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Abstract— The paper describes a flatness-based control scheme for
the permanent magnet synchronous motor. A hierarchical control is
developed and the scheme is shown to be compatible with the flatness
properties via a detailed time-scale analysis. The proposed control
strategy also achieves copper loss minimization at all operating points.
Detailed simulations are presented to illustrate stability and robustness
properties of the control scheme.

Index Terms— Permanent magnet synchronous motor control, hier-
archical control, differential flatness, robust control

I. INTRODUCTION

The industrial importance of permanent magnet synchronous
motor drives has been increasing for a number of years. This
class of motors achieves very good efficiency that equals and
sometimes even surpasses the efficiency of induction motor drives
which have been dominating the industry for a long time. Permanent
magnet machines also maximize torque per unit volume and weight,
resulting in numerous applications in vehicles and autonomous
systems.

While a number of control schemes have been proposed for
permanent magnet drives in the literature, our aim in this paper is
to explore a new class of nonlinear control algorithms based on the
concept of differential flatness. We show that an appropriate choice
of the “direct current” allows to minimize copper losses in every
mode of operation. Moreover, we established that the flatness-based
control is compatible with standard hierarchical control schemes.
The stability of the new control scheme, which involve a load
torque observer for on-line re-parameterization of trajectories, is
established via a precise singular and regular perturbation study
of the tracking error equation, coupled with the application of an
advance stability result. Since we are interested in industrial appli-
cations, we will also evaluate stability robustness of our scheme,
in particular with respect to large parametric perturbations that are
typical for high-performance applications.

II. SHORT REVIEW OF DIFFERENTIAL FLATNESS

The differential flatness is an important structural property of
many control systems [1]. Consider a nonlinear control system given
by a state-variable representation:

ẋ = f(x, e) (1)

where e = (e1, . . . , em)> is the input and x = (x1, . . . , xn)> is
the state. System (1) is said to be (differentially) flat if and only
if there exists a set of m variables z = (z1, . . . , zm)> having the
following 3 properties:

1) z = h(x, e, . . . , e(α));

*Work performed when E. Delaleau was visiting professor in the ECE
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2) every variable of (1) can be expressed in terms of z and a
finite number of its time derivatives, in particular:

x = A(z, ż, . . . , z(β)) (2a)

e = B(z, ż, . . . , z(β+1)); (2b)

3) the components of z are differentially independent.

Such a set of variables z = (z1, . . . , zm) is called a flat output
or linearizing output of the system (1).

The synthesis of control laws using differential flatness or
flatness-based control is done in two steps:

a) Design of an open-loop nominal control corresponding to the
predicted trajectory of the flat output;

b) Application of feedback law in order to stabilize the real
trajectory around the predicted trajectory of the flat output.

A complete flatness-based control methodology is presented
in [2], [3] with stabilization and robustness results.

III. MODEL OF THE MOTOR IN DQ FRAME AND FLATNESS

Consider the DQ model of a synchronous motor with permanent
magnets (see for example [6]):

Ld
did
dt

= vd − Rsid + npLqΩiq (3a)

Lq
diq
dt

= vq − Rsiq − npLdΩid − npΦfΩ (3b)

θ̇ = Ω (3c)

JΩ̇ = np [Φf + ∆Lid] iq| {z }
Te

−TL (3d)

where notation are usual and ∆L = Ld − Lq is the difference
between the direct and quadrature inductances.

The model (3) of the synchronous motor is flat with flat output
z = (θ, id, TL). The proof is straightforward and consists of
checking the relevant conditions. The main point is the possibility
to express every variable of (3) —namely, Ω, id, vd and vq— in
terms of θ, id, TL and their derivative from algebraic manipulation
of the equations (3).

IV. EFFICIENCY OPTIMIZATION

This section is devoted to the study of copper losses (Joule’s
effect) minimization by the control law. The flatness property allows
us to derive a simple and elegant solution. The minimum of copper
losses is achieved by the appropriate choice of id value. This is
a component of the flat output and, consequently, one can achieve
a control in order to make this current to track a nominal desired
trajectory.

An interesting and useful property of the differentially flat
systems is that every variable can be expressed in terms of the
flat output components and their derivatives. Therefore, one can



compute the power dissipated by copper losses PJ in terms of the
flat output:

PJ = Rsi
2
d + Rsi

2
q = Rs

(
i2d +

„
Jθ̈ + TL

np(Φf + ∆Lid)

«2
)

To simplify the optimization it is useful to consider PJ as a function
of 2 variables only —id and Te— taking into account from (3d) that
Jθ̈ + TL = Te. Consequently, PJ can be considered as a function
of id and Te:

PJ(id, Te) = Rs

(
i2d +

„
Te

np(Φf + ∆Lid)

«2
)

(4)

The trajectory t 7→ θ(t) will depend on the particular control task
or desired motion; the trajectory of the load torque t 7→ TL(t) will
depend on the operating conditions. Therefore, the trajectory of the
electromagnetic torque t 7→ Te(t) cannot be freely assigned and
depends on the particular dynamic task and operating conditions.
The only degree of freedom left is the choice of the trajectory of id,
which is a component of a flat output. For a given level of torque
Te produced by the motor, the power dissipated by Joule’s effect
PJ can therefore be considered as a function of id only.

A. Non-salient machine (∆L = 0)

In this case, (4) simplifies into PJ = Rs


i2d +

“
Te

npΦf

”2
ff

which is obviously minimized for id = iopt
d ≡ 0. Notice that our

approach allows us to recover the well-known choice id ≡ 0, often
justified in terms of torque efficiency of the motor [6].

B. Salient machine (∆L 6= 0)
In this case one has generally ∆L < 0 for permanent magnet

synchronous motors or ∆L > 0 in the less common case of a
wound-field machine operated with constant field voltage.

First notice that PJ is an even function of Te and therefore the
discussion can be focused on Te ≥ 0 only. The minimum of PJ can
easily obtained by differentiation of the equation (4) with respect
to id. For notational convenience, introduce ido = −

Φf

∆L
which

allows to rewrite the expression of the electromagnetic torque and
the quadrature currents respectively as: Te = np∆L(id − ido)iq ,
iq = Te

np∆L(id−ido
)

Notice that the produced torque is equal to 0 if
id = ido . Therefore, we will suppose in everything that follows, that
id 6= ido to avoid the singularity in the expression of iq . As ∆L is
generally small, ido can be quite large1 and in normal operation of
the motor the current id does not take values in the neighborhood
of ido . With the new notation (4) becomes:

PJ = Rs

(
i2d +

„
Te

np∆L(id − ido)

«2
)

(5)

For Te = 0 it is obvious, that we have again id = iopt
d ≡ 0. For

Te 6= 0, one has to differentiate PJ w.r.t. id to find its extrema:

∂PJ

∂id
= 2Rs

(
id −

„
Te

np∆L

«2
1

(id − ido)3

)
(6)

As long as id 6= ido , id 6= 0, and Te 6= 0, the equation ∂PJ

∂id
= 0 is

equivalent to:

( id − ido )3 =

„
Te

np∆L

«2
1

id
(7)

1In the case of the parameter set used for the simulation (see values
in Table III) ido

= 27.8 A and is quite larger than the nominal current
Inom = 5.35 A.

For id 7→ ( id − ido )3 = f(id) is strictly increasing, and for id 7→“
Te

np∆L

”2
1
id

= g(id) is strictly decreasing on its two intervals of
definition, there exists exactly 2 points of intersection between the
two graphs, namely id1 and id2. This mean that PJ has 2 extrema.
From the symmetry of f around the point (ido , 0) and from the
symmetry of g around the point (0, 0), it is easy to deduce, whether
∆L < 0 or ∆L > 0, that the inequalities |id1| < |id2| and |id1 −
ido | > |id2 − ido | hold. Then, one concludes that PJ(id1, Te) <
PJ(id2, Te) for all Te 6= 0. Consequently the minimum of PJ is
reached for iopt

d (Te) = id1. The optimal direct axis current can be
easily calculated as function of Te:

iopt
d (Te) = h(Te) (8)

by numeric resolution of (7). In implementations, the result can be
stored in a table that will be used by the controller. Note that if
∆L → 0 then iopt

d (Te) → 0 for every Te, as expected.
Note that (7) is also equivalent to a polynomial equation of

degree 4 in the unknown id as long as id 6= 0 that could be explicitly
solved to obtain a closed form expression for h.

V. HIERARCHICAL CONTROL

To simplify the design of the control, the model (3) can be
considered as a cascade of two simple systems which are coupled
to each other: an electrical subsystem (or low level subsystem) and
a mechanical subsystem (or high level subsystem). The electrical
subsystem corresponds to (3a) and (3b).

Following standard arguments about the electrical subsystem
being substantially faster, we can use a hierarchical control scheme.
It will turn out that such scheme is compatible with the flatness
property established above, in particular the high level is flat with
the same flat output as the whole system. The idea is then as
follows: First, design a closed-loop scheme for the low level, which
achieve id −→ i]d, iq −→ i]q , sufficiently fast with respect to the
variations of the desired trajectories t 7→ θ], which will be achieved
by the high level subsystem. Second, design the control of the high
level subsystem, which can be considered as a system with current
inputs (id, iq). This scheme works very well if the variations of the
currents dictated by the high level subsystem are slower than the
rate of convergence of the current errors in the low level subsystem.

Although id and iq are not physical variables of the plant, we will
pursue the development as if there were. Indeed, we assume that the
angular position θ and the stator windings currents are measurable.
With these measurements, it is easy to calculate the values of id

and iq .

A. Low level controller

Low level subsystem:

Ld
did
dt

= vd − Rsid + npLqΩiq (9a)

Lq
diq
dt

= vq − Rsiq − npLdΩid − npΦfΩ (9b)

This is a system with 3 inputs, vd and vq as controls and Ω as
disturbance input, and with 2 outputs, id and iq the to-be-controlled
currents. In the sequel, the controls of the low level subsystem will
be called “actual control” as they are the control of the plant.

Structure of the low level controller: The closed-loop low level
control typically consists of PI controllers, which can be written,



using the notations of operational calculus, as:

vd = −Kd
ped −

Kd
i

s
ed + v[

d (10a)

vq = −Kq
peq −

Kq
i

s
eq + v[

q (10b)

where v[
d and v[

q are reference input detailed below; ed and eq are
the direct and quadrature current errors defined by:

ed = id − i[d (11a)

eq = iq − i[q (11b)

We propose to use a feedforward based on reference current (i[
d

and i[q) and measured speed Ω expressed as:

v[
d = Rsi

[
d − npLqΩi[q (12a)

v[
q = Rsi

[
q + npLdΩi[d + npΦfΩ (12b)

B. High level controller

High level subsystem: Assuming that the low level controller
ensures, that id −→ i[d and iq −→ i[q sufficiently fast, the
mechanical part or high-level subsystem of (3) reads

θ̇ = Ω (13a)

JΩ̇ = np

h
Φf + ∆Li[d

i
i[q − TL (13b)

and is nothing else than the reduced model obtained with iq =
i[q and id = i[d in (3) under the control defined by (10), (11),
(12). Subsystem (13) can be seen as a system with control (i[

d, i[q)
and with disturbance TL. Note that (i[d, i[q) constitutes a “virtual
control” as it does not correspond to the physical control variables.
Subsystem (13) is flat with flat output (θ, id, TL), that is the same
flat output than the whole system (3). However, there is only one
control objective, either to regulate the position, the speed or even
the torque produced by the motor. Therefore, one of the two control
channels can be remain unused. The best choice is not to use i[

d in
the high level controller. There are two justifications for this choice:
First, if we want to minimize copper losses, i[

d must be chosen to
be equal to i]d = iopt

d from (8). This can be achieved by the low-
level controller. Second, if ∆L = 0, there is only one control i[

q

in (13), and even if ∆L 6= 0 the system (13) presents a lower level
of controllability w.r.t. i[

d than i[q: Φf � |∆L| implies that in most
of the operations, at least in the the subset −Inom ≤ id, iq ≤ Inom,
one has

˛̨
˛ ∂Te

∂id

˛̨
˛ ≤

˛̨
˛ ∂Te

∂iq

˛̨
˛. In summary, i[d can thus even be thought

as a (known) disturbance for the high level subsystem. The high
level controller has only to calculate the appropriate value of i[

d

corresponding to copper loss minimization.
Structure of the controller: From the flatness property of (13),

the nominal control based on differential are:

i[d = i]d = h(Jθ̈] + cTL) (see (8)) (14a)

i[q = i]q =
Jθ̈] + cTL

np(Φf + ∆Li]d)
(14b)

Following the philosophy of “exact feedforward based on differen-
tial flatness” [2], one has to add to θ̈] a correcting term depending
on the position error to close the loop. The position is stabilized
around its nominal value by a simple PI controller:

i[q =
J
h
θ̈] − (KP + KI

s
)eθ

i
+ cTL

np(Φf + ∆Li]d)
(15)

where eθ = θ − θ]. Of course, having the knowledge of the
flatness of the complete model it is useful of chose a 3-differentiable
reference trajectory θ] for θ for the calculation in (8).

C. Load torque and high level observer
We have shown previously the need to have an on-line estimation

of the load torque TL. Consequently, we will design an observer.
As we need to estimate the instantaneous value of the load torque,
we can make the hypothesis ṪL = 0. The to-be-observed system
can be rewritten as:

θ̇ = Ω (16a)

Ω̇ =
1

J
[np(Φf + ∆Lid)iq − TL] (16b)

ṪL = 0 (16c)

and a possible observer based on the position measurement is:

ḃθ = bΩ + `1(θ − bθ) (17a)

ḃΩ =
1

J

h
np(Φf + ∆Lbıd)bıq − cTL

i
+ `2(θ − bθ) (17b)

ċTL = `3(θ − bθ) (17c)

where bıd = i[d or bıd = id and bıq = i[q or bıq = iq . Denote the
observation errors as êθ = θ−bθ, êΩ = Ω− bΩ, and êTL

= TL−cTL:

˙̂eθ = −`1êθ + êΩ (18a)

˙̂eΩ = −`2êθ −
1

J
êTL

+ c(id, iq,bıd,bıq) (18b)

˙̂eTL
= −`3êθ (18c)

With the usual choice, bıd = id and bıq = iq , c(id, iq,bıd,bıq) =
0 and the observation error equation is linear and homogeneous.
However, an interesting choice can be:

 bıd = id
bıq = i[q

which leads to

c(id, iq,bıd,bıq) =
np

J
(Φf + ∆Lid)eq

As |∆Lid| � Φf and |∆Li[d| � Φf , it is not useful to choose
bıd = i[d since only second order effects will result.

We remark here that it is useful to put some information from
trajectories of low-level variables in the high-level observer.

D. Summary of notations
Before to pursue the analysis of the control scheme, it seems

useful to recall all notations introduced so far. They are summarized
in Table I and Table II. Note that Table I also sets the units of all
the signals as they will appear in Fig. 2 to 7 at the end of the
paper. The detailed hierarchical controller exposed in the preceding
section is summarized on Fig. 1.

VI. STABILITY ANALYSIS

A. Observer
The error equation (18) of the observer can be rewritten as

d

dt

0
@

êθ

êΩ

êTL

1
A =

0
@
−`1 1 0
−`2 0 −1/J
−`3 0 0

1
A
0
@

êθ

êΩ

êTL

1
A

+

0
@

0

np(Φf + ∆Lid)(iq − i[q)/J
0

1
A (19)



TABLE I
NOTATIONS FOR SIGNALS

Variable High level low level observed
Name (actual reference reference or input Unit

value) or nominal of obs.

Position θ θ] — bθ rad
Speed Ω Ω] Ω[ bΩ rad/s

Load torque TL — — cTL N m
Direct cur. id i

]
d i[d bıd A

Quadr. cur. iq i
]
q i[q bıq A

Direct volt. vd v
]
d v[

d — V
Quadr. volt. vq v

]
q v[

q — V

TABLE II
DEFINITION OF ERROR SIGNALS

Error High level Low level Observation
Position eθ = θ − θ] — êθ = θ −

bθ
ξθ =

R
eθ

Speed eΩ = Ω − Ω] — êΩ = Ω −
bΩ

Load torque — — êTL
= TL −

cTL

Direct cur. — — ed = id − i[d
ξd =

R
ed

Quadr. cur. — — eq = iq − i[d
ξq =

R
eq

This is a linear-time invariant system whose characteristic polyno-
mial is s3 + `1s

2 + `2s − `3/J . A simple Routh’s table show that
one has stability if and only if

`1 > 0, `2 +
`3
J

> 0, `3 < 0

Recall that to achieve efficient copper loss minimization, we need
a quickly converging observer w.r.t. the dynamics of the other
variables. In theory, an appropriate choice of the gains `1, `2, and
`3 allows us to tune the observer to be as fast as desired. In practice,
the gain of the observer should be limited to avoid saturations.

B. Low level controller
Denote by τd = Ld

Rs
and τq =

Lq

Rs
the stator winding time-

constants associated with the direct and the quadrature axis. The
time-constant of the direct and quadrature modes can be set ap-
proximately to εdτd > 0 and εqτq > 0, where εd, εq ∈ R are
dimensionless parameters, respectively, by choosing2

Kd
p =

2Ld

εdτd
− Rs, Kd

i =
Ld

ε2dτ2
d

(20a)

Kq
p =

2Lq

εqτq
− Rs, Kq

i =
Lq

ε2qτ2
q

(20b)

The low level control can thus be rewritten as:

ξ̇d =
ed

εdτd
(21a)

vd = −(
2Ld

εdτd
− Rs)ed −

Ld

εdτd
ξd

Rsi
[
d − npLqΩi[q (21b)

ξ̇q =
eq

εqτq
(21c)

vq = −(
2Lq

εqτq
− Rs)eq −

Lq

εqτq
ξq

Rsi
[
q + npLdΩi[d + npΦfΩ (21d)

2Note that this choice is only made to simplify the stability analysis, but
does not mean that the controller is sensitive the the parameter values. Only
the order of magnitude is important in this analysis and any other choice
with same order of magnitude will permit to draw the same conclusion.
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Fig. 1. Detailed hierarchical controller

where ξd and ξq are the integrals of ed

εdτd
and eq

εqτq
respectively.

The error equation of (9) together with (21) is:

εdτdξ̇d = ed (22a)

εdτd
ded

dt
= −2ed − ξd + εdτdnp

Lq

Ld
Ωeq −

di[d
dt

(22b)

εqτq ξ̇q = eq (22c)

εqτq
deq

dt
= −2eq − ξq − εqτqnp

Ld

Lq
Ωed −

di[q
dt

(22d)

The necessary and sufficient of exponential stability of the homo-
geneous linear differential equation associated to (22) is satisfied as
soon as εd > 0 and εq > 0 which is the case.

An advantageous choice of εd and εq is such that εdτd and εqτq

achieve a “high gain” feedback, which ensures a quick asymptotic
convergence of id and iq to i[d and i[q for any bounded Ω. A more
detailed analysis can be performed by studying the boundary layer
associated [5] to (22). A regular perturbation argument on (22)
rewritten in fast times td = t

εdτd
and tq = t

εqτq
show that for

εdτd = 0 and εqτq = 0, ed and eq become insensitive to Ω.
A coarser analysis shows that the characteristic polynomial

of (22) is approximatively the same as the one of

d

dt

0
BB@

ξd

ed

ξq

eq

1
CCA =

0
BBB@

0 1
εdτd

0

− 2
εdτd

− 1
εdτd

0 0

0 0 0 1
εqτq

0 0 − 2
εqτq

− 1
εqτq

1
CCCA

0
BB@

ξd

ed

ξq

eq

1
CCA (23)

provided that |Ω| � min( Ld

npLqεdτd
,

Lq

npLdεqτq
) which can be

transformed into upper bounds for εd and εq:

εd �
Ld

npLqτd|Ω|max
, εq �

Lq

npLdτq|Ω|max
(24)

A more general way to study the error equation is to use
Kelemen’s theorem [4]. This has also the advantage of being
applicable in cases where the choice of gains is not as clear as
in (20).



C. High-level
The error equation associate to the high level controller is:

ξ̇θ = eθ (25a)

ėθ = eΩ (25b)

˙eΩ =

 
Φf + ∆Li[d

Φf + ∆Li]d

!
(−KDeΩ − KPeθ − KIξθ) (25c)

−
êTL

J

The stability is easy to establish for bounded and sufficiently slow-
varying i[d and i]d using Kelemen’s Theorem [4].

VII. SIMULATIONS

A. Parameters

TABLE III
PARAMETERS FOR SIMULATIONS.

Name Notation Value Unit
Stator resistance Rs 0.97 Ω

Direct inductance Ld 5.4 [mH]
Quadrature inductance Lq 9.0 [mH]
Number of pole pairs np 8 [1]

Flux constant Φf 0.1 [Wb]
Rotor inertia J 1.1e-3 [kg m2]

Nominal current Inom 5.35 [A]
Nominal power 1480 [W]
Maximal speed 4600 [rpm]
Nominal torque 3.32 [Nm]

The values are shown in Table III. As stated before, the tuning
of the low level is done using the two dimensionless parameters εd

and εq . In order to simplify the tuning of the observer and the high
level controller, let us introduce two other dimensionless parameters
α and β which the represent the ratio of the time constant of the
observer and high level controller w.r.t. the low level time constant
τd and τq .

The characteristic polynomial associated with the observer error
dynamic (19) is s3 + `1s

2 + `2s− `3/J and can be identified with
(s + 1

τobs
)3 by an appropriate choice of `1, `2 and `3 and τobs is

the time constant associated with the observer. The parameter α is
defined as α = τobs

max(τd,τq)
and allow to tune the dynamics of the

observer w.r.t. the low level controller.
Under the hypothesis i[

d = i]d, the high level error dynamics (25a)
becomes linear and in this case admits s3 + KDs2 + KPs + KI

as characteristic polynomial. It is useful to choose the gains KP,
KI, and KD in order to identify the latter polynomial with (s +

1
τhigh

)3 where τhigh is the time constant associated with the high
level controller. The parameter β is thus defined as β =

τhigh

max(τd,τq)
.

Hence, the complete tuning of the hierarchical control rely only on
the four parameters εd, εq , α, β.

B. Nominal tuning
Consider the following tuning εd = 0.5, εq = 0.25, α = 5,

β = 10, that will be our “nominal” case for comparison with other
cases. The respective simulations are reported in Fig. 2 and Fig. 3.
We remark a good tracking control.

Reducing the values of the tuning parameters allows to obtain
a faster response: for example with εd = 0.2, εq = 0.1, α = 3,
β = 6 it becomes almost impossible to distinguish between the
reference and the actual curves. (Not reported here for the sake of
conciseness.)

The choice of the 4 parameters allows to exhibit easily wrong
behavior of the closed-loop: low level controller too slow w.r.t to
variations of low level reference signals, high level controller too
fast w.r.t the low level controller, load torque observer too slow. All
these cases are not reported here.

C. Robustness of the control law
In this section, we illustrate the properties of robustness of the

control law with respect to initial conditions and uncertainties on
parameters. See [2] and [3] for a theoretical study of this problems
for flatness based control laws. All simulations in this section have
been performed using the nominal tuning (εd = 0.5, εq = 0.25,
α = 5, β = 10).

Robustness w.r.t. position initial condition: Fig. 4 shows the
case in which θ(0) = −π/4. In the two cases we observe a
good behavior of the control law w.r.t. to the uncertainty on initial
position. This implies a disturbance on the behavior of the observer
during the transient.

Robustness w.r.t. inductance uncertainties: For this simulation
we use the nominal values of Ld and Lq in the (low level) controller
but 50% of the nominal value in the plant model. These case may
be similar to a saturation of the machine (the actual fluxes are less
than the value obtained with the nominal values of Ld and Lq).
We remark that the low level is not too disturbed and that the high
level is almost insensitive to this parameter uncertainty. See Fig. 5
and Fig. 6.

Robustness w.r.t. inertia uncertainties: We suppose here that
we have a wrong knowledge of the value of the inertia of the shaft.
The nominal inertia is used in the high level control and in the
observer while the model is supposed to have 1.5 times the nominal
inertia. This implies that the feedforward part of the control law is
not powerful enough during the transients to achieve the desired
trajectory and this implies more effort from the feedback part of
high level controller. However the control scheme is quite able to
cope with this kind of uncertainty as illustrated by Fig. 7.

VIII. CONCLUSION

In this paper we have presented a hierarchical flatness-based con-
trol for the permanent magnet synchronous motor. The hierarchical
controller mainly relies on physical properties of the model, and
is simple to tune with the proposed selection of gains. We also
illustrated the stabilization and robustness properties of the control
scheme. This class of control schemes can easily be modified for
other types of motors that share the flatness property.
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Fig. 2. Nominal control (high level variables).

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
−2

0

2

4

6

8

10

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
−25.0

−16.7

−8.3

0.0

8.3

16.7

25.0

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
−0.9

−0.7

−0.5

−0.3

−0.1

0.1

0.3

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
−2
−1
0
1
2
3
4
5
6

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

PSfrag replacements

θ (—), θ] (- - -), θ̂ (- — -)
eθ (—), êθ (- — -)
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Fig. 3. Nominal control (low level variables).
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Fig. 4. Uncertainty of θ(0) (high level variables).
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Fig. 5. Uncertainty on inductances (high level variables).
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Fig. 6. Uncertainty on inductances (low level variables).
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(- — -)

vd (—)
vq (—)
id (—)
iq (—)
ed (—)
eq (—)

Fig. 7. Uncertainty on inertia (high level variables).


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeA03.2
	Page0: 65
	Page1: 66
	Page2: 67
	Page3: 68
	Page4: 69
	Page5: 70


