by approximately
balancing the nonlinear system. This task is carrie
out with the same procedure as in Theoreml. The o[ ° 9 9o 0 0 0 0 0 0
transformation matrixP and the Hankel singular ’( )

values of the linearized system (8) are initial material . . ,
to construct the dominant subspace. After applying),ue to the complexity of the nonlinear part, we don't
the transformation matri® to the nonlinear system, discuss the details of the model in here, further infornmatio

the first newn state variables related to bigger Hankelis available in [5].
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A. Carrying Out the Order Reduction

In preparation, we simulate the original system with
typical inputs. For the input;; positive and negative step
functions with height 0.1 m and for the inpus of the servo o
valve, positive and negative square and triangle functions” |
are designated. The list of typical inputs are shown below:

Utriangte(t) ' time (sec)

{ usqugre(t) } ,un(t) = {
us(t) = —ui(t), ua(t) = —u2(t), us(t) = [ o,lg(t) } |

0.10(t) ]

Usquare (t)

0 I I I I I I I I I
ui (t) = 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 3. Time curves of output variables of the original systolid),
reduced order system df,;, order €ystem matrices optimization,
dotted) andb., order (balanced & optimization, dash-dotted)

ue(t) = —us(t), ur(t) = { excited byus(t).

us(t) = { Sletl) } Jp(t) = —ug(t), uso(t) = —ur(t)
With ugguare o(t) — ot —0.2) and wuriangle that reduction down to order eight is quite reasonable but

max{0, min{5¢,2 — 5¢t}} where o(t) is the unit step to orders less than eight requires trial and error. Reggrdin

function. In our simulation we usea; for comparing the our simulation, the balanced and truncation for nonlinear
results of three order reduction methods which are nonlinegystems and system matrices optimization both fail in erder

balanced and truncation, system matrices optimization atess than seven (yield to unstable systems), but with our
balancing & optimization. In the next step we use the linnew method we can reduce the order to five. The results
earizing method exploiting the snapshots and by assumirge shown in Fig.(3).

the decreasing slope and values of Hankel singular values,

the order of reduced system is estimated. VI. CONCLUSION

B. Results Throughout this paper, we have exhibited many choices

After linearizing the system using the snapshots, thicing those seeking to reduce the order of nonlinear
matrix transformatiorP is ‘evaluated using balancing tech-systems and we improved the system matrices optimization

niques of linear systems and the result is as follow: method by exploiting the idea of balancing in linear systems
and introducing the new idea of dominant subspace.The

—0.0000
0.0032

—0.0000
0.0008

—0.0001
0.0067

0.0000
0.0041

—0.0005
—0.0489

0.0007
—0.0347

—0.0000
—0.0119

—0.0003
0.0199

0.0001
0.0183

—0.0000
0.0017

0.0000
—0.0001
—0.0001
—0.0095
—0.0000
—0.0001
—0.0000
—0.0006

P = 103

0.0000
0.0030
0.0001
—0.0135
—0.0000
—0.0010
0.0000
—0.0001

0.0003
0.0009
0.0002
0.0029
—0.0000
0.0003
0.0000
0.0040

0.0001
—0.0030
0.0003
0.0088
0.0000
0.0018
—0.0000
—0.0040

0.0001
0.0008
0.0002
—0.0139
0.0000
—0.0009
—0.0000
—0.0025

—0.0001
0.0002
—0.0000
—0.0006
0.0001
—0.0002
0.0001
0.0177

—0.0002
0.0021
—0.0001
0.0009
—0.0001
—0.0001
—0.0001
—0.0184

0.0008
0.0019
—0.0002
0.0014
—0.0001
—0.0001
0.0002
0.0389

0.0067
—0.0015
0.0001
—0.0017
—0.0000
—0.0000
0.0051
1.1351

0.0041
—0.0002
0.0001
—0.0145
0.0000
0.0000
0.0100
0.2221

The next step is to balance the system and specifyirtgchnical example shows that our new method works rea-
the dominant subspace. The Hankel singular values of tls@nably and provides understandable results which is much
linearized system are shown in Fig.2, as it is trivial fronbetter than other mentioned methods. In particular the
the bar graph we can divide the state variables in threexample illustrates thabalancing & optimization method
partitions. The first two state variables are the most imporemedies the drawbacks of system matrices optimization
tant ones, from three to eight are in second stage and statethod by assuming the effect of output and introducing a
variables nine and ten are the less important ones. It seepr®cedure for pointing out the dominant subspace.
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