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Abstract— The dynamic optimization problem in the pres- a linear (linearized) system, the adjoint variables (oirthe
ence of uncertainty (model mismatch and disturbances) is variations) are considered proportional to the state ki
addressed. It has been recently proposed that this probleman (or their variations). The linearized version of this apgro

be solved by tracking the necessary conditions of optimaljtin . .
the various intervals of the solution. In this paper, it is stown  |€adS to the Neighboring Extremal (NE) controller [2], [3],

that the standard neighboring extremal approach, which use  [6]- Itis shown in this paper that the standard NE controller
linearization around the optimal trajectory, drives to zero the  forces the first-order variation of the NCO to zero. Thus,
first-order variation of the necessary conditions of optimdity  the NE controller can in fact be used for NCO tracking.
on the parts of the solution where no constraint is active. e main contribution of this paper lies in the use of the
This fact is used to extend the neighboring extremal approdt . .
to singular problems. In singular problems, the linearizaion link between NE Comrc_)”ers and NCO tracl_<|ng to extend t_he
around the optimum lacks the information needed to build a NE controllers to the singular case. The singular casesarise
neighboring extremal controller. This paper proposes to us  when the optimal inputs cannot be computed directly from
the nonlinear dynamics to provide the lacking information. the NCO, and thus time differentiations of the NCO are
The theoretical ideas are illustrated for singular problems on eqjired. In such a case, the standard NE controller cannot
a simple semi-batch chemical reactor. . . N - . . !
be used since it calls for inversion of a singular matrix. &im
differentiations of the first-order variation of the NCO are
used to derive the NE controller in the singular case.
Dynamic optimization provides an unified framework for The interesting aspect is that time differentiation of the
improving process operations while taking into accountCoO requires information on the nonlinear dynamics. Thus
operational and other types of constraints [1], [8]. Relgent an important feature of the neighboring extremal controlle
there has been some emphasis on using measurements infdtesingular problem is the interplay between the lineatize
optimization framework in order to handle the uncertaintyand nonlinear dynamics.
(model mismatch, process variations and disturbances) tha The paper is organized as follows. In Section 2, the neces-
is inevitably present in a real process. Among the variousary conditions of optimality are derived and the standard
measurement-based optimization methods available in theighboring extremal controller is presented. Also, a link
literature [4], [7], a promising one, labeled NCO trackingbetween the two is established. In Section 3, the neighborin
consists of enforcing the Necessary Conditions of Optimakxtremal approach is extended to singular systems. An
ity corresponding to the real situation [7]. application example is presented in Section 4, and Section
NCO tracking uses the fact that there are only two type5 concludes the paper.
of arcs that can constitute the optimal solution: constrain
seeking and sensitivity-seeking arcs [8]. This distinttio Il. NEIGHBORING EXTREMAL APPROACH FOR
depends on whether the solution is determined by the con- NON-SINGULAR PROBLEMS
straints of the optimization problem or forces a sensitivit A, Dynamic optimization
(gradient) to zero. When the solution is determined by the
constraints, tracking the necessary conditions of opttgnal
corresponds to enforcing the corresponding constraifiis. T u*(t) = argminJ (1)
other case of sensitivity-seeking arcs, which is typically u(t) .
more involved, W_ll! l_Je cons!dered in thIS. paper. ot 7= () +/ f L w)dr @)
Along a sensitivity-seeking arc, optimization can be 0
treated as the regulation of a sensitivity around zero. The i = F(z,u) 2(0) =z (3)
main difficulty arises from t_hg fact t_hat this gradient mfor S(z,u) < 0, T(x(t;)) <0 (4)
mation depends on the adjoint variables that are typically
unknown. Thus, an efficient way of estimating them and wherex represents the n-dimensional state vector of the
their variations is needed. A simple technique that has besgstem,« the m-dimensional input vectof’ the system
used for over four decades is the sweep method where, fdynamics,J the scalar objective function to be minimized,

I. INTRODUCTION

Consider the following dynamic optimization
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ty the fixed final time,® the terminal costL the integral adjoint equations and the necessary condition of optignalit
cost, S the path constraints, aril the terminal constraints. are given by:
The solution of the optimization problem (1)-(4) will be

7 I
referred to as the nominal solution. This solution is typ- H =X (Fyoz + Fudu)
+

ically discontinuous and consists of several intervalshwit 1 [ 62T ou” ] { Heo  Hou ] [ 0z ] (12)

corresponding arcs. Along the various arcs, the solution is 2 Hyy  Hyy ou

either (i) determined by the constraints of the optimizatio _ o . -

problem, or (ii) inside the feasible region. Only the latter Hsy = A" Fy + 02" Hypy + 0u” Hyy =0 (13)

case will be considered here and, thus, the constraints A= —(Hs;)" = =FT'X\ — Hy,02 — Hp\0u,

andT" will nqt be conasalder.ed. _ Ats) = ®,.0z(ty) (14)
The notationa, = %z will be used. When the solution _ _ _

is inside the feasible region, i.e. when no constraints afeince the equations are linear, the NE solutibn can

active, the NCO can be expressed as: be written explicitly. The key to the NE solution is the

sweep method, where the adjoints are considered as linear
H,=\'F,+L,=0 (5) functions of the states\ = Séx. From the dynamics of

A, one can compute a differential equation ®1{3]. The

L T .
where the Hamiltonian is given bj = A" '+ L, with the explicit solution takes the following form:

adjoints A governed by the following equations:

. T - . r ou = —K(t)iz (15)

A=—-H, =-F, \—-L_, /\(tf) =& (tf) (6) K(t) _ H;}(Hum"‘FES) (16)

Since along the arcs where none of the constraints are S(t) = —Hu—SF,—F'S+H,,K (17)
active, the solution seeks to push the sensitifty to zero, +SFK,  S(ty) = ®uul(x(ty))

such an arc will be referred to assensitivity-seeking arc. )
It should be emphasized here thatand K are evaluated

B. Neighbouring Extremal Approach along the nominal trajectories of the system, iugt) =
n:cnom(t), u(t) = unom(t) with the corresponding adjoints
(t) = Aom(t), and therefore are functions ofonly.

he problem is non-singular ifH,, is invertible, and
singular otherwise. Thus, the feedback law (15)-(17) iy onl
defined for non-singular problems.

Including the dynamic constraints of the optimizatio
problem (1)-(3) in the cost function, the augmented cos?
function, J, can be written as [3]:

Jz@(x(tf))—i—/of (H—\"#%)adt )

In the presence of the perturbatiois and du around ~ As shown in Section II-B, the neighboring extremal
the nominal trajectories, the augmented cost becafnes approach minimizeg®J. In the following, it will be shown
Jnom + 0J 4+ 62J 4+ O(63.J), where J,,o,,, is the nominal that it also forces the first-order variation of the NCO to

cost, andJ andé2J are given by [3]: zero, i.e.dH, = 0.

C. Link between NE approach and NCO tracking

5] = (®.—A") 5:6\tf Theorem 1: The NE solution of the variational optimiza-
ty ) tion problem (10)-(11) forces the first-order variation loét
+ / [(Hm + /\T) 5z + Huéu} dr  (8) NCO to zero, i.esH, = 0.
0 Proof: The first-order variation of the adjoints obeys
the following differential equation:

§J = %5w(tf)T<I>mé:v(tf) GA = —FT6A—0FTA=6LT, 6A(tf) = ®,.0z(t;) (18)
b Using the fact thab F,, = S, 2Eegay + SO0 2oy,

l/ [ GaT GuT ] [ Hep  Hiy ] [ 5z ]dT ©) g N D SN 2T
0

+ B H,, Hy, Su noting that the same structure holds §dr,., and regrouping
- to be able to introduce the Hamiltonian gives:

From (5) and (6), at the optimu@J/ = 0. Ignoring the .

(5 and (6) P gnoring N = —FT0N = Hyubr — Hpudu,  (tf) = unda(t)

terms of order 3 and higher, the NE approach minimize

62J ~ J — Jnom Subject to the linearized system equations; _ (19)
) y a Comparing (14) and (19), it can be seen that o).
Su*(t) = argmin 2] (10) The first-order variation of{,, is given by:
Sdu(t)
- _ T _ T T
st Sz = Fydxz+ F,0u (11) 0H, =6(\' F,) + 0L, =0X" F, + X' dF, + 6L, (20)
For this NE problem with the statéz, the inputsiu Using similar expressions farf, andJL, gives:
and the adjoints\, the corresponding Hamiltonia], the 6H, = SNTF, + 6uT Hyy + 627 Hyy, (21)
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A comparison of (13) and (21) giveH;, = 6H,. Thus, system. The singular input is then defined by the condition:
since the NE approach forcdés, = 0, it also forces the

first variation of the NCO to be zero, i.6H, = 0. Mlg . ad‘flg adfg + [ga ad?flg} u } =0
(27)
Y The input satisfying (27) is given by:
1. NEIGHBORING EXTREMAL APPROACH FOR /\Tad;’g
SINGULAR PROBLEMS Using = — : (28)

. . . AT [g,ad?_lg}
A. Computing the singular input
Singular situations, i.e. those witH,, = 0, are quite A general analysis of the computations associated with

common. An important class of systems with that propert§ingular problems is presented in [8].
is the class of input-affine systems with the integral co
independent of the inputs. Her&\(z,u) = f(z) + g(z)u ) o _ )
and L, = 0. So, H, = A\Tg(z) does not depend on the As the differentiation ofH,, is needed for computing the
inputs, leading td7.,,,, = 0. In such a case, the NE approachSingular input, to set up a NE controllevf/, will be dit-
presente in the previous section cannot be used directly. ferentiated with respect to time unti: appears explicitly.
compute the optimal inputs frotH, = 0, the NCO need to This is where an interplay between the nonlinear dynamics
be differentiated with respect to time along the trajeet®ri apd th_e Ilnear_lzed ones occurs as will be explained next.
of the system untilu appears explicitly (the number of Since in the singular cask.,, = 0, 0H, reads:
differentiations is .terme.d the or.der of singulqrity). . §H, = 6A\'F, + 62T H,, (29)

In the case of a single-input affine system with the integral

cost independent of the input], = A\ g and H,, is needed The time differentiation obH,, is given by:

8. Computing the NE controller

(with [f, g] = g=f — fzg noting the Lie bracket [5]): d 7 d o d
: . r —6H, =6\ Fy+ 0\ —F, + 62" Hyy + 027 —Hy,
H, = Mg+XNg=—-H,g+ )\ g, F= dt dt dt (30)
M Fog+ Mg, F =X'[F.g) = Among the different termsjz and §\ are obtained from
ME([f, 9] + [9, gl u) = AT [f, 9] (22) the linearized dynamics, while the nonlinear dynamics is

. _ _ _ . used for the time differentiationg. F,, and 4 H,,, since
H, being also independent af, another differentiation is he |atter cannot be deduced from the linearization alone.

required. A§Hu inheyits the structure off,, the computa- |t can be computed from (21) and (30), thdf,, anddiziHu
tion to getH, from H, is the same as that for getting, can be presented in the following form: t

from H,, :
. . §H, = AT AL + 62" BY + suTCf (31)
Hu = )\T[fvg]—i_AT[fvg]mF: d TA; T (; . ,OT
NUF U9 + Los [ glw) (23) g0 Hu =0A" Ay + 02" By +0u” C (32)

o If [g,[f,g]] # 0, the order of singularity of the system where Ay = F', By = H,,, Co = H,, andA; = Ay —

is 2, and the condition&l, = 0, H, =0andH, =0 AoFT, By = Bo+ BoF, — AgHys, C1 = BoF, — AgH .

are equivalent to: From (31) and (32), it can be seen thﬁtéHu inherits
T the structure ofé H,. Thus, by induction, the first-order
ANlg [fg 19l +]g,[f9llu ] =0 (24)  yariation dH, and its time derivatives have the generic

The input satisfying (24) is given by: form:

dk
T T AT T T T ~T
Using = _M (25) aik 0H, = X" Ay + 0" B, +6u” Cj, (33)
AT g, [f. 9]l . _ . N
. o . where the recursive law to describe th& differentiation
o If [g,[f,g]] = 0, more differentiations are required

*as a function of thék — 1)t" differentiation can be written

until « appears explicitly. as

As long asu does not appear explicitly, the initial structure

of H, is kept through the differentations, thus the computa- Ay = f‘:lkfl — A FY (34)
tions are purely inductive, i.e. (notirtgi’;g =7, ad’}*lg]) B, = By 1+Bir1F,—A,_1H,, (35)
the k'! differentiation of H,, is: C. = Bp i F, — Ay 1H,, (36)

HP =X\ (adkg + [g, adlﬁflg} u) (26) The time differentiation stops dt = &, whenC5 become

. o . _ invertible. Then, as before, the sweep method with=
The Process of differentiation is terminated Wwhengs, can be used to compute the feedback law. It can be
[gaadf 9} # 0, whereo is the order of singularity of the seen that the parts of the feedback law corresponding to
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(15) and (17) remain unaltered, while the gain matrix (16L. Satisfaction of boundary conditions

is replaced by: A second difference arises from the fact that, with the
K(t) = C= (A4S + By) (37) fegdback gain (37), only~6H, = 0 is enfgrcgdk. Thus,

this does not guarantee that the lower denvauggéHu

As for equations (16) and (17), it should be emphasizeare0 for k < 0. One possibility to guarantee this would be
here thatK is evaluated along the nominal trajectories oto force all theo initial conditions to zero, i.e.

the system, and therefore is a functiontadnly. P
The first difference with non-singular problems is that, {ﬁéHu} =0z(0)T [AkS+Bk]tT:0 =0 Vk<o
instead of invertingCy = H,., the equations are differ- t=0 (42)

entiated with respect to time until;, becomes invertible. This way, the feedback law would ensu#, — 0 for all .

It ng ge shole(/g next that_ thﬁ n;frpber (_)f d'ﬁergg'a_t'onSHowever, in practice, this approach is not efficient sings it
nhee edto mah “ ap%ear '?dt_ﬁe : e_re_ntlat|ons dudls often not possible to enforce exactly thenitial conditions
the same as the number of differentiationghf needed to 52(0)7 (AS + Bi) g = 0.

makewu appear, i.eg = o. This is shown by proving the Thus, since the handle for forcingH, = 0 is only

following: i i through itsoth derivative, fast asymptotically stable’-
d—kéHu = 6d_kHu (38) order dynamics are imposed 6, so as to drive it quickly
dt dt to zero: X

Since Vk < o, H, is not a function ofu, the proof v B _07 ﬂ

will be simplified by considering a general functiaf dto 0H. = ];)% dtk oH. (43)

(representing in our casH,,) of x only. ) _ ) )
Replacing the terms in (43) by the expression found in (33)

Proposition 1: Consider the vector functio(z), its V€S

first-order variationdG and the time differentiations of o—1
G along the dynamics: = F(xz,u). Then, the following A" AL +62" Bl +6u”CY = = " 7 (AT Af + 62" BY,)
equality holdss4-G = £.5G v k. k=0 (44)

dtF
Proof: The proof proceeds by induction. Fbr= 1, This modifies only thek (¢) matrix of the feedbak law (15)-

17):
6iG = §(G.z) = 6(GF) (39) A7)
dt o—1 o—1
=YY aa g o+ GuF.60 K(t)=C, " [(A, + ;%Ak)s + B, + ;7kBk

imtk=1 CTOTR - - 45)

+G Fyou The poles off H,, dynamics (determined by the choice of
d d " & 0%G . . ~x) have to be chosen carefully. On the one hand, fast poles
EigG - EGI&C - 225%' 01,01y, T + Gl lead to large corrections that might invalidate the linear

j=1k=1 :

approximation. Moreover, fast poles render the feedback
highly sensitive to noise and may thus lead to poor results in
terms of optimality. On the other hand, the poles have to be
fast enough so that the perturbations are rejected suffigien
fast compared to the final timg.

n

= Y zn: 5:cj327GFk + G Fyox (40)

ot O0x;0xy,
+G F0u

Simple inspection shows that equations (39) karlld (40) al

. . . _ . - £5. Summary of the development
identical. To continue the induction, suppoﬁgﬁG =

4 56 Then It was shown in the previous section that the standard
k=17 ' NE controller (for non-singular systems) forces the first
dF d dF-1 d _dF-1 d dF-1 variation of H,, to zero, i.e. enforce§H, = 0.
ﬁ‘SG = o106 = E(SF =0T In this section, it was established that for an optimization
d¥ problem which is singular (with an order of singularity of
= 0.3G (41) o) and thus for which the standard NE controller is not
defined, the feedback control law defined by:
follows.
ou = —-Koéx (46)
O o—1 o—1
The above result is fairly intuitive as time differentiatio * = Co " (Ae + Z%Ak)SJFBU + ZWB’C (47)
and computation of the first-order variation are linear op- . k=0 k=0
erators and therefore the order of the operations can b8 = —Huw —SFy —Fy S+ Hy K
interchanged. +SE, K, S(ty) = Ppu(z(ty)) (48)
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forcesd H, to have the dynamics:

Since H,, is independent ofi, the problem is singular. The
time derivatives ofH,, take the form:

o—1
d’ d* : kica(cs — cBin)
— — = H, = -\—H——2 2" 54
O + kz—o% 0, =0 1 % (54)
- Y kica(cp — cpin) + 2kacp(cp — 2¢Bin) —0
where~y, ...,7,—1 can be chosen arbitrarily. 4
.. ink k 4k
i - /\1(03 1ca( 1VCA + 4kacp) (55)
IV. | LLUSTRATIVE EXAMPLE ukrca(cs — cain)
+2 V2 )
A. Reaction Wstem .\ (CBin(4kchkQCB + 8]6%023 + k%ci)
2
. Vv
The reaction systemd + B — C and 2B — D
: . . . . : —cgin)(k 2%k — CBin
is considered in a semi-batch chemical reactor with the p(cn = i) lc‘{‘/j 2(cB — cn ))) -0

reactantB being fed, wher& is the desired product and

an undesired side product [8]. The dynamics of the systemi'C€ « appears in the second time derivative fgf, the

can be described using the following equations:

cA
—kicacp — u—,

€4 = v ca(0) = cao (49)
cg = —kchCB—2k2CQB (50)
CB — CBin
_ (BviB) e5(0) = e5o
Vo= V(0)=Vo (51)

wherec, andcg are the concentration@ﬁ—l) of the species
A and B, respectively,V the volume {), k&, and k; the
kinetic coefficients £4—), u the inlet feed rate ), cpin
the inlet concentrationi'(‘lil) andc g, cgo, andVj the initial
conditions withcao = 0.72 22, cpy = 0.0614 2L and
Vo = 1 1. The numerical values of the parameters &fe=
0.053 —Lt—, ko = 0.128 —L—, ¢p;, = 5 2L The final

mol h’

time ist; = 250 s.

B. Optimization problem

order of singularity isc = 2. Eliminating the adjoint

variables from (53)-(55), the singular input reads:

cgV(kicacg — 2kicacpin — 4kacpCBin)
2¢Bin(cB — CBin)

The initial conditions are chosen so that the optimal sotuti

consists only of a singular arc. The optimal state and input
trajectories are shown in Figure 1.

(56)

Using

Concentration of A Concentration of B

0.062

0.8 0.0615

0.061
0.6
0.0605

0.06
0.4
0.0595

0.2
0

0.059
250 0 50

50 100 150 200 100 150 200

Volume x 10" Input

115 7.5

7

6.5
11

6

The optimization problem consists of maximizing
nc(ty) —np(ty), i.e. the difference between the numberstos
of moles of C and D at final time. It can be shown that
ne(t) = caoVo — ca(®)V(t) and np(t) = 3(cpoVo + 1
cgin(V(t)=Vo)—c(t)V(t)—caoVo+ca(t)V(t)). Remov-
ing the constant terms inc(ty) —np(ts), the optimization
problem can be formulated as the following minimization
problem:

Iil(ltI)lJ = (3ca(ty) + cBin —cB(tf))V(ty) (52)

s.t.  Dynamic equations (49) — (51)
0 < u < Unaax

The necessary conditions of optimality read:

(cB — CcBin)

H,
\%4

= —Al%‘—xz =0 (53)

55
5
4.5

0

50

4
250 0 50

100 150 200 100 150 200 250

Fig. 1. Optimal state and input trajectories.

C. NE controller

The computation of the NE controller starts with the
(symbolic) computation of the matrid,, By, Cj for
k = 1,2. For this purpose, equations (34)-(36) are used
with Ag and By given by:

c CB — CBin
A, = [_VA et 1}
oA A Miea+ Aa(es —eBin)
- 14 14 V2
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Concentration of A Concentration of B

The expressions fof;, are: 08 0065

Cy = 0, Ci=0 07r N
c — 9 (e — cBin)((M + A2)kica + 2X2ka(cB — cBin)) o5 L oo

Y =

V2 05 I~

Note that, sinc€’, is non-zero, its inverse can be used for s il N
calculating K in (45). The numerical values are computed - e
along the nominal solution using the corresponding adgoint *c s 10 10 200 250  "®0 s 100 150 200 250
The values ofy chosen to determine the dynamics f, o . input
are:yo = 0.0016 and~; = 0.1, corresponding to the two 13 0
stable poles-0.02 and —0.08. -
D. Smulation with perturbations -

12 -

A perturbation oft 10 % is introduced in the initial con- -

ditions. First, the nominal input is applied to the pertutbe 115 L
system. Then, the nominal input is used as a feedforwarq1 2
term with the NE controller providing the feedback term. "o s 100 15 200 250 0 50 100 150 200 250

The NE controller uses the numerical valuesroft) and _ o o g .
Fig. 2. Simulation with perturbed initial conditions {og = 0.792 ™2,

: . . g s
the nominal trajectories of the states. The following tabI%B0 — 0.0553 2L, andVj — 1.1 1) (dashed line: optimal solution for

displays the numerical results for four different simwas.  he perturbed system: dotted-dashed line: perturbedraystening open-
loop with the nominal solution; solid line: system with NEe@back)

cA0 cgo | Vo | Jopt Jor Jrp | Recovery (%)

0.720 | 0.0614 | 1 | 6.5556 | 6.5556 | 6.5556 -

0.648 | 0.0553 | 0.9 | 5.7801 | 5.7938 | 5.7802 99.78 V. CONCLUSION

0.648 | 0.0675| 0.9 | 5.7686 | 5.7843 | 5.7687 99.30 ; i T

0792 | 0.0553 | 11 | 73885 | 73851 | 73086 9927 The problem of trackmg the cond_mons of optimality on
0792 | 0.0675| 1.1 | 7.3542 | 7.3684 | 7.3542 99.86 the various arcs of an optimal solution has been addressed

recently. Towards this end, the current paper revisits the
neighboring extremal approach for sensitivity-seekingsar
A formal connection between this approach and NCO-
tracking is established. From this connection, the NE ap-
proach is extended to the singular problems. An example
has been used to illustrate the application of the method.
Despite the possibly heavy symbolic and numerical com-
putations required to compute the NE feedback, it should
emphasized that this effort is done off-line, with the ameli
_ ~calculation corresponding to simple state feedback. Thus,
It can be seen from Table 1 that the loss in optimalitypig approach can also be applied to fast dynamic systems,

(Jor — Jope) is small (less than 0.5 % for 10 % variationjngependent of whether the system is singular or not.
in all initial conditions) since the problem is singulae.i.
H,., = 0. So, only higher-order time derivatives contribute REFERENCES
to the cost deviation. Furthermore, it can be seen that thig L.T. Biegler. Solution of dynamic optimization probleanby successive
proposed NE feedback is able to almost completely recover quadratic programming and orthogonal collocatioomp. Chem.
the loss in optimality {rp =~ Jopt) Eng. 8(5):243 248, 1984.

nopt YA{rB = Jopt). . [2] A.E. Breakwell, J.L. Speyer, and A.E. Bryson. Optimigat and
The simulation results for the initial conditions, = control of nonlinear systems using the second variat®AM Journal

0.792 m"l, cgo = 0.0553 mTOl, andVp =1.11 are depicted on Control and Optimization, 1:193-217, 1963.

1 X ; .
. . . . A.E. Bryson and Y.C. Ho. Applied Optimal Control. Ginn and
in Figure 2. It is clearly seen that the input and states of tHa Company, 1969.

perturbed system under NE feedback catch up quickly witfa] A. cruse, W. Marquardt, A. Helbig, and J.-S. Kussi. Optimg
the optimal trajectories calculated for the perturbedesyst adaptive calorimetric model predictive control of a benehknsemi-

. . batch reaction process=AC World Congress, Barcelona, 2002, 2002.
The true optimum for the perturbed system consists of @ A Isidori Nonl{’near Control Systerrs. %pringler_\/erlag’ 1989,

short constraint-seeking are, = 4., SO as to arrive at [6] AY. Lee and L. Markus. Foundations of Optimal Control Theory.
the sensitivity-seeking arc in minimum time. In the feedbac ] thS'AM Se”F-I'DS' é96?- E Vi 4 S. Palanki, Dy opti
. . . . . Slnivasan, D. bonvin, E. Visser, an . Palankil. opti-

solution, this arc is absent because the_ dynamicsbf mization of batch processesl}: Role of measurements in handling
(43) are chosen rather slow. However, it can be seen that uncertainty. Computers and Chemical Engineering, 27:27—44, 2003.
the loss in optimality due to the time necessary to catcld] Bf- Sntm%/asan, S. Pa{ané'r} andt D. Fﬁonvm% trI13ynaml_c olpnatllotn

. 0 . . . . (o) atch processes F: aracterization o e nominal solution.
up is only of thg order of O._Ol %. Simulations with NOIS€ oo iters and Chemical Engineering, 27:1-26, 2003.
are not shown since the desired effects would be buried in

noise.

TABLE |
RESULTS FOR DIFFERENT PERTURBATIONS OF THE INITIAL
CONDITIONS. Jopt = OPTIMAL COST FOR THE PERTURBED SYSTEM
Jor = COST OBTAINED BY APPLYING THE NOMINAL INPUT OPEN
LOOP TO THE PERTURBED SYSTEMJrp = COST OBTAINED BY
APPLYING THE NOMINAL INPUT ALONG WITH THE NE FEEDBACK TO
THE PERTURBED SYSTEM
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