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Abstract— Compressed Hankel matrix is given by using
orthonormal rational functions constructed from the Jury
table. The solutions to the optimal and suboptimal Nehari
problems, the solutions to the optimal and suboptimal Hankel
approximation problems via the compressed Hankel matrix
are given.

I. INTRODUCTION

Various orthogonal functions play important roles in
science and engineering. Examples include orthogonal poly-
nomials, the standard basis functions in Fourier series or
power series, wavelet functions. In this paper, we deal
with orthogonal rational functions. The study of orthogonal
rational functions has a long history. The idea of decom-
posing a linear system in term of orthogonal components,
such as Laguerre functions, other than the functions in the
standard Fourier series dates back to the work of Lee [15]
and Wiener [19]. Kautz [13] formulated a more general
class of orthogonal rational functions with two parameters.
Heuberger et al. [10] developed a theory on construction
of orthogonal rational functions using balanced realizations
of inner transfer functions. The standard basis functions
in power series, Laguerre functions and Kautz functions
are special cases in this theory. A further generalization
was presented by Ninness and Gustasson [17]. The studies
in [10] and [17] are motivated by applications in system
identification.

These recently developed orthogonal functions are gen-
erated through the balanced realization of inner transfer
functions and hence rely on modern state space system
theory. Some new investigation of the connection between
advanced optimal and robust control problems and the
classical tools for continuous time systems is recently
carried out by Qiu [18]. The motivation is to develop
elementary solutions to advanced optimal control problems
so to make the advanced optimal control accessible to a
wider audience. It is shown that the Routh table can be used
to form orthonormal rational functions, to compute the H2

norm of a stable transfer function and can also be used to
find the Hankel singular values and vectors, hence yielding
the solution to the Hankel approximation and the Nehari
problems. Since these problems play fundamental roles in
H∞ optimal control theory, their elementary solutions open
the door for a simple, polynomial approach to H∞ optimal
control theory.

The Jury table and the Jury stability criterion are the
counterparts of the Routh table and the Routh stability
criterion in the discrete time case. The Jury table can also
be used to construct orthonormal rational functions [4]. In
this paper, we will study Hankel operator by using these
orthonormal functions and give a compressed Hankel matrix
representation and find the Hankel singular values and the
corresponding Schmidt pairs. They will further be used
to solve the optimal and suboptimal Nehari problem, the
optimal and suboptimal Hankel approximation problem in
the discrete time signal and system context.

II. JURY TABLE AND ORTHONORMAL FUNCTIONS

Consider a stable polynomial

a(z) = a0z
n + a1z

n−1 + · · · + an,

where ai ∈ R and a0 > 0. It is said to be stable if all of
its roots are inside the unit disk.

Construct the Jury table [12]

r0 r00 r01 · · · r0(n−1) r0n

r∗0 r0n r0(n−1) · · · r01 r00

r1 r10 r11 · · · r1(n−1)

r∗1 r1(n−1) r1(n−2) · · · r10

...
...

rn−1 r(n−1)0 r(n−1)1

r∗n−1 r(n−1)1 r(n−1)0

rn rn0

In the Jury table, the first row is copied from the coefficients
of the polynomial,

r00 = a0, r01 = a1, . . . , r0(n−1) = an−1, r0n = an.

The row r∗i , i = 0, · · · , n − 1, is obtained by writing the
elements of the preceding row in the reverse order. The row
ri+1, i = 0, · · · , n−1, is computed from its two preceding
rows ri−1 and r∗i−1 as

r(i+1)j =
1

ri0

∣

∣

∣

∣

rij ri(n−i)

ri(n−i−j) ri0

∣

∣

∣

∣

, (1)

for i = 0, . . . , n − 1, j = 0, . . . , n − i − 1.

In general, the Jury table cannot be completely con-
structed when ri0 = 0 for some 1 ≤ i < n. In this case,



there is no need to complete the rest of the table since the
polynomial is unstable.

Consider the set of strictly proper rational functions with
denominator a(z)

Xa =

{

b(z)

a(z)
, deg b(z) < deg a(z)

}

. (2)

Clearly, Xa is an n-dimensional subspace of RH2. In
applications, as evidenced later in this paper, it is desirable
to find a basis, or better an orthonormal basis of Xa.

The Jury table can be used to construct the orthonormal
basis, see [2], [4] and [22]. Recall the Jury table of a(z)
and for the rows ri, i = 1, 2, . . . , n, define polynomials

r1(z) = r10z
n−1 + r11z

n−2 + · · · + r1(n−1) (3)
...

rn−1(z) = r(n−1)0z + r(n−1)1

rn(z) = rn0.

Since a(z) is stable, ri0 > 0, |ri0| > |ri(n−i)|, for i =
1, 2, . . . , n. We can define

αi =

√

r00

ri0
, ki =

ri(n−i)

ri0
, i = 0, 1, 2, . . . , n.

Theorem 1 The functions Ei(z) = αi
ri(z)
a(z) , i = 1, 2, . . . , n.

form orthonormal basis of Xa.

III. HANKEL OPERATOR AND COMPRESSED HANKEL
MATRIX

Hankel operators find various applications in engineering
problems such as in model reduction and optimal control.
Analysis and description of the Hankel matrix, the Hankel
singular values and Schmidt pairs are the key for these
applications and are studied in [1], [8] and [6].

Since the Hankel matrix is an infinite dimension matrix, it
is not convenient for practical computation. We will define a
compressed Hankel Matrix which has only finite dimension.
It will be shown later in this paper that this compressed
Hankel matrix is very useful in solving the Nehari and
Hankel approximation problems.

Let P+ : L2 → H2 and P− : L2 → H⊥
2 denote the

orthogonal projections such that

P+

( ∞
∑

k=−∞
f(k)z−k

)

=
∞
∑

k=0

f(k)z−k,

P−

( ∞
∑

k=−∞
f(k)z−k

)

=
−1
∑

k=−∞
f(k)z−k.

Let J : L2 → L2 denote the reversal operator and S : L2 →
L2 denote the backward shift operator such that

JF (z) = F (z−1)

SF (z) = zF (z).

Clearly J and S are both unitary operators. For any F (z) =
x(z)
a(z) ∈ Xa, we have

JF (z) = F (z−1) =
x∼(z)

a∼(z)
,

where a∼(z) = zna(z−1) and x∼(z) = znx(z−1).

Definition Given a stable system with strictly proper
transfer function G(z), the associated Hankel operator
ΓG : H⊥

2 → H2 is defined by

ΓGU(z) = P+(G(z)U(z)), U(z) ∈ H⊥
2 .

It is well-known that ΓG is a finite rank operator when
G(z) is rational.

Lemma 1 [6] Let G(z) = b(z)
a(z) be a strictly proper

stable transfer function. Then

Im ΓG = SXa,

(Ker ΓG)
⊥

= JXa.

The Hankel operator ΓG is the orthogonal direct sum of
a zero operator and a compression of ΓG mapping JXa

into SXa. Everything interesting about it is contained in
the compression.

This compressed Hankel operator can be represented
by a matrix if we choose a basis in (Ker ΓG)

⊥ and a
basis in Im ΓG. Note that both (Ker ΓG)

⊥ and Im ΓG are
isomorphic to Xa. Hence we can use the orthonormal basis
of Xa

E(z) := [ E1(z) E2(z) · · · En(z) ]

defined in Theorem 1 to form an orthonormal basis in
(KerHG)

⊥

E(z−1) = [ E1(z
−1) E2(z

−1) . . . En(z−1) ]

and one in ImHG

zE(z) = [ zE1(z) zE2(z) . . . zEn(z) ].

We call the matrix representation under this basis Com-
pressed Hankel Matrix and denote it by HG. The singular
values of HG are the Hankel singular values of G(z) and
are denoted by σ1, σ2, . . . , σn. We assume that

σ1 ≥ σ2 ≥ · · · ≥ σn.

The largest singular value is called the Hankel norm of G(z)
and is denoted by ‖G(z)‖H . Let (ui, vi) be a left and right
singular vectors of HG corresponding to σi and let

Ui(z) = E(z−1)ui

Vi(z) = zE(z)vi.

Then (Ui(z), Vi(z)) is a Schmidt pair of ΓG corresponding
to σi.

We are interested in computing the Hankel singular
values and Schmidt pairs of ΓG, the key is to find HG

from G(z) = b(z)
a(z) .



For any U(z) = x∼(z)
a∼(z) ∈ JXa,

ΓGU(z) = P+

[

b(z)

a(z)

x∼(z)

a∼(z)

]

= P+

[

b(z)

a∼(z)

x∼(z)

a(z)

]

.

Define a new operator T : SXa → SXa by

T
x∼(z)

a(z)
= P+

[

z
x∼(z)

a(z)

]

. (4)

Note that

P+

[

z
x∼(z)

a(z)

]

= P+

[

zβ(z)

a(z)
+ zγ

]

=
zβ(z)

a(z)
∈ SXa,

where γ is some constant and β(z) is a polynomial with
deg β(z) < n. Hence T x∼(z)

a(z) ∈ SXa and T is well defined.
Then

T i x
∼(z)

a(z)
= P+

[

zi x
∼(z)

a(z)

]

, i = 1, 2, . . . .

Let

F (z) =
b(z)

a∼(z)
=

∞
∑

k=1

f(k)zk,

then F (T ) is well defined by

F (T )
x∼(z)

a(z)
=

∞
∑

k=1

f(k)T k x∼(z)

a(z)

=

∞
∑

k=1

f(k)P+

[

zkx∼(z)

a(z)

]

= P+

[ ∞
∑

k=1

f(k)
zkx∼(z)

a(z)

]

= P+

[

b(z)

a∼(z)

x∼(z)

a(z)

]

.

Let us also define a unitary mapping K : Xa → Xa by

K
x(z)

a(z)
=

x∼(z)

za(z)
,

then we have

ΓG

x∼(z)

a∼(z)
= F (T )SKJ

x∼(z)

a∼(z)
.

We denote the matrix representation of T,K under the
above basis by TE ,KE . Then we get the following theorem.
Similar result can be found in [22].

Theorem 2 Construct the Jury table of a(z). Define matrix
A as in (10) and M as:

M =













α1r10 0 · · · 0

α1r11 α2r20
. . .

...
...

...
. . . 0

α1r1(n−1) α2r2(n−2) · · · αnrn0













.

Then
(1)

TE = A, KE = M−1







0 · · · 1
... . .

. ...
1 · · · 0






M ; (5)

(2)

HG = a∼(A)−1b(A)M−1







0 · · · 1
... . .

. ...
1 · · · 0






M (6)

= r∗1(A)−1b(A)M−1







0 · · · 1
... . .

. ...
1 · · · 0






M. (7)

where
r∗1(z) = zn−1r1(z

−1).

The adjoint Hankel operator Γ∗
G : H2 → H⊥

2 is given by

H∗
GU(z) = P−(G(z−1)U(z)), U(z) ∈ H2

and

Im Γ∗
G = JXa,

(Ker Γ∗
G)

⊥
= SXa.

Corollary 1 The adjoint Hankel operator Γ∗
G satisfies

Γ∗
G = SJΓGSJ. (8)

Remark 1 : Corollary 1 implies that the compressed matrix
representation of Γ∗

G is also HG. By definition, the matrix
representation of Γ∗

G is the transpose of that of ΓG. Hence
HG must be symmetric.

Since HG is symmetric, it is easy to show that

Ui(z) = εzVi(z
−1) = εSJVi(z) (9)

where ε = 1 or ε = −1. This fact may offer some
simplification in the computation.

A =

















−k0k1 α1/α2 · · · 0 0

−k0k2α1/α2 −k1k2
. . . 0 0

...
...

. . . . . .
...

−k0kn−1α1/αn−1 −k1kn−1α2/αn−1 · · · −kn−2kn−1 αn−1/αn

−k0knα1/αn −k1knα2/αn · · · −kn−2knαn−1/αn −kn−1kn

















. (10)



IV. OPTIMAL AND SUBOPTIMAL NEHARI PROBLEM

In this section, we apply the materials in the last section
to the solutions of the optimal and suboptimal Nehari prob-
lem. The Nehari problem [16] plays an important role in
robust and optimal control, it is an approximation problem
with respect to the L∞ norm: Given a stable strictly proper
system G(z) = b(z)

a(z) , find Q(z) ∈ H∞ to minimize

‖G(z−1) − Q(z)‖∞.

The following theorem is well-known [1], see also [6], [21].

Theorem 3 Let (U1(z), V1(z)) be the Schmidt pair
of HG corresponding to the largest Hankel singular value
σ1. Then

min
Q(z)∈H∞

‖G(z−1) − Q(z)‖∞ = σ1,

and the unique minimizing Q(z) is given by

Q(z) = G(z−1) − σ1
V1(z

−1)

U1(z−1)
.

Since the Hankel singular values and Schmidt pairs can be
obtained using the orthonormal basis constructed from the
Jury table, a computational method for solving the Nehari
problem is thus obtained.
The key point of Nehari’s theorem is that the lower bound
of ‖G(z−1) − Q(z)‖∞ is achievable, i.e., there exists a
Q(z) ∈ H∞ such that ‖G(z)‖H = ‖G(z−1) − Q(z)‖∞. If
however, we look for a Q(z) ∈ H∞ such that ‖G(z−1) −
Q(z)‖∞ ≤ γ with ‖G(z)‖H < γ, then Q(z) is called a
suboptimal Nehari complement of G(z−1).

The suboptimal Nehari problem is to characterize all
suboptimal Nehari complements of a given G(z−1) and is
studied in [5], [3] and [7], the methods in these papers are
all related to the state space system theory. Our approach
to the solution will be based on the orthonormal basis and
the compressed Hankel matrix ΓG in Theorem 2.

We also define the entropy of F (z) as

I[F (z)] = − γ2

2π

∫ π

−π

ln[1 − γ−2F (e−jω)F (ejω)]dω.

Theorem 4 Let G(z) = b(z)
a(z) ∈ H∞ be rational, strictly

proper and ‖G(z)‖H < γ. Expand G(z) as

G(z) = E(z)β

and let

α =
√

1 + β′(γ2I − H2
G)−1β (11)

X(z) = γE(z)(γ2I − H2
G)−1β/α (12)

Y (z) = [1 + zE(z)HG(γ2I − H2
G)−1β]/α (13)

(1) Define

V (z) =

[

V11(z) V12(z)
V21(z) V22(z)

]

, (14)

where

V11(z) = Y (z−1) − γ−1G(z−1)X(z)
V12(z) = X(z−1) − γ−1G(z−1)Y (z)
V21(z) = X(z)
V22(z) = Y (z)

(15)

Then the set of all Q(z) such that ‖G(z−1)−Q(z)‖∞ ≤ γ
is given by

{Q(z) = −γL[V (z), R(z)] : R(z) ∈ H∞, ‖R(z)‖∞ ≤ 1},

where

L[V (z), R(z)] =
V11(z)R(z) + V12(z)

V21(z)R(z) + V22(z)
.

(2) Define

P (z) =

[

P11(z) P12(z)
P21(z) P22(z)

]

=
1

Y (z)

[

U(z) 1
1 −X(z)

]

, (16)

with

U(z) = X(z−1) − γ−1G(z−1)Y (z) (17)

Then the set of all Q(z) such that ‖G(z−1)−Q(z)‖∞ ≤ γ
is given by

{Q(z) = −γF [P (z), R(z)], R(z) ∈ H∞, ‖R(z)‖∞ ≤ 1},

where

F [P (z), R(z)]

= P11(z) + P12(z)R(z)(I − P22(z)R(z))−1P21(z).

(3) By setting R(z) = 0, the unique Q(z) satisfying
‖G(z−1)−Q(z)‖∞ ≤ γ which minimizes I[G(z−1)−Q(z)]
is given by

Q(z) = −γV12(z)V −1
22 (z) = −γP11(z).

and

G(z−1) − Q(z) = γ
X(z−1)

Y (z)
.

Example 1
For

G(z) =
b(z)

a(z)
=

√
2z + 0.5

z2 +
√

2z + 0.5
,

We wish to find all Q(z) ∈ H∞ such that ‖G(z−1) −
Q(z)‖∞ ≤ γ with γ = 8.

Construct the Jury table, we can get

α0 = 1, α1 =
2
√

3

3
, α2 = 2

√
3

k0 = 0.5, k1 =
2
√

2

3
, k2 = 1

E1(z) =

√
3/2z +

√
6/3z

z2 +
√

2 + 0.5
, E2(z) =

√
3/6

z2 +
√

2 + 0.5
,



and
β =

[

2
√

6
3

−5
√

3
3

]′
.

Hence,

A =

[

−
√

2
3

1
3

− 1
6 − 2

√
2

3

]

, M =

[ √
3

2 0√
6

3
1√
12

]

.

and

HG =

[

1.8856 −3.3333
−3.3333 3.7712

]

, σ1 = 6.2925.

Now let

X(z) =
0.43z + 0.2

z2 +
√

2z + 0.5

Y (z) =
1.2z2 + 1.37z + 0.42

z2 +
√

2z + 0.5
.

So, V (z) =










0.83z2 + 1.50z + 0.60

z2 +
√

2z + 0.5

0.24z2 + 0.14z

z2 +
√

2z + 0.5

0.43z + 0.20

z2 +
√

2z + 0.5

1.20z2 + 1.37z + 0.42

z2 +
√

2z + 0.5











,

and P (z) =









0.24z2 + 0.14z

1.20z2 + 1.37z + 0.42

z2 +
√

2z + 0.5

1.20z2 + 1.37z + 0.42

z2 +
√

2z + 0.5

1.20z2 + 1.37z + 0.42
− 0.43z + 0.20

1.20z2 + 1.37z + 0.42









.

By setting R(z) = 0, the unique Q(z) satisfying ‖G(z−1)−
Q(z)‖∞ ≤ 8 which minimizes I[G(z−1) − Q(z)] is given
by

Q(z) = −8
0.24z2 + 0.14z

1.20z2 + 1.37z + 0.42
.

Note that when γ = σ1, γ2I − H2
G becomes singular

and its inverse doesn’t exist. Hence we couldn’t get the
optimal solution by just let γ → σ1 in the suboptimal
solution. That’s the reason why the solutions to optimal
and suboptimal problems are so different in their formulas.
The same gap exists for the state space solutions. We will
give an alternative algorithm which gives the optimal and
suboptimal solution in one unified formula.

Theorem 5 Let G(z) = b(z)
a(z) ∈ H∞ be rational,

strictly proper and ‖G(z)‖H ≤ γ. Expand G(z) as

G(z) = E(z)β

and let

α =
√

1 − β′(γ2I − (AHG)2)−1β (19)
X(z) = γE(z)(γ2I − (AHG)2)−1β (20)
Y (z) = 1 + E(z)AHG(γ2I − (AHG)2)−1β (21)

Define

P (z) =

[

P11(z) P12(z)
P21(z) P22(z)

]

=
1

Y (z)

[

U(z) α
α −X(z)

]

, (22)

with

U(z) = X(z−1) − γ−1G(z−1)Y (z) (23)

Then the set of all Q(z) such that ‖G(z−1)−Q(z)‖∞ ≤ γ
is given by

{Q(z) = −γF [P (z), R(z)], R(z) ∈ H∞, ‖R(z)‖∞ ≤ 1},

where

F [P (z), R(z)]

= P11(z) + P12(z)R(z)(I − P22(z)R(z))−1P21(z).

Example 2
Consider the same system

G(z) =
b(z)

a(z)
=

√
2z + 0.5

z2 +
√

2z + 0.5
,

We wish to find all Q(z) ∈ H∞ such that ‖G(z−1) −
Q(z)‖∞ ≤ γ with γ = 8 and γ = 6.2925 = σ1.

From Example 1 and Theorem 5, for γ = 8, we get
α = 0.83 and

X(z) = 0.83
0.43z + 0.2

z2 +
√

2z + 0.5

Y (z) = 0.83
1.2z2 + 1.37z + 0.42

z2 +
√

2z + 0.5

and P (z) =









0.24z2 + 0.14z

1.20z2 + 1.37z + 0.42

z2 +
√

2z + 0.5

1.20z2 + 1.37z + 0.42

z2 +
√

2z + 0.5

1.20z2 + 1.37z + 0.42
− 0.43z + 0.20

1.20z2 + 1.37z + 0.42









.

Note that P (z) is exactly the same as in Example 1.
For γ = 6.2925 = σ1, we get α = 0 and

X(z) =
z + 0.5

z2 +
√

2z + 0.5
= U1(z

−1)

Y (z) =
z2 + 0.5z

z2 +
√

2z + 0.5
= V1(z),

where (U1(z), V1(z)) is the Schmidt pair corresponding to
σ1. So,

P (z) =









0.84z + 0.5

z2 + 0.5z
0

0 −0.43z + 0.2

z2 + 0.5z









and

Q(z) = −γP11(z) = G(z−1) − γ
X(z−1)

Y (z)
.



Hence,

‖G(z−1) − Q(z)‖∞ = γ

∥

∥

∥

∥

X(z−1)

Y (z)

∥

∥

∥

∥

∞
= γ.

and Q is the optimal solution of Nehari problem.

V. OPTIMAL AND SUBOPTIMAL HANKEL NORM
APPROXIMATION PROBLEMS

In this section, we will study the optimal and suboptimal
Hankel norm approximation problems. We first take a
look at the optimal Hankel norm approximation problem.
Given a stable system with strictly proper transfer function,
we want to find a strictly stable lower order system to
approximate the high order system so that the Hankel
norm of the error is minimized. The solution is given by
the following known theorem.

Theorem 6 Let (Uk+1(z), Vk+1(z)) be the Schmidt
pair of HG corresponding to (k + 1)-st Hankel singular
value σk+1. Then

min
order G̃(z)≤k

‖G(z) − G̃(z)‖H = σk+1,

and the stable minimizing G̃(z) is given by

G̃(z) = G(z) − P+

[

σk+1
Vk+1(z)

Uk+1(z)

]

+ c,

where c is any constant.

The minimum to the Hankel norm approximation is
σk+1, If however we look for a stable G̃(z) with
order G̃(z) ≤ k such that ‖G(z) − G̃(z)‖H ≤ γ with
σk+1 ≤ γ < σk, then G̃(z) is not unique. The suboptimal
Hankel norm approximation problem is to characterize all
such G̃(z) for a given G(z). This problem is also studied
in [9], [3], [8].

The solution to this problem is closely related to the so
called Nehari-Takagi problem, see [9] and [3]. It is known
that solution Q(z) to the Nehari-Takagi problem is given
by the same formula as in the suboptimal Nehari problem,
but Q(z) doesn’t belong to H∞ anymore, Q(z) will have
precisely k poles outside the unit disk.

Replacing z by z−1, it’s easy to get the solution to the
suboptimal Hankel approximation problem.

Theorem 7 Let G(z) ∈ H∞ be rational, proper and
with singular values σ1 ≥ σ2 ≥ . . . ≥ σn, also let
σk+1 ≤ γ < σk. Then the set of all stable G̃(z) with
order G̃(z) ≤ k such that

‖G(z) − G̃(z)‖H ≤ γ

is given by
G̃(z) = P+[Q(z−1)] + c,

where Q(z) is given by Theorem 5 and c is any constant.

VI. CONCLUSION

Compressed Hankel matrix is given by using orthonormal
rational functions constructed from the Jury table. The
solutions to the optimal and suboptimal Nehari problems,
the solutions to the optimal and suboptimal Hankel approx-
imation problems via the compressed Hankel matrix are
given.
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