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Abstract— The dynamic optimization problem in the pres-
ence of uncertainty (model mismatch and disturbances) is
addressed. It has been recently proposed that this problem can
be solved by tracking the necessary conditions of optimality in
the various intervals of the solution. In this paper, it is shown
that the standard neighboring extremal approach, which uses
linearization around the optimal trajectory, drives to zero the
first-order variation of the necessary conditions of optimality
on the parts of the solution where no constraint is active.
This fact is used to extend the neighboring extremal approach
to singular problems. In singular problems, the linearization
around the optimum lacks the information needed to build a
neighboring extremal controller. This paper proposes to use
the nonlinear dynamics to provide the lacking information.
The theoretical ideas are illustrated for singular problems on
a simple semi-batch chemical reactor.

I. I NTRODUCTION

Dynamic optimization provides an unified framework for
improving process operations while taking into account
operational and other types of constraints [1], [8]. Recently,
there has been some emphasis on using measurements in the
optimization framework in order to handle the uncertainty
(model mismatch, process variations and disturbances) that
is inevitably present in a real process. Among the various
measurement-based optimization methods available in the
literature [4], [7], a promising one, labeled NCO tracking,
consists of enforcing the Necessary Conditions of Optimal-
ity corresponding to the real situation [7].

NCO tracking uses the fact that there are only two types
of arcs that can constitute the optimal solution: constraint-
seeking and sensitivity-seeking arcs [8]. This distinction
depends on whether the solution is determined by the con-
straints of the optimization problem or forces a sensitivity
(gradient) to zero. When the solution is determined by the
constraints, tracking the necessary conditions of optimality
corresponds to enforcing the corresponding constraints. The
other case of sensitivity-seeking arcs, which is typically
more involved, will be considered in this paper.

Along a sensitivity-seeking arc, optimization can be
treated as the regulation of a sensitivity around zero. The
main difficulty arises from the fact that this gradient infor-
mation depends on the adjoint variables that are typically
unknown. Thus, an efficient way of estimating them and
their variations is needed. A simple technique that has been
used for over four decades is the sweep method where, for

a linear (linearized) system, the adjoint variables (or their
variations) are considered proportional to the state variables
(or their variations). The linearized version of this approach
leads to the Neighboring Extremal (NE) controller [2], [3],
[6]. It is shown in this paper that the standard NE controller
forces the first-order variation of the NCO to zero. Thus,
the NE controller can in fact be used for NCO tracking.

The main contribution of this paper lies in the use of the
link between NE controllers and NCO tracking to extend the
NE controllers to the singular case. The singular case arises
when the optimal inputs cannot be computed directly from
the NCO, and thus time differentiations of the NCO are
required. In such a case, the standard NE controller cannot
be used since it calls for inversion of a singular matrix. Time
differentiations of the first-order variation of the NCO are
used to derive the NE controller in the singular case.

The interesting aspect is that time differentiation of the
NCO requires information on the nonlinear dynamics. Thus
an important feature of the neighboring extremal controller
for singular problem is the interplay between the linearized
and nonlinear dynamics.

The paper is organized as follows. In Section 2, the neces-
sary conditions of optimality are derived and the standard
neighboring extremal controller is presented. Also, a link
between the two is established. In Section 3, the neighboring
extremal approach is extended to singular systems. An
application example is presented in Section 4, and Section
5 concludes the paper.

II. N EIGHBORING EXTREMAL APPROACH FOR

NON-SINGULAR PROBLEMS

A. Dynamic optimization

Consider the following dynamic optimization

u∗(t) = argmin
u(t)

J (1)

s.t. J = Φ(x(tf )) +

∫ tf

0

L(x, u)dτ (2)

ẋ = F (x, u) x(0) = x0 (3)

S(x, u) ≤ 0, T (x(tf )) ≤ 0 (4)

wherex represents the n-dimensional state vector of the
system,u the m-dimensional input vector,F the system
dynamics,J the scalar objective function to be minimized,



tf the fixed final time,Φ the terminal cost,L the integral
cost,S the path constraints, andT the terminal constraints.
The solution of the optimization problem (1)-(4) will be
referred to as the nominal solution. This solution is typ-
ically discontinuous and consists of several intervals with
corresponding arcs. Along the various arcs, the solution is
either (i) determined by the constraints of the optimization
problem, or (ii) inside the feasible region. Only the latter
case will be considered here and, thus, the constraintsS

andT will not be considered.
The notationab = ∂a

∂b
will be used. When the solution

is inside the feasible region, i.e. when no constraints are
active, the NCO can be expressed as:

Hu = λT Fu + Lu = 0 (5)

where the Hamiltonian is given byH = λT F +L, with the
adjointsλ governed by the following equations:

λ̇ = −HT
x = −FT

x λ − LT
x , λ(tf ) = ΦT

x (tf ) (6)

Since along the arcs where none of the constraints are
active, the solution seeks to push the sensitivityHu to zero,
such an arc will be referred to as asensitivity-seeking arc.

B. Neighbouring Extremal Approach

Including the dynamic constraints of the optimization
problem (1)-(3) in the cost function, the augmented cost
function, J̄ , can be written as [3]:

J̄ = Φ(x(tf )) +

∫ tf

0

(

H − λT ẋ
)

dt (7)

In the presence of the perturbationsδx and δu around
the nominal trajectories, the augmented cost becomesJ̄ =
J̄nom + δJ̄ + δ2J̄ + O(δ3J̄), where J̄nom is the nominal
cost, andδJ̄ andδ2J̄ are given by [3]:

δJ̄ =
(

Φx − λT
)

δx
∣

∣

tf

+

∫ tf

0

[(

Hx + λ̇T
)

δx + Huδu
]

dτ (8)

δ2J̄ =
1

2
δx(tf )T Φxxδx(tf )

+
1

2

∫ tf

0

[

δxT δuT
]

[

Hxx Hxu

Hux Huu

] [

δx

δu

]

dτ (9)

From (5) and (6), at the optimumδJ̄ = 0. Ignoring the
terms of order 3 and higher, the NE approach minimizes
δ2J̄ ' J̄− J̄nom subject to the linearized system equations:

δu∗(t) = arg min
δu(t)

δ2J̄ (10)

s.t. ˙δx = Fxδx + Fuδu (11)

For this NE problem with the stateδx, the inputsδu

and the adjoints̄λ, the corresponding Hamiltonian,̄H , the

adjoint equations and the necessary condition of optimality
are given by:

H̄ = λ̄T (Fxδx + Fuδu)

+
1

2

[

δxT δuT
]

[

Hxx Hxu

Hux Huu

] [

δx

δu

]

(12)

H̄δu = λ̄T Fu + δxT Hxu + δuT Huu = 0 (13)
˙̄λ = −(H̄δx)T = −FT

x λ̄ − Hxxδx − Hxuδu,

λ̄(tf ) = Φxxδx(tf ) (14)

Since the equations are linear, the NE solutionδu can
be written explicitly. The key to the NE solution is the
sweep method, where the adjoints are considered as linear
functions of the states:̄λ = Sδx. From the dynamics of
λ̄, one can compute a differential equation forS [3]. The
explicit solution takes the following form:

δu = −K(t)δx (15)

K(t) = H−1
uu (Hux + FT

u S) (16)

Ṡ(t) = −Hxx − SFx − FT
x S + HxuK (17)

+SFuK, S(tf ) = Φxx(x(tf ))

It should be emphasized here thatS and K are evaluated
along the nominal trajectories of the system, i.e.x(t) =
xnom(t), u(t) = unom(t) with the corresponding adjoints
λ(t) = λnom(t), and therefore are functions oft only.
The problem is non-singular ifHuu is invertible, and
singular otherwise. Thus, the feedback law (15)-(17) is only
defined for non-singular problems.

C. Link between NE approach and NCO tracking

As shown in Section II-B, the neighboring extremal
approach minimizesδ2J̄ . In the following, it will be shown
that it also forces the first-order variation of the NCO to
zero, i.e.δHu = 0.

Theorem 1: The NE solution of the variational optimiza-
tion problem (10)-(11) forces the first-order variation of the
NCO to zero, i.e.δHu = 0.

Proof: The first-order variation of the adjointsλ obeys
the following differential equation:

˙δλ = −FT
x δλ−δFT

x λ−δLT
x , δλ(tf ) = Φxxδx(tf ) (18)

Using the fact thatδFx =
∑n

k=1
∂Fx

∂xk
δxk +

∑m

k=1
∂Fx

∂uk
δuk,

noting that the same structure holds forδLx, and regrouping
to be able to introduce the Hamiltonian gives:

˙δλ = −FT
x δλ − Hxxδx − Hxuδu, δλ(tf ) = Φxxδx(tf )

(19)
Comparing (14) and (19), it can be seen thatλ̄ = δλ.

The first-order variation ofHu is given by:

δHu = δ(λT Fu) + δLu = δλT Fu + λT δFu + δLu (20)

Using similar expressions forδFu andδLu gives:

δHu = δλT Fu + δuT Huu + δxT Hxu (21)



A comparison of (13) and (21) gives̄Hδu = δHu. Thus,
since the NE approach forces̄Hδu = 0, it also forces the
first variation of the NCO to be zero, i.e.δHu = 0.
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III. N EIGHBORING EXTREMAL APPROACH FOR

SINGULAR PROBLEMS

A. Computing the singular input

Singular situations, i.e. those withHuu = 0, are quite
common. An important class of systems with that property
is the class of input-affine systems with the integral cost
independent of the inputs. Here,F (x, u) = f(x) + g(x)u
and Lu = 0. So, Hu = λT g(x) does not depend on the
inputs, leading toHuu = 0. In such a case, the NE approach
presente in the previous section cannot be used directly. To
compute the optimal inputs fromHu = 0, the NCO need to
be differentiated with respect to time along the trajectories
of the system untilu appears explicitly (the number of
differentiations is termed the order of singularity).
In the case of a single-input affine system with the integral
cost independent of the input,Hu = λT g andḢu is needed
(with [f, g] = gxf − fxg noting the Lie bracket [5]):

Ḣu = λ̇T g + λT ġ = −Hxg + λT gxF =

−λT Fxg + λT gxF = λT [F, g] =

λT ([f, g] + [g, g]u) = λT [f, g] (22)

Ḣu being also independent ofu, another differentiation is
required. AsḢu inherits the structure ofHu, the computa-
tion to getḦu from Ḣu is the same as that for gettinġHu

from Hu :

Ḧu = λ̇T [f, g] + λT [f, g]x F =

λT ([f, [f, g]] + [g, [f, g]] u) (23)

• If [g, [f, g]] 6= 0, the order of singularity of the system
is 2, and the conditionsHu = 0, Ḣu = 0 andḦu = 0
are equivalent to:

λT
[

g [f, g] [f, [f, g]] + [g, [f, g]] u
]

= 0 (24)

The input satisfying (24) is given by:

using = −
λT [f, [f, g]]

λT [g, [f, g]]
(25)

• If [g, [f, g]] = 0, more differentiations are required,
until u appears explicitly.

As long asu does not appear explicitly, the initial structure
of Hu is kept through the differentations, thus the computa-
tions are purely inductive, i.e. (notingadk

fg = [f, adk−1
f g])

the kth differentiation ofHu is:

H(k)
u = λT (adk

fg +
[

g, adk−1
f g

]

u) (26)

The process of differentiation is terminated when
[

g, adσ−1
f g

]

6= 0, whereσ is the order of singularity of the

system. The singular input is then defined by the condition:

λT
[

g ... adσ−1
f g adσ

f g +
[

g, adσ−1
f g

]

u
]

= 0

(27)
The input satisfying (27) is given by:

using = −
λT adσ

f g

λT

[

g, adσ−1
f g

] (28)

A general analysis of the computations associated with
singular problems is presented in [8].

B. Computing the NE controller

As the differentiation ofHu is needed for computing the
singular input, to set up a NE controller,δHu will be dif-
ferentiated with respect to time untilδu appears explicitly.
This is where an interplay between the nonlinear dynamics
and the linearized ones occurs as will be explained next.
Since in the singular caseHuu = 0, δHu reads:

δHu = δλT Fu + δxT Hxu (29)

The time differentiation ofδHu is given by:

d

dt
δHu = ˙δλ

T
Fu + δλT d

dt
Fu + ˙δx

T
Hxu + δxT d

dt
Hxu

(30)
Among the different terms,˙δx and ˙δλ are obtained from
the linearized dynamics, while the nonlinear dynamics is
used for the time differentiationsd

dt
Fu and d

dt
Hxu, since

the latter cannot be deduced from the linearization alone.
It can be computed from (21) and (30), thatδHu and d

dt
δHu

can be presented in the following form:

δHu = δλT AT
0 + δxT BT

0 + δuT CT
0 (31)

d

dt
δHu = δλT AT

1 + δxT BT
1 + δuT CT

1 (32)

whereA0 = FT
u , B0 = Hux, C0 = Huu andA1 = Ȧ0 −

A0F
T
x , B1 = Ḃ0 +B0Fx −A0Hxx, C1 = B0Fu −A0Hxu.

From (31) and (32), it can be seen thatd
dt

δHu inherits
the structure ofδHu. Thus, by induction, the first-order
variation δHu and its time derivatives have the generic
form:

dk

dtk
δHu = δλT AT

k + δxT BT
k + δuT CT

k (33)

where the recursive law to describe thekth differentiation
as a function of the(k− 1)th differentiation can be written
as :

Ak = Ȧk−1 − Ak−1F
T
x (34)

Bk = Ḃk−1 + Bk−1Fx − Ak−1Hxx (35)

Ck = Bk−1Fu − Ak−1Hxu (36)

The time differentiation stops atk = σ̄, whenCσ̄ become
invertible. Then, as before, the sweep method withδλ =
Sδx can be used to compute the feedback law. It can be
seen that the parts of the feedback law corresponding to



(15) and (17) remain unaltered, while the gain matrix (16)
is replaced by:

K(t) = C−1
σ̄ (Aσ̄S + Bσ̄) (37)

As for equations (16) and (17), it should be emphasized
here thatK is evaluated along the nominal trajectories of
the system, and therefore is a function oft only.
The first difference with non-singular problems is that,
instead of invertingC0 = Huu, the equations are differ-
entiated with respect to time untilCk becomes invertible.
It will be shown next that the number of differentiations
needed to makeδu appear in the differentiations ofδHu is
the same as the number of differentiations ofHu needed to
makeu appear, i.e.̄σ = σ. This is shown by proving the
following:

dk

dtk
δHu = δ

dk

dtk
Hu (38)

Since ∀k < σ, Hu is not a function ofu, the proof
will be simplified by considering a general functionG
(representing in our caseHu) of x only.

Proposition 1: Consider the vector functionG(x), its
first-order variationδG and the time differentiations of
G along the dynamicṡx = F (x, u). Then, the following
equality holds:δ dk

dtk G = dk

dtk δG ∀ k.
Proof: The proof proceeds by induction. Fork = 1,

δ
d

dt
G = δ(Gxẋ) = δ(GxF ) (39)

=

n
∑

j=1

n
∑

k=1

δxj

∂2G

∂xj∂xk

Fk + GxFxδx

+GxFuδu

d

dt
δG =

d

dt
Gxδx =

n
∑

j=1

n
∑

k=1

δxj

∂2G

∂xj∂xk

ẋk + Gx
˙δx

=

n
∑

j=1

n
∑

k=1

δxj

∂2G

∂xj∂xk

Fk + GxFxδx (40)

+GxFuδu

Simple inspection shows that equations (39) and (40) are
identical. To continue the induction, supposeδ dk−1

dtk−1 G =
dk−1

dtk−1 δG. Then,

dk

dtk
δG =

d

dt

dk−1

dtk−1
δG =

d

dt
δ

dk−1

dtk−1
G = δ

d

dt

dk−1

dtk−1
G

= δ
dk

dtk
G (41)

follows.

2

The above result is fairly intuitive as time differentiation
and computation of the first-order variation are linear op-
erators and therefore the order of the operations can be
interchanged.

C. Satisfaction of boundary conditions

A second difference arises from the fact that, with the
feedback gain (37), onlydσ

dtσ δHu = 0 is enforced. Thus,
this does not guarantee that the lower derivativesdk

dtk δHu

are0 for k < σ. One possibility to guarantee this would be
to force all theσ initial conditions to zero, i.e.

[

dk

dtk
δHu

]

t=0

= δx(0)T [AkS + Bk]
T

t=0 = 0 ∀k < σ

(42)
This way, the feedback law would ensureδHu = 0 for all t.
However, in practice, this approach is not efficient since itis
often not possible to enforce exactly theσ initial conditions
δx(0)T (AkS + Bk)T

t=0 = 0.
Thus, since the handle for forcingδHu = 0 is only

through itsσth derivative, fast asymptotically stableσth-
order dynamics are imposed onδHu so as to drive it quickly
to zero:

dσ

dtσ
δHu = −

σ−1
∑

k=0

γk

dk

dtk
δHu (43)

Replacing the terms in (43) by the expression found in (33)
gives

δλT AT
σ +δxT BT

σ +δuT CT
σ = −

σ−1
∑

k=0

γk(δλT AT
k +δxT BT

k )

(44)
This modifies only theK(t) matrix of the feedbak law (15)-
(17):

K(t) = C−1
σ

[

(Aσ +

σ−1
∑

k=0

γkAk)S + Bσ +

σ−1
∑

k=0

γkBk

]

(45)
The poles ofδHu dynamics (determined by the choice of

γk) have to be chosen carefully. On the one hand, fast poles
lead to large corrections that might invalidate the linear
approximation. Moreover, fast poles render the feedback
highly sensitive to noise and may thus lead to poor results in
terms of optimality. On the other hand, the poles have to be
fast enough so that the perturbations are rejected sufficiently
fast compared to the final timetf .

D. Summary of the development

It was shown in the previous section that the standard
NE controller (for non-singular systems) forces the first
variation ofHu to zero, i.e. enforcesδHu = 0.
In this section, it was established that for an optimization
problem which is singular (with an order of singularity of
σ) and thus for which the standard NE controller is not
defined, the feedback control law defined by:

δu = −Kδx (46)

K = C−1
σ

[

(Aσ +

σ−1
∑

k=0

γkAk)S + Bσ +

σ−1
∑

k=0

γkBk

]

(47)

Ṡ = −Hxx − SFx − FT
x S + HxuK

+SFuK, S(tf ) = Φxx(x(tf )) (48)



forcesδHu to have the dynamics:

dσ

dtσ
δHu +

σ−1
∑

k=0

γk

dk

dtk
δHu = 0

whereγ0, ..., γσ−1 can be chosen arbitrarily.

IV. I LLUSTRATIVE EXAMPLE

A. Reaction system

The reaction systemA + B → C and 2B → D

is considered in a semi-batch chemical reactor with the
reactantB being fed, whereC is the desired product andD
an undesired side product [8]. The dynamics of the system
can be described using the following equations:

˙cA = −k1cAcB − u
cA

V
, cA(0) = cA0 (49)

˙cB = −k1cAcB − 2k2c
2
B (50)

−u
(cB − cBin)

V
, cB(0) = cB0

V̇ = u, V (0) = V0 (51)

wherecA andcB are the concentrations (mol
l

) of the species
A and B, respectively,V the volume (l), k1 and k2 the
kinetic coefficients ( l

mol h
), u the inlet feed rate (l

h
), cBin

the inlet concentration (mol
l

) andcA0, cB0, andV0 the initial
conditions withcA0 = 0.72 mol

l
, cB0 = 0.0614 mol

l
and

V0 = 1 l. The numerical values of the parameters are:k1 =
0.053 l

mol h
, k2 = 0.128 l

mol h
, cBin = 5 mol

l
. The final

time is tf = 250 s.

B. Optimization problem

The optimization problem consists of maximizing
nC(tf ) − nD(tf ), i.e. the difference between the numbers
of moles ofC and D at final time. It can be shown that
nC(t) = cA0V0 − cA(t)V (t) and nD(t) = 1

2 (cB0V0 +
cBin(V (t)−V0)−cB(t)V (t)−cA0V0+cA(t)V (t)). Remov-
ing the constant terms innC(tf )−nD(tf ), the optimization
problem can be formulated as the following minimization
problem:

min
u(t)

J = (3cA(tf ) + cBin − cB(tf ))V (tf ) (52)

s.t. Dynamic equations (49) − (51)

0 ≤ u ≤ umax

The necessary conditions of optimality read:

Hu = −λ1
cA

V
− λ2

(cB − cBin)

V
+ λ3 = 0 (53)

SinceHu is independent ofu, the problem is singular. The
time derivatives ofHu take the form:

Ḣu = −λ1
k1cA(cB − cBin)

V
(54)

−λ2
k1cA(cB − cBin) + 2k2cB(cB − 2cBin)

V
= 0

Ḧu = λ1(
cBink1cA(k1cA + 4k2cB)

V
(55)

+2
uk1cA(cB − cBin)

V 2
)

+λ2(
cBin(4k1cAk2cB + 8k2

2c
2
B + k2

1c
2
A)

V
+

2
u(cB − cBin)(k1cA + 2k2(cB − cBin))

V 2
) = 0

Sinceu appears in the second time derivative ofHu, the
order of singularity isσ = 2. Eliminating the adjoint
variables from (53)-(55), the singular input reads:

using =
cBV (k1cAcB − 2k1cAcBin − 4k2cBcBin)

2cBin(cB − cBin)
(56)

The initial conditions are chosen so that the optimal solution
consists only of a singular arc. The optimal state and input
trajectories are shown in Figure 1.
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Fig. 1. Optimal state and input trajectories.

C. NE controller

The computation of the NE controller starts with the
(symbolic) computation of the matrixAk, Bk, Ck for
k = 1, 2. For this purpose, equations (34)-(36) are used
with A0 andB0 given by:

A0 =

[

−
cA

V
−

cB − cBin

V
1

]

B0 =

[

−
λ1

V
−

λ2

V

λ1cA + λ2(cB − cBin)

V 2

]



The expressions forCk are:

C0 = 0, C1 = 0

C2 = 2
(cB − cBin)((λ1 + λ2)k1cA + 2λ2k2(cB − cBin))

V 2

Note that, sinceC2 is non-zero, its inverse can be used for
calculatingK in (45). The numerical values are computed
along the nominal solution using the corresponding adjoints.
The values ofγ chosen to determine the dynamics ofHu

are: γ0 = 0.0016 and γ1 = 0.1, corresponding to the two
stable poles−0.02 and−0.08.

D. Simulation with perturbations

A perturbation of± 10 % is introduced in the initial con-
ditions. First, the nominal input is applied to the perturbed
system. Then, the nominal input is used as a feedforward
term with the NE controller providing the feedback term.
The NE controller uses the numerical values ofK(t) and
the nominal trajectories of the states. The following table
displays the numerical results for four different simulations.

cA0 cB0 V0 Jopt JOL JF B Recovery (%)
0.720 0.0614 1 6.5556 6.5556 6.5556 -
0.648 0.0553 0.9 5.7801 5.7938 5.7802 99.78
0.648 0.0675 0.9 5.7686 5.7843 5.7687 99.30
0.792 0.0553 1.1 7.3685 7.3851 7.3686 99.27
0.792 0.0675 1.1 7.3542 7.3684 7.3542 99.86

TABLE I

RESULTS FOR DIFFERENT PERTURBATIONS OF THE INITIAL

CONDITIONS. Jopt = OPTIMAL COST FOR THE PERTURBED SYSTEM,

JOL = COST OBTAINED BY APPLYING THE NOMINAL INPUT OPEN

LOOP TO THE PERTURBED SYSTEM, JF B = COST OBTAINED BY

APPLYING THE NOMINAL INPUT ALONG WITH THE NE FEEDBACK TO

THE PERTURBED SYSTEM.

It can be seen from Table 1 that the loss in optimality
(JOL − Jopt) is small (less than 0.5 % for 10 % variation
in all initial conditions) since the problem is singular, i.e.
Huu = 0. So, only higher-order time derivatives contribute
to the cost deviation. Furthermore, it can be seen that the
proposed NE feedback is able to almost completely recover
the loss in optimality (JFB ≈ Jopt).

The simulation results for the initial conditionscA0 =
0.792 mol

l
, cB0 = 0.0553 mol

l
, andV0 = 1.1 l are depicted

in Figure 2. It is clearly seen that the input and states of the
perturbed system under NE feedback catch up quickly with
the optimal trajectories calculated for the perturbed system.
The true optimum for the perturbed system consists of a
short constraint-seeking arc,u = umax, so as to arrive at
the sensitivity-seeking arc in minimum time. In the feedback
solution, this arc is absent because the dynamics ofδHu

(43) are chosen rather slow. However, it can be seen that
the loss in optimality due to the time necessary to catch
up is only of the order of 0.01%. Simulations with noise
are not shown since the desired effects would be buried in
noise.
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Fig. 2. Simulation with perturbed initial conditions (cA0 = 0.792
mol

l
,

cB0 = 0.0553
mol

l
, andV0 = 1.1 l ) (dashed line: optimal solution for

the perturbed system; dotted-dashed line: perturbed system running open-
loop with the nominal solution; solid line: system with NE feedback)

V. CONCLUSION

The problem of tracking the conditions of optimality on
the various arcs of an optimal solution has been addressed
recently. Towards this end, the current paper revisits the
neighboring extremal approach for sensitivity-seeking arcs.
A formal connection between this approach and NCO-
tracking is established. From this connection, the NE ap-
proach is extended to the singular problems. An example
has been used to illustrate the application of the method.

Despite the possibly heavy symbolic and numerical com-
putations required to compute the NE feedback, it should
emphasized that this effort is done off-line, with the on-line
calculation corresponding to simple state feedback. Thus,
this approach can also be applied to fast dynamic systems,
independent of whether the system is singular or not.
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