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Robust Robust Model Reduction

Yoram Halevi and Uri Shaked

Abstract—The problem of linear model reduction is ad- solution involves then methods like alternating projections
dressed. Given a state-space model of a linear time-invariant and semidefinite programming.
system, a model of prescribed order is obtained such that the Robustness issues were addressed in several works. In
Hs;—norm of the difference between the transference of the . S
two models is minimized. The reduced model is modeled as [17], the reduced order model |nvol\{ed minimization over
having the same order as the system but with a nonminimal @ class on norm bounded perturbations of the state space
observer form realization. The solution is then based on full matrices. In [16] the uncertainty was defined by LFT with
order LMIs. The model reduction method is extended to the norm bounded, but otherwise arbitrary, operators . In [10]
case where the model to be reduced suffers from parameters the problem of updating the reduced order model without

uncertainties that lie in a prescribed polytope. A reduced order lculati f . h in th t
model is obtained that achieves a prescribed upper-bound on recaiculation, for given changes in the parameters,was con-

the H.—norm of the differences between the transference of Sidered.
the reduced order model and all the transferences of all the In parallel to the introduction of the above methods for

possible systems in the polytope. model reduction, methods for robust filtering have been
developed in [18] and [19] which apply LMIs. It is the

o ) purpose of the present note to apply these methods to the
Approximation of high order, complex systems by |°Werpr0blem of robust model reduction.

order, relatively simple models is one of the fundamental Notation: Throughout the paper the superscrifft’ ‘

problems in linear system theory and has received CORiands for matrix transpositiory” denotes the: dimen-
siderable attention for many years. Since the early 1980§5nal Euclidean spac®”*™ is the set of alln x m real
this problem has received renewed interest and several N@4trices and the notatioR > 0. for P € R™*™ means

state space methods such as balanced realization ([1],[3}at p is symmetric and positive definite. Mathematical
component cost analysis ([3]), and the Hankel norm approXsxpectation is denoted by
imations ([4]), to name a few, were suggested.

The optimalH, reduced order model was first derived in [I. PROBLEM FORMULATION
[5] and later in [6], by direct optimization, without imposing  We consider the following asymptotically stable linear
any structure on it. It turned out that it is given in terms ofsystem .
a projection into a lower order subspace and therefore thg ¢ =Ax+Bw, y=Czr+Duw (1a,b)
solution is sometimes referred to as the 'optimal projectionwherex € R" is the system statg, € R" is the measured
The method has been extended to include bounds on thetput andw € RP? is a standard zero mean white noise.
H error ([7]) and frequency weighting ([8]). The outcome The system matrices are uncertain. They are supposed to
of all of these works, were sets of nonlinearly coupledelong to the following uncertainty polytope:
Lya_punov-like equati_ons. Homotopic methods_were gse_d for 4 {(A, B, C, D) |((A, B, C, D)=
_thelr nume_rlcal solution, e.g. ([9], [10]) but their application Zjilai(A(i)» BO), ¢, DO)). q; >0, leaizl}.
is not trivial due to convergence problems and the large ~—* ¢ @)
amount of required computation.

Other approaches to optimdf, order reduction were

I. INTRODUCTION

We want to obtain a robust model with some restrictions

. o 2 - on its parameters that produces an outputhich leads to a
aimed at obtaining an optimization algorithm rather thag, errorjj — y — ¢ over the entire uncertainty polytope.

a set of algebraic equations. That includes the iteratifge geek a stationary linear time-invariant asymptotically

algorithm in [11] and gradient flow methods ([12]). Thegapie model of order k with the state-space representation:
main problem in parametric optimization methods, such . ) R R
= AT+ Bhw, §=CnpT+ Dyw (3a,b)

as the gradient flow, is maintaining stability. In [13] that
problem was solved by restricting the reduced order modwlhere A,,,, B,,, C,, andD,, are constant matrices of the
to those obtained by a symmetric projection. appropriate dimensions. In the latter model some restrictions

Linear Matrix Inequalities(LMIs) were used for ordermay be imposed on the matricels,, and C,,,. Whenk =
reduction in ([14],([15],[16]). The set of conditions in thosen the obtained model will be referred to as the full-order
cases includes a rank condition, which is not convex. Theodel. A reduced-order model will be obtained fok n.

] ) S The above model is required to achieve a minimum
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The same performance measure can be defined determinTheorem 1:Consider the system (1). If there exists
isticly by considering the integral of the impulse respons@ model (3) that achieves a cosi of (4) less than
§, or by using the system norm of the augmented errét prescribed positive scala, then there exist matrices
producing system to be defined in (5). TH& modeling X» W, A € R*™™ B ¢ R™*?, C ¢ R™" and
problem we consider is thus the following: Z € R™*™ that satisfy the following LMIs:

Problem: Given a scalaf < §, obtain an asymptotically ATX+XA A-AT™W  XB+B
stable model of (3) that ensures that < 4. [ * —A:AT —WEI—B} <0,

Remark 1:In the above we required the system, and ) ’
therefore the reduced order model, to be asymptotically [Z ¢ ¢
stable. This requirement is needed in order to obtain a [: T v‘d >0 and fraceiZy<1. (8a-c)
stable transference from to 3. In the case yvher_e the The matrices of the model are then given by
system possesses unstable modes, one can either i) separate
between the contribution of the stable and the unstabled,, = -W™'A4, B,,=-W™'B and C,, =C. (9)
modes of the system to its transference, and then find a
reduced order model for the stable part, or ii) use co- % M . v N
prime factorization and reduce each component separately. Q= {MT U } and Q= {NT v }

None of these methods can, however, be applied her\ﬁhereX, M, Y, N aren x n matrices. Multiplying (7a)
Generally, i) cannot be applied simultaneously to the entirgy diag{JT, I} and diag{J, I}, from the left and the
polytope and ii) does not match the unstable modes exact}yght, respectively, where:

thus it cannot be applied in &5 setting. The robustness

Proof: Denote

A I Y
results of this paper are therefore limited to polytopes of J = {0 NT }
asymptotically stable systems. and pre and post multiply (7b) byliag{I, J} and
1. THE ROBUST Hy MODEL diag{I, J}, respectively two new inequalities are ob-
A. The full-order model tained. Pre and post multiplying the first inequality by

We begin our discussion by considering the system ( mg{TT’ I},";”ddwg{rv I}, respectively and thlesecond
which is assumed to be perfectly known. The case where ity dmf{I’IT } anddiag{l, T}, whereR = Y~ and
parameters are known to reside in the uncertainty polytope = |0 r | WO new inequalities are obtained. Denoting
(2) will be treated later. It is noted that there is hardly anyjy 2 x _ R the LMIs in Th. 1 thus follow if we define:
need to seek for a full order approximation of the system. B B
However the results of this case are the basis for cases where A=MA,,N'R, B=MB,,, andC=C,,N'R.  (10)
some restrictions are to be imposed on the model dynamics

or for uncertain systems. The relation between the latter matrices and the matrices
Denotingé =col{x, 2}, (1) and (3) can be rewritten as of (3) is obtained by realizing that:
§=A¢+Bw, §j=C¢+Dw (5a,0) Cou(sI—A,) 'Bp=CRN-TsI-M~AR'N-T)~M~'B
where =C(MNTRs—A)"'B=-C(Ws+A)"'Bnm
Az[g‘ Aom } B:{Bi } C=[¢c —Cu] D=D-D,,. The above was obtained for (1) with no uncertainty in the

(6a-d) Parameters. In Section 3.2 we show how these results can

It is well known (see, e.g [21]) that using the Lyapunowe used in the case where a reduced-order model is sought.
function ¢7Q¢ for the system (5)£{§7j} < 4 iff D =0 The affinity of the LMIs in (8) in4, B andC' implies that
and there exist matriceg € R2"*2" andZ € R™*™ that the result of the theorem can be easily extended, also for
satisfy the following inequalities: full order models, to the case where the parameters of the

AT0+0i OB s & system reside in the uncertainty polytope (2). We obtain the

, 761p:|<0’ |:éT Q}>O’ trace{Z}< 1 f0||owing_
(7a-c) Corollary 1: There exists a model (3) of ordér = n

The latter inequalities are linear in the variablgsand Z  that achieves a cosh of (4) less than a prescribed positive
and can thus be used to verify whether for givép, B,, scalaré for all the points in the polytope (2), if there exist
C,, and D,,, the error variance is less than When the matricesX, W, A € R"*", B € R"*P, C ¢ R"™*"
parameters of the model are unknown the latter inequalitiesyd Z € R™*™ that satisfy the following LMIs fori =
are nonlinear. There exists, however, a linearizing methad ..., N.
that reduces these inequalities to LMIs[20].

It should be noted that for thél,—norm to be finite
one should require thab,, = D. We can thus takéd =
D,,, = 0 in the two models. Applying the latter linearization { z cw c

method on the inequalities (7) we obtain the following. X )f % } >0, trace{Z}<1.

* —A-AT _wBW_pB | <0,

{A<1‘>TX+XA<“ A-AOTw  xBW 4B
* * —6I,

(11)
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. . . Z * *
If a solution to the_ above LMIs exists the matrices of the COT_gT R >0, j=1...N, trace{Z}<1
sought model are given by (9). ST F<%J>T Fm
The latter result applies the same Lyapunov function to » _ (13b,c)
all the points in and it therefore entails a considerablewhere ) = —F{9) 4 R — ¢,RTAW) and YY) = -7 -

overdesign. Recently, a parameter dependent approach a8/ 7A() —¢, S.

been introduced in [22] for the continuous-time case. The If a solution to the above LMIs exists the matrices of the

method of [22] also introduces a slack variable that is kepiought model are given by:

constant for all the vertices of the polytope and it leaves the . .

decision variabl&) to be chosen dependent on the vertices. Ap=T78, Byp=T""Sp and Cp=5c. (14)
Applying the arguments used in [22] to (7a) we obtain Proof: The proof follows the same lines as the one for

the following. Theorem 1. We choosé&l = diag{eG, al} wheree =
Lemma 1:Consider the system (5) with,,, B,, and diag{e1l, e2I} and where:;, eo anda are positive scalars.

C,, given. The cost/; of (4) is less than a prescribed We partitionG according toAd and have:

positive scalap over the polytope? if there exist matrices

G andQ; € R**?*" j=1,2,...N, G = [ v } and G = [ N } (15)
H e REntp)x(2ntp) gnd Z € R™*™ that satisfy the _ _
following LMIs: where due to the fact that in (128) < ¢G + GTe, G is
' nonsingular. Also we can assume, without loss of generality,
) A6 i i
[Zm diaglQ, G, 0}*{2015}[1 O]H] 0 that also/N; and M, are nonsingular. Denoting
. —H A" J:[ Yo } and J=diag{J, I,, J, I,} (16a,b)

[ z oW }>0 j=1,2,.,N, trace{Z} <1 (12ac) We multiply (12a) byJ” and.J, on the left and on the right,
@ ’ ey respectively and substitute from (6) and (15). Choosing

where AU, BU) andC%) are the corresponding matrices At tends to zero we obtain:

. . ) T AT
in (6) at the j-th vertex of) and ATYHY A E
( ) ] A(J)T+XTA<J)Y+M1TAmN1 XTADpADT x
o (€2 BT x BT M
A(J> 0 _ B . + 1
») — [ }[Am B(’)HL}U);}[G 0]+[0 41} —QuAYT -6 ADY —Qra— et Ay TXANT A,y
—QTAT— a1 XTAV Y—e; M Ay Ny “QartX—er XT AW

Proof: If there exists); that solves (7a) at the j-th vertex
of the polytope, it is readily verified that the choicg:= Q) X X

.
andH = olsn4p ,0 < o — 0 satisfies (12a) at this vertex o . : 0
point. On the other hand, if there exists a solution to (12a) e e (Y4yT) . <
at this vertex, we multiply the latter, from the left and the—«, Xx"BW—e; MTB,, —eil-e1 XTY-eaMT N, —ea(X+XT)
right, by T7 andT';, where _ 17
where we denotd” Q;J = [ 8“ g” }
Ionip 0 12 22
L= { - {é}[ﬂ” BD]  ILanyy | Denoting also.J = diag{[ n _IR} 1, [’g _IR]},

where R = Y, we pre- and post-multiply (17) by”

The resulting inequality has then a solution only if (7a) and J, respectively and obtain (13a) where we denote
possesses a solutiap; .| '

_ L . _ S=M{A,.N\R, Sp=M{B,,, T=MINR
Applying the linearization transformation used in the

proof of Theorem 1 on the inequalities of Lemma 1 we Y FRP]_[ RT o]lyro j[R -R
obtain the following. and [} @ #) J= 15 7] (1’8;_(1)
Theorem 2:Consider the system (1) over the polytopeand wherelV = X —R.

Q. There exists a model (3) that achieves a céstof
(4) less than a prescribed positive scafaover the entire
polytope if, for some positive scalar de5|gn parameters
and e, there exist matrice?, W, T, S, F11 , Fl(é and diag{I, [Ig ’IR }} , respectively, readily leads to (13b),
FY j=12.,NeR™ SyeR™, SoeR™" where

Considering next (12b) _pre- and post-multiplying this
inequality bydiag{I, J[ CRT 1}} and

and Z € R™*™ that satisfy the following2 NV + 1 LMIs: Sc =CnN1R. (29)

(J;TR_—i-RTA(j) . * * * If the LMIs of (8), (13a-c) possess a solution for all
VBV(;)“T(;)JFSB(;ﬁV;isT o * o the vertices of(2, the matrices of the model (3) may be
FO POt _qRTBY —a®bRT) . der_i\éed by1 factorizingVM; = —R~'W and usingN; =
F;‘” —FD T8 —eWBD -85 —eWheT eo(THT7T) M " TR~
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OnceM; and N; are calculated, it readily follows from (9) with a lower block triangular structure it is not necessary
(18a-c) and (19) that for W and A to possess such structures. This requirement
T ap1ar—1 T B 1 will therefore be relaxed below. The result of Theorem 3
Am =M " SEZN, B =M, S, Cn=Sc R N1, depends on the state-space realization of the system (1) and
The transfer functior,,, of the model is given by a different minimum value ob may be achieved if one

G = Con (5T — Am)_le _ Sc(sT—S)_lSB (20) applies the standard transformation:

) . A—TAT', B—TB, and C —CT !
and thus an alternative state space realization of the model

(3) is obtained by (141 whereT is a nonsingular matrix. An equivalent dependence
In Theorem 1 the matriceR and W are not necessarily on the matrixI is obtained if the original representation of
symmetric. In the case where they are symmetricafid= (1) is used and instead of seeking the canonical structure
Mj, it is easy to verify thafl’ = —W. of (21a,b), the following structure of the model matrices is

sought.

B. The reduced-order model
The derivation in the last section was aimed at achievingA4,, =7"! Efl AO ]T and C,,=[Cy1 0]T (23a,b)
a full-order model (k=n). When it is required that< n f2 43

the above results no longer hold. A nonconvex optimizatiofor some nonsingular matriX. In either ways, the inequal-
method has been suggested in [19] that leads to a reducégks (8a-c) become:

order model solution in the case of systems without uncer- ATR+RA TTA-ATTTW XB4+TTB

tainty. A much simpler solution to the reduced order model [ . _A_AT “WTB_B ] <0,

problem can be obtained, also for the uncertain case, by N N I

applying a modified version of Theorem 1. i ! (24)
It is obvious that if4,, € R™*™ and C,, € R™ ™ in { Z0 5 } =0, trace{Z} <1

(3) had the following structure « xW ’ '

A, = { Ap 0 } and C,,=[cn o] (21ab) _ Thelatter are inequalities in the decision variabless,
2o C, X, W, Z andT with the following special structure:

whereAy, € RF** andCy, € R™** the state space model w, o o Ts o
of (3) would be unobservable and the transfer function { 0 W2 }’ A= [52 Ss }

matrix of this model, fromu to §j would becomé=,.cgucea = ) » )
Cp1(sIy—As1)~LB,,. Ifall the eigenvalues oft ;; andA These inequalities are clearly nonlinear but they become

reside in the left half of the complex plane then the modétMIs for a givenT'. The conservative result of Theorem 3
transference can be described by the observable k-th ordéaS found for7" = I and the question arises how to find
triplet {41, By, Cy1}. the matrix T' that will allow a solution of (24a-c), under

In order to obtain a solution to (8)-(9) of the structure in(22), for the minimum value of. The following locally
(21), all that is required is that the variable matricesvill cqnyergent iterative method is proposed which provides the
posses the lower triangular structure 4f, in (21a), that Minimum4
the matrix variableC' will be in the form of C,, in (21b) ~ Algorithm 1 _ _ _
and thatW will be block diagonal.The above arguments® Start with any initial value fofl’, sayT = I, T' = A
about the lower triangular structure lead to the followind®" @ny scalar linear combination of the two.
result. e For the T' obtained solve (24a-c), under (25), for the

Theorem 3:Consider the system (1) over the polytopgninimum value ofd. o
Q. There exists a model (3) of ordet < n which *® Use the matricesi, B and W that were obtained in the

achieves a costl; of (4) less than a prescribed positivePr€vious step and solve (24a-c) and (25), in the decision

scalar over the entire polytope if there exist matricesvariablesX, €, Z andT, for the minimum value of.
X c RXn B ¢ R, gz ¢ Rmxm_ 4 — e Gotostep 2 and solve the inequalities there. If the result

[gi 503 }7 W= I/IO/1 ng }7 S, W, € RF*F and optalned fors is smaller than the previous value achieved in
n k) x(n—k) _ this step by less than a prescribed tolerance, stop. Otherwise
S3, Wp € R andC = [C1 0], C1 € continue to step 3

k H \/ i . . .
R™ that satisfy (11) for all theN vertices of the  The |atter algorithm is locally convergent since the se-

(25a,b)

uncertainty polytope. . _ quence of thé it produces is nonincreasing and is bounded
If a solution to the latter LMIs exists, the matrices of thes.om pelow. It is shown in Example 1 that it converges to
required reduced-order model are given by the global minimum which is achieved in the case where

Ap=-W{'Sy, Bp=—[W;t 0]BandC,,=C;. the system matrices are perfectly known using the method
(22) of [10].
The requirement imposed in Theorem 3hand A are The above results addressed the case where the param-
conservative due to the fact that in order to achidyg in  eters of the system to be modeled by a reduced order
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system are perfectly known, in other words, standard modéist order model is sought that best approximates the plant
reduction. In the case where these parameters are ormythe Ho-norm sense of Problem 1. Applying the following
known to lie in the polytopeQ of (2), one can derive state-space model of the plant:
a corollary similar to the one obtained for Theorem 1 -1 1 0 o0 0
(Corollary 1), if a quadratic stable solution is sought, or else_ 8 7(1) _} (1) 8 . B=
apply the method used to derive Theorem 3 on the results | 0 0 o -1 1
of Theorem 2. In the latter case we obtain the following. o 0 00

Theorem 4:Consider the system (1) over the polytopethe inequalities of (11) and (25) are first solved o= I
Q. There exists a model (3) of ordér< n which achieves using Matlab's LMI Toolbox [23]. A minimum value of
a costJ; of (4) less than a prescribed positive scalaver § = 0.1216 is obtained in the first step of the algorithm.
the entire polytope if there exist matric&s W, Fl({), ng) Starting with, say,T = A~!' the first step provides a
andFY) j=1,.., N eR™™", Sz eR™P, ZcR™m  minimum value of§ = 0.0851. Continuing with this initial
s= [ ¢] 7= [% 2], si, 7 e ek ana e off e lgorin comersesand e el
7523”;”% tﬁatR ;;tiilz;(zlga g)n?ofcallzth[dg 1ve(r)ti]czesccl)f tﬁe homotopy algorithm in citeHalevil) witi,,, = —0.1161,

B,, = 1.1811 and C,, = 0.1135. For a convergence

uncertalnty. polytope. . . tolerance of 3% the algorithm arrived at a solution in just
If a solution to the latter LMIs exists, the matrices of the9 iteration steps.

required reduced-order model are given by Example 2: Consider the system in Figure 1 where
Ap=T7"'S1, Bp=[T;" 0]SpandC,=Ci. (26) the inputs are the forces; and uy and the outputs are

A corresponding realization dependent result is obtained hiie displacementg; and y,. The nominal values of the

applying Theorem 2 and the state transformation (23a,lparameters ard/;, = My =1, K; = Ko =1, C; = 0.5

The following is obtained. andCy; = 1.5 and the state space realization of the system
Theorem 5:Consider the system (1) over the polytopds the following:

Q. There exists a model (3) of ordér< n which achieves o o Lo

a costJ; of (4) less than a prescribed positive scalaver s—] 0 0 0o 1

the entire polytope if, for some positive scalar design pa- [} _; *-g _-g

rameters:; ande,, there exist matrice®, W, F9), F{Y) '

—oooo

Q
|

ey
o
o
o

2

T+

)

0 0 1 0 0 o

1 ol Y=|o 1 0o of”
1

0

andF(g),j —1,..,N € R"*", S € R"P, Z € RM*m, Choosing the reduceq model order to _be one (found. using
g_ 18 o] p_[71 o] g 7 c®Fk and the homotopy method in [10]), the optim&l, model is
- O e R 2 E L given by:
S3, Ty € R(nik)x(nik and S¢g = [Cl, 0], Cy € . 8676
R™*k that satisfy, for a prechosen matfix the following Fm=—29502,, +[ 8676 4795 ] u, ym:|:_4795:| Lm
LMis for all the N vertices of the uncertainty polytope: (28)
AVTRLRTAY) * * with a cost ofd,,; = 1.4517, compared to the Truncated
WTTAD ST —S-sT * . oY . . . .
BOTR BOTFT g™ Y Balanced Realization method which yields in this case
B . . . . .
—F{94Re; RTAD) —FOTTWATTTT  — RTBY) dpa; = 1.8200. Algorithm 1 which converged in 5 iteration
“FPCeaWTTAD —,ST  —F)-TT+e,8 —aWTTBY-Sp  steps lead tay; = 1.4971 , i.e. a 3% deviation from the

optimal cost and a 18% improvement on the Balanced
0 Realization. The resulting model is described by:
<

—51(1;+RT) * A,,=—.3066, Bm:[2.2603 .7881]7 Cm:[.3675 ‘1877} r
—eaWTT-eoTT  ex(THTT)

*
*

* ¥ ¥

Next consider the robust order reduction problem where

c<J>T_ZTTsL,T FT;) I 20, j=1, .. N, trace{Z}<1 there is an uncertainty in the parametéfs and K> and
ST pfim FY each of them can assume any value in the internddlse
(27) ]0.9, 1.1], K2 € [0.8, 1.2]. Applying Corollary 1 with the
forj=1,2,...,N. structure of (21), a reduced model of order 1 is obtained
If a solution to the latter LMIs exists, the matrices of thewhich is based on a single Lyapunov function. A minimum
required reduced-order model are given by (26). bound of dppung = 2.35 is obtained in 10 iteration steps.

The resulting model is given by:

T
4.1 Example 1:In order to examine the efficiency of Ap=—3413, Bpy=[2.7294 1.2041], C,p=[3241 .1783]"
Algorithm 1 we solve a very simple model reduction prob-
lem the solution to which can be compared with the result
obtained in [10]. We consider the single-input-single-output .
plant described by the transfer functidh= 1/(s+10)°. A Tm=

IV. EXAMPLES

Using Theorem 4, one obtains the following model

.3547:|
Tm

—.2920z,, + [2.2094  1.0947] u, ym:{ 9171
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Vs Vi [4]
(6]
(6]
v oo
u. u [71
M, % M Y
[ [ 8]
[ [
C,
i [9]
Fig. 1. The spring and mass system of Example 2
[10]

with a guaranteed cost @f < 1.7673 everywhere inside 1]
the polytope. This guaranteed cost is significantly Iowe[r
than the one obtained above using Corollary 1. The actugp]
values of) that are achieved by applying the latter model
to the four vertices of the uncertainty polytope are: 1.5932 3
1.6093, 1.3654 and 1.4025.

V. CONCLUSION 4]

An efficient method for robust, as well as nominal, modej; 5)
reduction has been introduced. It differs from previous
results in both the uncertainty representation (polytopic) ar}ge]
the method of solution (LMI). This method is based on
solving LMIs that correspond to the various vertices of the
uncertainty polytope. Unlike previous results on applyiné17
LMIs to model reduction, the method does not involve
rank conditions and thus can be solved by the standaitB]
algorithm. Its result depends on the state space realization of
the system to be modeled. It can be significantly improvedg
by performing an iterative search for the best realization.
This search can be performed on the initial realization 0[50]
the system to which a noniterative procedure is applied in
order to find the reduced-order model that best approximates
this specific realization, or else by applying the iterationf.ﬂ]
of Algorithm 1 that iteratively finds realizations that reduce
the modeling error.

The proposed method guarantees a locally minimui§?
upper-bound on thé/s norm of the modeling error over the
entire uncertainty polytope. This bound is not necessarilig3]
tight and in many cases the maximum norm that is achieved
over the entire polytope by applying the resulting reduced
order model is less than the bound for which the model has
been designed.
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