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Model Reduction of Singular Systems via
Covariance Approximation

Jing Wang Qingling Zhang Wanquan Liu and V. Sreeram

_ Abstract—Model reduction problem was investigated for Recently, Zhang et al. [3] discussed the, suboptimal
singular systems. To solve the problem, the covariance for model reduction problem for singular systems. In [3], it

singular systems was defined. Then, a model reduction method oqjires that the transfer function matrix of the error system
based on covariance approximation was presented for obtain- . fi i der t tee that ist
ing a stable and impulse controllable models for singular sys- IS rational in order 10 guarantee oo NOrM EXIStS.

tems. Thirdly, the error criterion was explicitly derived via a  Further Wang, et al [17] give a sufficient and necessary
free parameter and the optimization procedure was presented condition of the existence of such systems. For singular
in terms of gradient flow. Finally, illustrative examples were  systems without impulsive behavior, some model reduction
given to show the effectiveness of the proposed approach.  gn5r9aches based on linear matrix inequalities are proposed
in [8], [9] respectively for discrete and continuous systems.
|. INTRODUCTION In this paper, we will present a new error criterion via

Singular systems have been investigated extensively OIﬁgvariance approximation to investigate the model redu_ction
to their applications in modelling and control of electricalprObIem for systems. Model reduction based on covariance

circuits, power systems and economics, etc. Some impd??s been investigated in [16] and many results have been

tant characteristics of singular systems include combine tained for normal linear systems. For singular systems,

dynamic and static solutions, impulsive behaviors and lar e to impulsive behavior, it is hard to define the covarianc:_e
dimensionality. Thus model reduction is vital for analysi or the fact subsystems. In our recent paper [14], the covari-

and design of controller for such systems [6], [4] and it idnece tfor tsmt%ular syste;’nst v*\;a}s{ f';St dgflncald and tvvas usHed 0
the subject of current research. investigate the regional stability for singular systems. Here

The initial investigation of model reduction for singularwe use the covariance defined in [14] to investigate the

. . model reduction issue.
systems was the chained aggregation method proposed |n]_ o . : . .
d he organization of this paper is as following. In section

[7]. The authors there developed a generalized chaine% some preliminaries will be presented. In section 3, the
aggregation algorithm and gave an intuitive interpretation of’ b P ) '

the exact aggregation conditions for singular systems. T néodel Ted“"“on problem Is investigated for fast subsyster_ns.
; . fd section 4, some main results about the model reduction
aim of the proposed method is to remove the unobservable

subspace. Initial behavior of singular systems was age presented and an algorithm to reduce the original system

. . i . . . will be given. In section 5, two numerical examples will be
taken into consideration while performing model reduction. . g P

However, as pointed out in [11], the main drawback ofven to |Ilusftrate the effectiveness Of the new prqposgd
model reduction approaches. Conclusions will be given in

this method is the high level of computational effort. Perev. .
and Shafai [11] considered model reduction for singulasreCtlon 6.
syste_m via balanced realizati_on and gave a model rgduction Il. PRELIMINARY RESULTS

algorithm. Unfortunately, their method ignored the impul-

sive behavior which is of paramount importance to singular In this section, some basic results for singular systems
systems. The reduced order model may be a normal statl be presented for uses in the sequel.

space system, which has no impulsive behavior and doesConsider the following singular systems

not track the original system response properly. Liu and .

Sreeram [5] proposed a new model reduction algorithm Ex(t) = Ax(t) + Bu(t), z(0—) = o, "

via Nehari’'s approximation algorithm and overcome the y(t) = Cx(t);

problem. The reduced-order model will be a really singula\gvherex

. . . . t) € R™ is the stat t t)eR?is the i t
system and the approximation has been obtained as des'r\?gctor a(nsjgf( 1) elizm ?sstr? ee o\;?;u(:n\igac):ti ([ elfznxi |r114pg

For discrete singular systems, Zhang et al. [4] discussed tl;gnm BeRM<4 (e R™*" are constant matrices with
same problem based G, norm. E possibly singular. Assume that the matrix p@ft, A) is
_ o _ _ regular (i.elsE — A| # 0). In this paper, the realization
Jing Wang and Qingling Zhang are with Institute of Sys- adru Ie(E A B C’) is used to represent svstem (1)
tem Science, Northeastern University, Shenyang, 110004, P.R.Chiﬁéj_ _p Uit o= p y . Jr
glzhang@mail.neu.edu.cn which is assumed to be minimal. All the matrices in this
Wanquan Liu is with School of Computing, Curtin University of paper are assumed to have appropriate dimensions.
Technology, WA 6102, Australianguan@cs.curtin.edu.au .. From [2], it is known that there exist two square nonsin-
V. Sreeram, Dept. of Electrical Eng., University of Western Australia, b : q
WA, 6002, Australia gular matricesy and P such that system (1) is transformed
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to the Weierstrass canonical form: The discussed syste(V, I, B, C) can be expressed as

i () = Araa(t) + Brut), 21(0-) = 10, follows: -

Y1 (t) = C’lxl (t), (2) Nl‘(? ZT(t) + Bu(t)v '73(0_) = o, (5)
Nio(t) = 2(t) + Bou(t), 2(0—) = x40, y(t) = Cx(t).

yo(t) = Coxo(t); And its state response is

h—1 h—1

x(t) = — Z SOV Nz — Z N'Bu® ().

=1 =0

wherez (t) e R™, x2(t) €R™2, ny +ng = n, N ER™2*"2
is nilpotent, and
QEP = diag(I,N), QAP = diag(Ay,I), When the initial stater, = 0 and the inputu(t) is a zero
CP=[C; Cq], P ta(t)=[zT(t), 2T)T, mean white noise process with covariad¢e) I, whered (t)
B =[BT BT, y(t) =yt n is the Dirac impulse function, thgh state response at time
QB = [Bf BII", y(t) = y1(t) +y2(t) ¢ can be characterized as

System (1) is called system restricted equivalent(s.r.e) to

h—1
system (2). The transfer function matriX(s) is invariant z(j,t) = — Z N'Be;6(t),
under s.r.e. transformation, i.e., =0
G(s) = C(sE—A)™! wherel =[ e; e eq |, e € R
—  CP(sQEP — QAP)"'QB Definition 1: Given N e R™"*", BER"*1, C € R™*",
_ _ N is nilpotent, therthe pseudo-nilpotent indet (N, B, C)
_ _ 1 _ 1 ) 9
= CusI=A)T Bi+Co(sN =17 B23) g genoted byind,(N), and ind,(N) = h,, satisfying
and CN‘B=0,i>h, CN»"1B=£0.
Oo(sN — D)-1B Obviously, there holdsnd,(N) < ind(N). Then the
2(sN = 1)7" By } . transfer function of system (5) is
= —CyBy — sCoNBy — -+ — s""1C, N'—1B
S o . G(s)=C(sN —1)"'B
whereh is the nilpotent index ofV. — CB—5sCNB — ... — shv—1ONm—1B.

Impulsive controllability and impulsive observability are
two important concepts for singular system mtroduceffhe impulse response matrix of system (5) g&) =
respectively by Cobb and Verghese in [1], [12]. RoughlyL '(G(s)) = — It 5O/(H)CNB, and L71(G(s)) is
speaking, they reflect the ability to remove the impulses ithe inverse Laplace transformation(é(s). The next lemma
the state responses of a singular system with non-impulsii&a property about Dirac function.
control. From [2], [1], one can obtain some criteria for Lemma 2:[14] "6 (¢) = (—1)"n!s(?)
impulsive controllability and impulsive observability. With this lemma in mind, one can get

For the slow subsystenid, A;, B, C1), there are many h—1
possible methods to reduce their order. So in the reminder z(; ) — / ( ZNz tie; 60 (¢ )> dt (6)
of this paper, we mainly discuss the model reduction for
the fast subsysteméN, I, B2, C>), and use(N, I, B,C) _
to represent the discussed systems for convenience. In this _ zNiBe _
paper, without loss of generality, we also assume that the et !
nilpotent matrix\V only contains Jordan blocks without zero

7HB€j,

blocks since it does not have impulse behavior otherwise"flnd ’
1p—1
= ) e A _ 7{ (1) 1
N = diag(J1, J2, -+, Ji), 4 a(t) ZO (_M!t §D()CN'B
and ho—1
010 0 < ;
00 1 0 = - Y CN'Bi(t) = —04(t), 7
Ji=| : e R, =
00 0 - 1 whereH = (I-N)~!, 0 = z?;gl CN'B, so we can use
000 - 0 |©]|  to measure the magnitude 9ft).
It should be noted thak(j, t) is a combination ofc(j, ¢)
wherei = 1,2,--- ,k andr (= h) > ry > --- > 1, >0, in order to get a compact form @f(t) in (7).

and the numbel is called the nilpotent index oiv. We
useind(N

with N.

) to denote the nilpotent index. In addition, all
the nilpotent matrices in this paper are of the same form

Definition 3: [14] The matrix

X3t

Jj=1

=HBBTHT,
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is called the steady-state covariance of system (5). models not satisfying the existence condition. Therefore,
Then the steady-state output covariance of system (5) iisis necessary to consider the above suboptimal model
B T T T AT ol reduction problem.
Y=CXC' =CHBB H C" =66". C) In this paper, two cases will be tackled. One is when
It should be noted that the state covariance and output cb, = 1 and the full-order system is output impulse-free;
variance are used to investigate the impulsive controllabilityhe other is wherb, > 1, and the original system does not
and impulsive observability in [14]. In this paper, we intendsatisfy the existence condition reported in [17].
to use this index to investigate the model reduction issue for
the fast subsystems. Actually, the defined covariance should IV MAIN RESULTS

reflect the capacity of impulsive behaviors of singular As stated in previous section, we present our results in
systems. two cases below.

IIl. PROBLEM FORMULATION A hy=1

It should be noted that the difficulty of model reduc- First, the following lemma is needed in the sequel.
tion for singular systems is to retain its impulsive nature. Lemma 4:[15] For any initial state, system (5) is output
Without impulsive nature, the model reduction algorithmémpulse-free if and only ifC'V = 0.
in [8]’ [9] are para||e| to those for normal linear systems Therefore, in this case, the transfer function of system
via LMIs. With impulsive behaviors considered, most of(5) is G(s) = C(sN — I)"'B = —CB. Noting that
the results are based on system decompositions due to tHed¥=0 in this case, one needs to findrth-order system
difficulties. Even with system decomposition, it is not easyVr: Ir, B, Cr-), r <n = dim N satisfying
to characterize the capacity of the impulsive behavior. With (1) N is nilpotent and not zero;
the covariance defined in previous section as a possible(2) B, = CB;

alternative, we formulate our problem as below. () C:N,. =0;
Problem Given thenth-order impulse-controllable and  (4) rank Ne 000 ny + rankN,.].
impulse-observable singular systéi, I, B, C') with © de- I, N. By

The following theorem gives the necessary and sufficient
ondition of the existence of such reduced-order system and
he procedure of the proof is a constructive procedure to get

N,, B,, andC.,.
Theorem 5:A reduced-order system satisfying the above
conditions (1)-(4) exists if and only if rafkB] < n — 1.

fined, find arth-order systemN,, I,., B,., C;.), r < n with
O, such that the following conditions are simultaneousl
satisfied.
Condition 1 The new system is impulse-controllable;
Condition 2 N, is also nilpotent, andnd(N,) <

ind,(N); :
mé)o(nd)iiion 3 -0 Proof (Necessity) Suppose that such a reduced-order
Condition 4 For thé’fixedN B system exists, then the inequality

ranKC' B| = ranKC,. B, <r < n,
min 37775 [ON'B — C.N;B, |, {o8] KO B <<

. < 1. (9) must hold. By contradiction, if rafk'B] = n — 1, that is

St HC’NiB||2F ranKC,B,] = n —1 = r. ThenC, will be full column

In this case, we can take the reduced system as the apprik ?ndBr is full row rank sinceC,, € R™*("~V), B, &
imation of the original system. R(—1)x4: Then from condition (3) there exist¥, = 0,

The first condition assures there exists a controller tynich contradicts the first condition. So rdak3] < n — 1.
eliminate the impulse of the reduced model; The secoridufficiency) Letn, =ranKCB] <n —1. Then take a full
condition is to retain its impulsive nature; The third one/@nk decomposition
in fact, assures that the steady-state output covaridhce CB = C, B,
is equal to that of the original full-order system 5, that is
Y, = Y, andY is defined in (8). The last condition is Where C; € R™*"t, B, € R"*? are of full column
to make the state responses of the reduced system and & row rank, respectively. Choosing any nonzero vector

original system as close as possible when the initial state @ = [ 81 B2 -+ B, |7 € R™, in which there

zero. exists no less than one zero element and letiing=
Obviously, from [17], we know that the best case is tha€:3., 6 = [ 8/ —1]7, then one can construay, =

forall i = 1,...,h, — 1, there holdCN‘B = C,N!B,, [o1 az -+ an, 0] where

and in this case, the transfer function of the error system 0 B 20

is rational then theH ., norm exists. In [17], a sufficient o = { 3 ﬁt: _ 0:

and necessary condition for the existence of such reduced-
order system is given whefa, > 1. If the condition can be andC,.=[ C; « |, B.=[ Bl 0 ]T. Now it is easy to
satisfied, the model reduction problem can be degenerateldeck thatN? = 0, and the other three conditions are also
into a case for normal linear systems. In fact, there are mamgtisfied for the systerV,., I,., B, C,.) with r < n. O
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B. h,>1 ie.,

Lemma 6:[13] Suppose thatd € C"*"™, B € CP*19, =Q-! I, 0| =01

H € C¢™*4. Then the matrix equation = x 0| 7% -
AXB = H, (10) it can be deduced from Lemma 6 ti@satisfying the above
is solvable, if and only ifA~ and B~ satisfies the following €duation must exist. R
condition In addition, suppose thaB, and B,. can be partitioned
AA"HB B =H. (11) as follows
If (10) is satisfied, the general solution is in the following B.=[x b x b -+ x bl ]T,
form . . . o 4T
X=A"HB +Y — A"AYBB~, B.=[x b5, x b, - x b ]

whereY is anynxp matrix, A~ andB~ are the generalized  After some manipulations, one can obtain that
inverse matrices.

Lemma 7:[5] Given system (5), and rank[ oL, bL, - b7, ] =d,
_ T T .. T 1T
B=[x bti x b x b ] if and only if
where ‘b;” is the vector in B corresponding to the last A A R
row of J; and “x” are some matrices whose elements are rank[ b7, oL, .- BT, ] =d. (13)
not important for the analysis. Then system (5) is impulse-
controllable if and only if Now one can get matri¥’ such that (13) holds, which
T T T assures that the new system is impulse controllable. Finally,
rank[ b b3 - by J=p. from Lemma 6, we can obtain

With these two lemmas, we can derive the following ’
result. e A A

Theorem 8:Given system (5), wher&/ € R" ", I € Cr =28, +Y-YB. B, (14)

nx n X mXn H 1
R, B € R*4, ' € R™, N, is also given and whereY is any constantn x r matrix. |

nilpotent with d Jordan blocksy < n. Then there exists
impulse controllable reduced-order systéiy., I,., B,., C,.),
N, e R™*", I, € R™", B, € R™4, C, € R™*", such

Now let us consider the state covariance optimization
problem. For this purpose, let

that® =0, i.e., hp—1
i i 2
Cy(I, — N,)"'B, = C(I — N)"'B. v= Y |[CN'B-C.N/B,|;
Proof The proof is constructive. First, lef = C(I — i=0
N)~1B, the following steps are to get the matricBs and o1 ; ; ; ST
C,. with proper dimension such that.(I, — N,.) !B, = =. = Tr ((CN B - CTNTB,«) (CN B - CrNrBr) )
From Lemma 6, the necessary and sufficient condition of h:01
the existence o€, is P i
. =S re(le [N w5 ]
EB, B, =E, (12) i=0 " "
N ~ N T
where B, = (I, — N,)"'B,, and B; is a generalized T pT (NF) 0 cr
. . A r X [ B Br ] T T
inverse matrix ofB,. 0 (N?) -C;
Suppose thaB,. has the canonical form cT
i :T7<[C c@p[ CTD’
S Br Y
bor[ 0o
where
Then ;
A _ X _ - .
_ - 0 Ni B,
where “x” are some matrices whose elements are not i=0

important for the analysis an@® and Q are respectively T T (NZ)T 0
r x r andgq x ¢ invertible matrices. Next, fiXg, satisfying X [ B™ B, ] 0 (Ni)T
rank(Ip,.) >rankZ), and rankip,) >d. Then the equation "
(12) can be changed to the following: Let

—=—1 IBT’ 0 = _ P1 P2

=Q { x 0 o P= Pf Py |’
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where Step4. Calculate the nori ;" ||CNZ'B||§;

hp—1 Step5. Verify whether the inequality (9) holds, if yes,
P = Z (N'B) (NiB)T, one gets an approximation of the original system.
1=0
hp—1 . Remark 9:The range of the reduced order is
P, = > (N'B)(N/B,) , rank(©) <r <n and one can choose any oi\g satisfying
i=0 condition 2.
hp—1 o Remark 10:The corresponding results for discrete-time
Py= > (NiB.) (N;B,) . case can be derived similarly.
=0
If condition 3 is satisfied and, is obtained as in Theorem V. NUMERICAL EXAMPLES
8, then P;, P, and P; are derived easily. S¢’,. can be In this section, we will use two examples to illustrate the
expressed as in (14) whetlé is variable. Therefore, effectiveness of the model reduction approaches proposed
in this paper.

_ T _ T T
7 =Tr(CRCT —20RC, + G PGy ) Example 1. Consider systemV(I, B, C)

= Tr (CPlch —20P, (EB;)T

01000 11
A Cor 00000 21 01003
+EB;P3(EB;) N=|00010|,B=|31|,c=|02001
) T 00001 12 01001
+(EBFP3—2CP2) (IT—BTB,?) vT 00000 22
1y (I B B") P, (EB‘ r Its transfer function is
o N 87
+Y (Ir - BT,B,?) Py (Ir - BTB;) YT) ,(15) G(s)=-CB=|64 |.
43
Oy o PRN) & . —
o Tr | \EB, Ps— 2CP2) I, — B, B, ) i It can be easily checked that in this example, the full-
7 9y - * order system is output impulsive-free ahg = 1.
+ 5 (Ir - BTB;) x P3 (EB; Using the method in Theorem 5, one can get
Yij
oy o L NT 020 132 2 1
+2ay”(IT*B%BT)Pg(IrfBTBT) YT>7 Ne—|looo|.c=|214]|. B=]22
“ (16) 0-10 112 00
Y . _ Example 2. Consider the systeniV(/, B,C) of the
where o — =&y i = 1,2, ,m,j = 1,2,---,n Y = example in [17], where

yij
Wi) sy Se(k=1,2,---  m) andn; (j = 1,2,--- ,r) are

the standard basis vectors Bf” and R" respectively. 01000 11
Since we have obtained the expression forand its 00100 02 13032
partial derivatives with respect to the parametgér, a =/ 00000 ]|,B=|10],Cc=[10210].
gradient-based method [18] can be used to obtain the 00001 21 32311
01

optimal parametec,.. 00000
With all these results, given- and N,, satisfying i T
rank(©) < r <n, ind(N,) < h,, we present the following It can be easily checked that in this examplg,> 1.

model reduction algorithm. In [17], this system is reduced to a 4th-order system, and
it can not be reduced further based i, norm. Now,
Algorithm : using the algorithm in this paper, we reduce this system to
Stepl. As in the proof of Theorem 8, obtain the matrixa 3rd-order system. Choosing
Br; 010
Step2. Choose an initial value of the paraméter N-loo1
Step3. Obtain the optimal parametgrby solving the " 000 ’
unconstrained optimization problemin-~y;
(a) Calculate the functiony from (15); and applying the algorithm in section 4, one can obtain the
(b) Compute the derivative of with respect toy  following
given by (16); _ _ _ 31 —2.8291 0.0573 4.5475
(c) Obtalr} the optimal paramet&r using agradlgnt- Bo=| 225 |, Y= —0.7435 0.8062 1.9140 |,
based method; Mnymy = 0, then go to step 5, else continue; 2 1 923027 —0.1766 4.6734
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0.8600 3.4084 7.6185

VI. CONCLUSIONS

C,.= 0.5378 0.6483 2.8415 |, B,=| —4 1.5 |, In this pa develoned del reduct I
1.2043 2.8863 7.5799 2 1 1 thiS paper, we developed a new modet reduction a
gorithm for singular systems via covariance approximation.
hp—1 _— This is the first time that the covariance defined for singular
v = 20.1481, Z |CN'B||}, = 474, systems is used for model reduction issue. From the results
i=0 of this paper, it can be seen that the proposed covariance
and can reflect the capacity of impulsive behavior for singular

systems. This will motivates us for further research along
this direction.

hp—1 ; 2
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