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Large-Signal Stability in High-Order Switching
Converters

R. Leyva, I. Queinnec, S.Tarbouriech, C. Alonso and L. Martinez-Salamero

Abstract—This article presents the application of a new
passivity-based control law that stabilizes the output voltage
of a fourth-order DC-DC converter. This control law assures
large-signal stability, provides zero steady-state error despite
uncertainty in converter parameters and has enough degree
of freedom to satisfy the usual transient specifications. This
new integral control is derived in three steps. First, a static
law is obtained. Second, a positive semi-definite storage
function is studied to guarantee zero steady-state error of the
output voltage. Finally, the storage functions of the first two
steps are combined to derive the new control law for high-
order DC-DC converters.

1. INTRODUCTION

witching converters enable raw energy to be efficiently

adapted from a primary source to satisfy load
specifications.  Basic DC-DC  switching-converter
topologies, i.e. buck, buck-boost and boost, have second-
order dynamics. These second-order circuits have bilinear
averaged dynamics. Also, the control signal, or duty cycle,
is constrained in the [0,1] interval. However, linear control
is mostly used in the power electronics domain, though it
can not ensure global stability of these nonlinear systems.
Since large-signal stability is not ensured in the regulator
design process, a simulation or experimental verification
must be done to verify the behavior of the closed loop
system is correct when start-up or large perturbations
occur. Often, ‘ad-hoc’ start-up aid circuits are added to
overcome these problems. An analytical guarantee that no
limit cycles or instabilities will appear in large
perturbation situations will therefore improve the
reliability of these power processing units. These facts
have prompted several authors to apply nonlinear control
to DC-DC converters.

This work was supported in part by the Spanish Ministry of Science and
Technology under Grant TIC2001-2157-C02-02

R. Leyva and L. Martinez-Salamero are with the Departament
d’Enginyeria Electronica, Eléctrica i Automatica Escola Técnica Superior
d’Enginyeria, Universitat Rovira i Virgili, 43006 Tarragona, Spain. (e-mail:
rleyva@etse.urv.es).

I. Queinnec, S.Tarbouriech and C. Alonso are with the Laboratoire
d’Analyse et d’Architecture des Systemes, Centre National de la Recherche
Scientifique, 31077 Toulouse, Cedex 4, France.

0-7803-8335-4/04/$17.00 ©2004 AACC

A nonlinear control technique, which can afford the
bilinear nature and control saturation, is passivity-based
control. Passivity control technique appeared in the 1970s
[1-4] and plays a very important role in nonlinear control
today [5-7]. Several attempts have been made to apply
passivity control to switching regulators. The first attempt
was made by Sanders [8] and in the last few years there
has been an increasing interest in this control technique
applied to DC-DC converters [9-12]. However, several
problems still prevent the use of this technique in real
situations. One of these is the complexity of the control
law, which is strongly related to the question of control law
implementation, Some implementation of a passivity-based
controller for DC-DC converter [10] has been reported,
though the performances are not yet as good as those of a
conventional control, at least in small-signal terms. This
may be due to the fact that the complexity of the law
requires the use of a digital device. The control has to react
much faster than time constants and switching frequency
in switching converters. Also, the converter time constants
and the switching frequency have to be minimized in order
to optimize ripple and component sizes. A digital solution
therefore needs a very fast device, so this may not be the
best technological solution. On the other hand, analog
controllers do not need a previous sampling process and
are therefore less demanding in bandwidth terms. In this
paper, we propose a control law that is simple enough so
that it can be easily implemented in an analog design by
means of operational amplifiers and an analog multiplier.

Moreover, most of the previously proposed laws have
been applied to second order converters. However, to meet
EMI specifications filters are usually added to the basic
converter topologies [13]. Adding these filters modifies the
converter dynamics and the control has to be redesigned.
Therefore, there is a need to extend passivity-based control
to high order converters without substantially increasing
the complexity of the control law so that it still allows an
analog implementation. This paper will show passivity-
based control design in high order converters, and in the
two-inductor buck in particular [14]. The approach can be
easily applied to other high order converters such as buck
with input filter, Cuk converter and SEPIC.
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Other important aims of this control are to ensure zero
steady state error and to ensure that the control law is
smooth. The proposed law satisfies these requirements.

Finally, it is essential that the law can assure correct
performances around the equilibrium point since most of
the performance standards [15] in power electronics are
specified in frequency domain. This will allow the control
law to be easily compared with the usual control laws for
DC-DC converters [13]. In the paper, once proved the
large signal stability, an analysis in small signal is
provided.

The paper is organized as follows. Section 2 describes a
dynamic model of two-inductor buck. Section 3 proposes a
passivity-based control using a combination of incremental
energy and an integral storage function. The behavior of
closed loop around the equilibrium point is analyzed in
section IV, Finally, some simulations and conclusions are
provided.

II. PROBLEM STATEMENT

A. Converter Model

Figure 1 shows a two-inductor buck converter or zero
ripple buck [14] whose dynamic behavior during Toy and
Torr can be expressed as
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correspond to input current, L, inductor current, C,

capacitor voltage and output voltage, respectively.
Equation (1) can be expressed in compact form as
').Ca :(Al xa+b1)u+(A2 xa+b2)(l-u) (2)

where # = 1 during Toy and # = 0 during Topr.
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Fig.1. Two-inductor buck converter topology

If the switching frequency is significantly higher than
the natural frequencies of the converter, this discontinuous
model can be approximated by a continuous averaged
model in which a new variable d, is introduced. In the
[0,1] subinterval d, is a continuous function and
constitutes the converter duty cycle.

In the zero ripple buck converter b, =b,, which leads
to

x, =4, x,+b, +(A1 _A2)xada 3)

Considering that the system variables consist of two

components:
X,=x,+x
d,=d,+d

where x,and d, represent the equilibrium values and x

*4)

and d are the perturbed values of state and duty cycle,
equation (3) can be written as follows
(xe+ x) =4, (xe+ x) +b, + (Al —4, ) (xe+ x)(de+d) (&)
which results in

x=Ax+Bxd+bd 6)

where A=A, +(4 - A4,)d,, B=(4,-4,) and
b= (A1 —Az)xe and vector x,  represents the
equilibrium point
V,d} IR
. V,d,d,-1)/R o
Vg
d, Vg

The dynamics of the perturbed system are therefore
summarized in the following equations:

_l=d, xStV
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B. Duty Cycle Saturation

Since the control signal in switching converters
corresponds to the duty cycle d,, the perturbed duty cycle
d is constrained in the [— d, 1-d e] interval. Considering
a nonlinear feedback output y(x), the control law
d =—¢(y)y will be applied, where ¢(y) >0 models the
saturation effect and corresponds to

-d, -d,
y <
y $mm:
-d 1-d
W)= Goas —< ys— )
$max $ma.1‘
1-d, 1d,
y >
LY Do

and ¢, represents the small signal gain in a linearized
model of the closed-loop system.

III. PASSIVITY-BASED CONTROL FOR HIGH ORDER

CONVERTER

The aim of this section is to derive a smooth control law
that assures stability despite large signal perturbation,
while taking into account the control signal saturation.

We propose a smooth nonlinear control function for
high order converters based on the combination of two
storage functions. This control will ensure both stability
and transient specifications, namely zero steady-state error
of the output voltage and desired damping, since it has
enough degree of freedom.

Consider the following 5-order system made up of (8)
and a new state variable x,, which corresponds to the

integral of the output voltage error:

. 1-d, x, X +V,
X, == Xy-—
Ll Ll Ll
+V
X, =— x3-i + %3 g
2 Ll L2
__1-d, d, 1 1 ay,
X, = X, ——=x, —|—x, +—x, +—— |d (10)
C, C, C, C, RC,
X, =—x +Lx _ 1
4 , 1 C2 2 RC2 4
X, =x

Lemma 1: The nonlinear output

yl:V_]f(Rxl-'—sz —d, x3) an

provides a passive relationship for the system (10)
Proof: Consider the positive storage function, which is
positive semi-definite,

1 1 1 1
Vl(x)=EL1x12 +5L2x22 +EC’1x325C2xf (12)
and whose derivative along the state trajectory is
. 4
Vi(x)=-22 + £ (Rx, +Rx, —d, x,)d (13)
R R
so
. x2
Vi) =-—+yd<yd (14)

which proves Lemma 1
Remark 1: The storage function is positive definite for
the system (8)

Lemma 2: The nonlinear output
Y :(leexl +L2 (l_de)xz +x5)(Vg +x3) (15)
provides a lossless passive relationship [7] for the system
(10)
Proof: Consider the storage function
V,(x) = (delel + (1 —d, )szz X5 )2
whose derivative along the state trajectory is
Vz (x) = (leexl +1, (1 —d, )xz * X5 )(Vg + x3)d )

SO

(16)

Vo(x)=y,d (18)
which proves Lemma 2

Proposition 1: Consider the nonlinear feedback output

Vg
Y=» +ky2 =7(Rx1 +Rx2 _de x3)

(19)

+ k(leexl + L2 (1 - de )x2 + x5 )(Vg + x3 )

where k is a positive constant. Then, the control law
d=-¢(y)y (20)

is an integral stabilizing control for the high order
converter (10).

Proof: The proof is based on the combination of the
previous storage functions (12) and (16)

V)=V, (x)+kV,(x) 21
whose derivative along the state trajectory is
V) =V, +kV,) <y +ky,d=yd 2
By applying control law d = —¢(y)y, it is obtained
2
V) =-"t =g’y <0 23)

We will now prove the stability of the closed loop system.
As V(x) is a negative semi-definite function, we need to
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use LaSalle Theorem to demonstrate the asymptotic
stability. In other words, we must prove Zero State
Detectability or Zero State Observability [7]. Therefore, to

prove stability, we need to study dynamics of (10) when
2

V(x)=0. The fact that ¥ (x) = —%‘ -y’ =0 implies
that x, =0 and y =0 since ¢ > 0. On the other hand, if
y=0, then d=0 and x, is constant. Then the
asymptotically stability of system (8) when V(x) = 0 must
be analyzed.

It is important to note that if y =0 and d =0, then

variables x, and x, are linearly dependent. Also, if

e

y=0 thenx, =—x, —

x,. Then the zero dynamics

corresponds to

. 1-d,
X, =- X
1 Ll 3
(24)
1 1 (. a
X, =—x, ——|1- X,
C, C, R
As 0<d, <1, then trajectory of the system
constrained to V(x)=0 is linear and strictly

asymptotically stable. Hence, it is zero state detectable and
it has been demonstrated by LaSalle Theorem that this law
stabilizes the high order converter asymptotically.

Remark 2: Function V, (x) has been obtained by means
of a more general function

V() :%(clxl rex, +x,) 25)

by choosing the coefficients such that the terms not
multiplied by the control are negative or zero. The
following values of coefficients adapt this storage function
to the two-inductor buck converter

¢ =d,L,
¢, =(1-d,)L, (26)
c3 = 2(1 - de)

Such a process can easily be applied to many different
topologies of switching converters.

Remark 3: A control law based only on Lemmal, i,
d=-¢(y,)y,, is lincar and can assure large signal

stability. However, it is not an integral law and can not
guarantee zero steady-state in small signal.

Remark 4: A control law based only on Lemma?2, i.e.
d =-¢(y,)y,, cannot improve the damping degree due
to its lossless nature.

IV. SMALL SIGNAL REQUIREMENTS

Once the nonlinear control law has been established, the
closed loop system around equilibrium may be linearized
to ensure that the behavior of the switching regulator in
small-signal operation is satisfactory.

We can consider the following linear representation of
the switching regulator

x=Ax+Bd

lin
y=Cx Q7
where, from (10),
[0 0 (a-11, -VL 0]
0 0 d,/L, -1/L, 0
A=|-(d -1)/C /1, 0 0 0
d,/C, d,/C, 0 -VRC, 0
| 0 0 0 1 0]
V,/L,
V,/L,
B=|-d, V,/RC)
0
L O _
(28)
According to expressions (9) and (19)-(20), the
corresponding linear law is
Q(Rx +Rx,-d, x )
A =G | R T (29)

+ ng (leexl + Lz (1 - de )xz + xs)

The design parameters @)

max

and k£ may be selected from
a linear loop gain analysis, where the corresponding loop
gain, derived from (27), (28) and (29), corresponds to

Q RX‘ +RX2 —d X,
R\ D, D D

1(s) =g, N " " RN CY
+kI/g[lee_l+L2(l_de) : + Sj
lin lin lin
. X 1 X 2 X3 XS
The expressions of , , and are
Dlin Dlin Dh’n Dlin

transfers functions and can be derived from a linear model
of the system (28).
Next, Figure 2 shows the root locus corresponding to gain
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loop @@,.. in (30) when the converter parameters are

L =30pH L, =500pH ,C, =10uF, C,=200u",
R=10Q,V, =20V, d, =0.5. The chosen value of & is

k=1000. It is beyond the scope of this paper to find a
systematic procedure for simultaneously optimizing the

design parameters ¢ and k in this nonlinear control

max

law.

/
|

|

|

|
o

Imag Axis

Fig.2. Root Locus for gain loop in law (34).

Therefore, a value ¢, =0.0034is chosen in order to
minimize the settle time.

Remark 4: The next figure shows the root locus for a
control law based on feedback of only y,, ie.
d =-¢(y,)y, . Damping coefficient do not change when
We can see that in order to improve the damping
coefficient ¢ varies. The law does not have any degree of

freedom to improve damping. This behavior can be
expected from its lossless nature, as shown in Lemma 2.

Root Locus

x10
T

Imag Axis

Fig.3. Root Locus for lossless control, i.e. d = —¢(y2 )y2 .

V. SIMULATION RESULTS

The following figures show the transient behavior of a two-
inductor buck with the proposed control law (19)-(20). The
switching period is 7, =10s . The figures show the start-

up process, a variation of the real load, a variation of the
feed voltage and a change in the desired output voltage.
Load changes its real value from /002 to 5Q at time t =
10ms. The value of the feed voltage changes from 20V to
30V at time t = 20ms. There is also a change in the
reference voltage from 70V to 20V at 100ms. However, the
nominal values of the controller parameters remain
unchanged including nominal equilibrium state. Figures 4
to 9 depict current i,,, current i,,, voltage v;,, voltage v,
the error integral of the output voltage and the duty cycle,
respectively.

10

sl

current 1 (V)

| | | | 1 | |
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04
time (s)

Fig 4. Ll inductor current

w »

current 2(A)
~

I I . I 1 I 1
0 0.005 001 0015 002 0025 003 0.035 0.04
time (s)

Fig 5. L2 inductor current.
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Fig 7. C2 capacitor voltage or regulated output.

VL

In this paper we have shown that a passivity-based
integral control is an effective solution for high-order DC-
DC converters because it can ensures large-signal stability
despite the bilinear nature of their dynamics and duty-cycle
saturation. This control law ensures perfect regulation
despite uncertainty in parameters. Once designed, it can be
tuned by using a small-signal method to satisfy the usual
specifications for switching regulators. It is smooth and
can be easily implemented using an analog multiplier,
operational amplifiers and a pulse width modulator.

CONCLUSION
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