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Abstract— This paper considers the problem of passing
from a nonlinear time-invariant high-order system to a low-
order approximation. At first, a review of some well-known
methods for order reduction of nonlinear systems is presented
and it is shown that the common feature of many model
reduction methods is that they are obtained by applying a
projection to system matrices. This resemblance led us to the
idea of combining the linear balancing with an optimization
procedure for nonlinear systems, resulting in the method of
balancing and optimization to be presented here.

I. I NTRODUCTION

Typical nonlinear dynamic systems are modelled by
means of a set of first-order coupled differential equations
together with a set of algebraic output equations as follows:

Snonlinear1 :

{
ẋ(t) = f(x(t),u(t))
y(t) = h(x(t),u(t))

(1)

In this paper we will mostly deal with another representation
of nonlinear systems as follows:

Ssemilinear :

{
ẋ(t) = Ax(t) + Bu(t) + Fg(x(t),u(t))
y(t) = Cx(t)

(2)
The problem that we will address is to simplify or ap-
proximate the original nonlinear system with another one
with smaller number of state variables. There are however
methods for order reduction of general nonlinear systems
that we describe them in Section 2. In Section 3 we focus
on the idea of dominant subspaces by reviewing some
known model reduction methods for nonlinear systems and
expanding an idea from linear to nonlinear systems. Section
4 shows the results of applying the idea of dominant sub-
spaces together with system matrices optimization method
and Section 5 contains concluding remarks.

II. M ETHODS OFORDER REDUCTION FORNONLINEAR

SYSTEMS

One of the most famous methods which is applicable for
both linear and nonlinear systems issingular perturbation
[4], [8]. This method is based on the assumption that the
system equations can be separated in two parts so-called
fast and slow modes. This method decreases the order of the
model, first by ignoring the fast modes of the system, then
it improves the quality of the approximation by considering
boundary layers in reduced order system. In this method
the concept of dominant subspace is bypassed by assuming
that in modelling of some dynamic systems, there are some
fast and slow modes and instead of just trimming the non-
dominant part, its steady state effect is taken into account.

The Proper Orthogonal Decomposition is another known
method that has been widely used to determine efficient
bases to construct projection matrix [11]. In this method

for a fixed input the state variables trajectories at certain
instances of time are measured and saved in the matrixχ.
If the singular values of this matrix decrease rapidly, this
matrix could be approximated by a low-order matrix as it
is shown in (3).

χ = UΣV
∗ ≈ UkΣkV

∗

k, k � n (3)

whereU andV are unitary matrices andΣ is diagonal [2].
The first k leading columns of U (Uk) are used to construct
the projection matrix [1], [3]. Dominant subspace in the
sense of POD is the part of the state space which absorbs
the most energy from specific inputs, so the POD method
is an option for assessing a dominant subspace.

Another well known method is nonlinear balancing which
is an extension of balancing for linear systems [7] in the
sense that it is based on extended definition of balancing
and Hankel singular functions [10], [9]. The main objective
involved in balancing theory are the controllability and
observability energy functions, which their computation
requires solution of an optimal control problem at each
point on the state space grid, which is the result of
two nonlinear Lyapunov partial differential equation and
Hamilton-Jacobi partial differential equation associated with
an optimal control problem. This method similar to the
concept of balancing for linear systems finds a coordinate
transformation of the formx = Ψ(z) that balances the
system due to extended definition of balancing for nonlinear
systems. As it is apparent on the one hand the procedure
for nonlinear balancing presents computational difficulties,
which restricts its application to very low order nonlinear
systems. On the other hand it finds a very meaningful
coordinate transformation as a point of view of dynamic
systems which specifies the dominant subspace of state
space by assuming the effect of input and state variables
on output in the sense of energy.

Another method is system matrices optimization [6], [5]
for specific structure of nonlinear systems shown in(4). In
this method determination of dominant state state variables
(dominant subspace) plays a significant role in the quality of
model reduction. The first idea for pointing out dominant
state variables is engineering impression, which could be
helpful in many practical problems but for complex techni-
cal systems, choosing dominant state variables usually is not
a straightforward task and some more advanced methods are
required. Proceeding from the general system description
(2) the reduced system is set up as follow:

Σ :

{
˙̃x(t) = Ãx̃(t) + B̃u(t) + F̃g(Wx̃(t),u(t))

y(t) = C̃x̃(t)
(4)



Accordingly, the vectorg of nonlinearities is taken over
from the original system (2) into the reduced order system
and no additional nonlinearities are introduced. The five
matricesÃ, B̃, F̃ , C̃ andW must subsequently determined
such that they optimally fit the snapshots of the original
system in the sense of Euclidian norm.

III. D OMINANT SUBSPACE

Our original motivation for undertaking this work arouse
from a hidden, but significant gap in current model re-
duction methods that we call it dominant subspace. The
concept of dominant subspace is such important that even
finding it for a system might yield a reduced model without
any further effort. For instance the balanced and truncation
method evaluates the reduced order system just by truncat-
ing the non-dominant subspace. In this method the Hankel
singular values are gages that indicate the significance of
each new state variable. Another example is the proper
orthogonal decomposition (POD) method which forms the
dominant subspace (by a linear transformation) and sorts
the new state variables such that the higher state variables
contain more information of the snapshots. In this method
the singular values are indicators of importance of each
new state variable. As it mentioned the quality of model re-
duction bysystem matrices optimization method is directly
related to finding the dominant subspace, subsequently an
automatic method for building dominant subspace seems
indispensable. Our goal in this section is to present an
automatic method for designating the dominant subspace
for nonlinear systems.

A. Singular Value Decomposition (SVD)
One approach is to find a linear combination of the

state variables of the original system such that the time
histories of all n state variables of the original system be
approximated from the first̃n components of the new state
variables in the least square sense. This problem is solved
by using singular value decomposition of the snapshots
matrix (similar to POD). Applying this method leads to the
orthogonal matricesU, V and a diagonal matrixΣ of the
real nonnegative singular values as follow:

χ = UΣV, Σ = diag(σ1, σ2, . . . , σn)

(5)

if

{
(σ1 > . . . > σñ � σñ+1 > . . . > σn)
Z = UX

⇒

{
Zdominant = {z1, . . . , zñ}
Znon−dominant = {zñ+1, . . . , zn}

(6)

The order of dominant subspace (ñ) is chosen so that the
singular values related to state variablesñ + 1 up to n are
negligible in comparison to the first̃n ones. The first̃n
columns of the matrix U build the projection matrix (linear
combination).

B. Balancing the system based on snapshots

Since there are very powerful methods like balanced
realization in dominance analysis of linear systems, a
transformation matrix which guides us through dominant

state variables could be computed based on the linearized
system. As it is mentioned in Section 2.3 the nonlinear
balancing method [9] has good theoretical background
but its complicated computation restricts its applicationto
find the dominant subspace. In this section we propose
a method for approximating the coordinate transformation
Ψ(z) (that balances the system) based on linearized system.
There are two methods for obtaining the linearized system,
first the analytical evaluation around one operating point,
second numerical evaluation based on snapshots derived by
simulating the system with the most typical inputs.

Theorem 1: The transformation matrix that balances the
linearized system of a nonlinear system is equal to the
linearized coordinate transformationΨ(z) that balances the
nonlinear system[9].
Based on Theorem1, if we find the transformation matrix of
the linearized system and apply it to the nonlinear system,
it approximately balances the system around the operating
point. In our case the linearized system based on snapshots
has some advantages in comparison to the analytical lin-
earized system. The first point is that insystem matrices
optimization method the snapshots already exists, so it is
much more convenient to compute the system matrices
from the snapshots than analytically linearizing the original
system. Second, linearization based on the snapshots often
gives a ”more global linearized system” which is close
to various linearized systems in unlike operating points.
It should be noted that the second advantage is based on
this assumption that the linearized systems of the nonlinear
system in different operating points are not very far from
each other and we can obtain an ”average” linear system
by exploiting the snapshots.

After approximately finding the dominant subspace, the
next step is to reduce the order to the dimension of
the dominant subspace. In [12] the reduced order system
has obtained by truncating the non-dominant subspace.
Theorem1 shows the idea of that method.

Theorem 2: Consider a nonlinear system represented in
(1). Without loss of generality, let (1) be differentiable at
an equilibrium, say[Xs, Us], then the system obtained by
linearizing (1) around this operating point can be written
as:

Σ :

{
ẋ(t) = Jx(t) + Gu(t),
y(t) = Hx(t)

whereJ andG are the system and input Jacobian, respec-
tively. Following the procedure in Balanced & Truncation
method for linear systems, a transformation matrixP can be
constructed and be used to transform the linearized system
into balanced coordinates as follows:

Σ :

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

where A = P−1JP, B = P−1G and C = HP. Since
the new system is balanced, the balancing criterion can be
used to partition the system matrices in two dominant and
non-dominant parts as follow:

A =

[
Ar A12

A21 A22

]

, B =

[
Br

B2

]



P =
[

Pr P2

]
, P

−1 =

[
P−1

r

P−1

2

]

If ‖X −Xs‖ is sufficiently small and the reduced order of
linearized system exists, then the nonlinear reduced order
system is given as:

Σ :

{
żr(t) = P−1

r f(Przr(t)+Xs − PrP
−1

r Xs,u(t)),
y(t) = h(Przr(t)+Xs − PrP

−1

r Xs,u(t))

As it mentioned before, finding dominant subspaces is just
the first step in order reduction and usually for improving
the reduced order system performance much endeavor is
needed. Thus truncation is just the simplest way with less
computation load to reach the reduced order system. In
order to obtain more precise results a more powerful method
is developed subsequently.

IV. BALANCING & OPTIMIZATION

With respect to the idea of dominant subspace we can
take the method of system matrices optimization as a
complement for the task of order reduction. In this paper
we suggest a procedure for the order reduction of nonlinear
systems by combining this two methods and we name it
Balancing & Optimization. Following steps should be put
into practice for accomplishing this method:

1) Producing the snapshots of the original system for
typical inputs and save the numerical values of
state variables and their derivatives, inputs, non-
linear part and outputs, respectively in matrices
χ, χ̇ ,Ψ, Γ andΥ . It should be noted that the inputs
should be selected such that they stimulate all active
modes of the system.

χ = [x(t1)x(t2) · · ·x(tN)] χ̇ = [ẋ(t1)ẋ(t2) · · · ẋ(tN)]

Ψ = [u(t1)u(t2) · · ·u(tN)] Γ = [g(t1)g(t2) · · ·g(tN)]

Υ = [y(t1)y(t2) · · ·y(tN)]

2) Linearizing the nonlinear system which could be
carried out by using snapshots or Jacobian matrices.
Sometimes the first one, due to the advantages men-
tioned in Subsection 3.2, is preferred. The matrices
Alin,Blin andClin in (8) is computed by solving
optimization problem (7).

min
M

‖ χ̇ − [Alin Blin]
︸ ︷︷ ︸

M

[
χ
Ψ

]

‖, min
Clin

‖ Υ − Clinχ ‖

(7)
After linearization, the original nonlinear system is
approximated with a linear system as shown in (8).

Σ :

{
ẋ(t) = Ax(t) + Bu(t) + Fg(x,u)
y(t) = Cx(t)

' Σlin :

{
ẋ(t) = Alinx(t) + Blinu(t)
y(t) = Clinx(t)

(8)

3) Finding the dominant subspace by approximately
balancing the nonlinear system. This task is carried
out with the same procedure as in Theorem1. The
transformation matrixP and the Hankel singular
values of the linearized system (8) are initial materials
to construct the dominant subspace. After applying
the transformation matrixP to the nonlinear system,
the first newñ state variables related to bigger Hankel

Fig. 1. construction of hydropneumatic vehicle suspension

singular values span the dominant subspace. Thus the
first ñ rows of matrix P−1 build the matrixP−1

ñ

which is used to construct the dominant state variables
and their snapshots as follow:

xdo = P
−1

ñ
x, χdo = P

−1

ñ
χ, χ̇do = P

−1

ñ
χ̇ (9)

4) Applying system matrices optimization method in
order to find the best system matrices that fit the
snapshots of the dominant subspace by solving op-
timization problems shown in (10). The snapshots
of the dominant state variables can be computed by
applying the transformation matrix to the snapshots
of the original system (9) and the result is a reduced
order system like (4).

min
M̃

‖ χ̇do − [Ã B̃ F̃ ]
︸ ︷︷ ︸

M̃





χdo

Ψ
Γ



 ‖,

min
C̃

‖ Υ − C̃χdo ‖, min
W

‖ χ − Wχdo ‖ (10)

V. I LLUSTRATIVE EXAMPLE
In this part we apply our new method to the model of an

active hydropneumatic suspension [5]. This device increases
comfortableness and safety by significantly reducing the
incongruous movements of the car body compared to a
traditional passive spring shock-absorber system. The in-
puts of this system are the in and outflow of oil in the
hydropneumatic system which should be regulated by the
controller using measurement data from sensors. In order to
design and simulate such a controlled system a modelling of
the system is necessary. The simulation can be accelerated
through order reduction and furthermore it simplifies all
control algorithms which directly use the model, such as
state feedback observer combinations or model based feed
forward controllers. Fig.(1) shows the mechanical construc-
tion of the suspension for a single wheel and the mass of
the related part of the car body. We define the three first
state variables (with scaling) as outputs of the system, so
the matrixC in original model has the following value:

C =





50 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 50 0 0 0 0 0 0 0





Due to the complexity of the nonlinear part, we don’t
discuss the details of the model in here, further information
is available in [5].
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Fig. 2. Hankel Singular Valuesσ1, σ2, . . . , σ10

A. Carrying Out the Order Reduction
In preparation, we simulate the original system with

typical inputs. For the inputu1 positive and negative step
functions with height 0.1 m and for the inputu2 of the servo
valve, positive and negative square and triangle functions
are designated. The list of typical inputs are shown below:

u1(t) =

[
0

usquare(t)

]

, u2(t) =

[
0

utriangle(t)

]

,

u3(t) = −u1(t), u4(t) = −u2(t), u5(t) =

[
0.1σ(t)

0

]

,

u6(t) = −u5(t), u7(t) =

[
0.1σ(t)

usquare(t)

]

,

u8(t) =

[
0.1σ(t)

usquare(t)

]

,u9(t) = −u8(t), u10(t) = −u7(t)

with usquare = σ(t) − σ(t − 0.2) and utriangle =
max{0,min{5t, 2 − 5t}} where σ(t) is the unit step
function. In our simulation we useu5 for comparing the
results of three order reduction methods which are nonlinear
balanced and truncation, system matrices optimization and
balancing & optimization. In the next step we use the lin-
earizing method exploiting the snapshots and by assuming
the decreasing slope and values of Hankel singular values,
the order of reduced system is estimated.

B. Results
After linearizing the system using the snapshots, the

matrix transformationP is evaluated using balancing tech-
niques of linear systems and the result is as follow:

P = 10
3


















−0.0005 0.0007 −0.0000 −0.0003 0.0001 −0.0000 −0.0000 −0.0000 −0.0001 0.0000

−0.0489 −0.0347 −0.0119 0.0199 0.0183 0.0017 0.0032 0.0008 0.0067 0.0041

0.0000 0.0000 0.0003 0.0001 0.0001 −0.0001 −0.0002 0.0008 0.0067 0.0041

−0.0001 0.0030 0.0009 −0.0030 0.0008 0.0002 0.0021 0.0019 −0.0015 −0.0002

−0.0001 0.0001 0.0002 0.0003 0.0002 −0.0000 −0.0001 −0.0002 0.0001 0.0001

−0.0095 −0.0135 0.0029 0.0088 −0.0139 −0.0006 0.0009 0.0014 −0.0017 −0.0145

−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0001 −0.0001 −0.0001 −0.0000 0.0000

−0.0001 −0.0010 0.0003 0.0018 −0.0009 −0.0002 −0.0001 −0.0001 −0.0000 0.0000

−0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0001 −0.0001 0.0002 0.0051 0.0100

−0.0006 −0.0001 0.0040 −0.0040 −0.0025 0.0177 −0.0184 0.0389 1.1351 0.2221


















The next step is to balance the system and specifying
the dominant subspace. The Hankel singular values of the
linearized system are shown in Fig.2, as it is trivial from
the bar graph we can divide the state variables in three
partitions. The first two state variables are the most impor-
tant ones, from three to eight are in second stage and state
variables nine and ten are the less important ones. It seems
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Fig. 3. Time curves of output variables of the original system(solid),
reduced order system of7th order (system matrices optimization,
dotted) and5th order (balanced & optimization, dash-dotted)
excited byu5(t).

that reduction down to order eight is quite reasonable but
to orders less than eight requires trial and error. Regarding
our simulation, the balanced and truncation for nonlinear
systems and system matrices optimization both fail in orders
less than seven (yield to unstable systems), but with our
new method we can reduce the order to five. The results
are shown in Fig.(3).

VI. CONCLUSION

Throughout this paper, we have exhibited many choices
facing those seeking to reduce the order of nonlinear
systems and we improved the system matrices optimization
method by exploiting the idea of balancing in linear systems
and introducing the new idea of dominant subspace.The

technical example shows that our new method works rea-
sonably and provides understandable results which is much
better than other mentioned methods. In particular the
example illustrates thatbalancing & optimization method
remedies the drawbacks of system matrices optimization
method by assuming the effect of output and introducing a
procedure for pointing out the dominant subspace.
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