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Abstract— The set of all stabilizing controllers of a given
low order structure that guarantee specifications on the
gain margin, phase margin and a bound on the sensitivity
corresponds to a region in n-dimensional space defined by the
coefficients of the controllers. For several practical criteria
defined in the paper it is shown that the optimal controller
lies on the surface of that region. Moreover, it is shown how
to reduce that region to avoid actuator saturation during
operation.

I. I NTRODUCTION AND PROBLEM STATEMENT

Low order controllers, such as a PID controller with a
filtered D term, or cascaded loops consisting of a simple
gain outer loop and a filtered PI or PD inner loop, are widely
used in industry [1],[2]. Controllers of low-order structure
with and without the addition of notch filters represent a
large portion of controllers used in mechanical applications.

Consider the open-loop transfer function,L(s), written
in general form as

L(s) = a [P1(s) + bP2(s)] (1)

for plantsP1(s) andP2(s) and gainsa andb. With P1(s) =
P (s) andP2(s) = sP (s), L(s) = (a + bs)P (s) represents
a PD controller. WithP1 = (1 + ki/s)P and P2(s) =
sP (s)H(s), L(s) corresponds to a filtered PID controller.

It is shown in [3] that gain and phase margin conditions
are guaranteed by the following condition on the closed-
loop sensitivity,
∣∣∣∣

1
1 + kL(s)

∣∣∣∣ ≤ M for s = jω, ∀ω ≥ 0, k ∈ [1,K], (2)

where the sensitivity boundM > 1 and the gain uncertainty
of the plant,k, is in the interval[1,K]. The equality of (2)
guarantees the following lower bounds on the gain margin,
GM , and phase margin,PM ,

GM = 20 log10 (K) + 20 log10

(
M

M − 1

)

PM = 2arcsin
(

1
2M

)
. (3)

It is also shown in [3] how to determine the(a, b)
values for which the closed-loop system is stable and (2)
is satisfied, starting withK = 1, and a single plant pair
(P1(s), P2(s)). Substituting (1) into (2) gives,

U + a(U1 + bU2) + a2(V1 + bV2 + b2V3) ≥ 0 (4)

∀ω ≥ 0 where

U = 1− 1/M2

U1 = 2 · Real(P1), U2 = 2 · Real(P2)
V1 = |P1|2, V2 = 2 · Real(P1P

∗
2 ), V3 = |P2|2.

For an(a, b) pair which is on the boundary of the domain
of the allowed(a, b) values, there existsω such that (4) is
an equality. Since at that particularω (4) is minimum, its
derivative (with respect toω) at the sameω is zero. Thus,

U̇1 + bU̇2 + a(V̇1 + bV̇2 + b2V̇3) = 0. (5)

Solving (5) fora gives

a = − U̇1 + bU̇2

V̇1 + bV̇2 + b2V̇3

. (6)

Substituting (6) into the equality of (4) gives a fourth-order
equation forb whose coefficients are functions ofω,

x4b
4 + x3b

3 + x2b
2 + x1b + x0 = 0 , (7)

where

x4 = UV̇ 2
3 + U̇2

2 V3 − U̇2U2V̇3

x3 = (−U2V̇3 + 2U̇2V3)U̇1 − U̇2U1V̇3

+2UV̇2V̇3 + U̇2
2 V2 − U̇2U2V̇2

x2 = U̇2
1 V3 + (2U̇2V2 − U2V̇2 − U1V̇3)U̇1 + U̇2

2 V1

−U̇2U1V̇2 + UV̇ 2
2 + 2UV̇1V̇3 − U̇2U2V̇1

x1 = U̇2
1 V2 + (−U1V̇2 − U2V̇1 + 2U̇2V1)U̇1

+2UV̇1V̇2 − U̇2U1V̇1

x0 = −U̇1U1V̇1 + UV̇ 2
1 + U̇2

1 V1 .



The boundary of allowed(a, b) values for a givenM
can be calculated as follows: For a givenω solve (7) forb.
Noting that b has four solutions (for a givenω), pick the
positive real solution(s) and use (6) to find their correspond-
ing a. Select the(a, b) pairs for which the resulting closed-
loop system is stable and (2) is satisfied. Searching over a
range of frequencies,ω, gives two vectors ofω, (a(ω), b(ω))
which lie on the boundary of the allowed(a, b) values. This
algorithm can be extended to include plant gain uncertainty
in an interval [3].

The approach can be extended to design PID controllers
with a filter H(s) on the D-term, i.e.,

L(s) = a

[(
1 +

ki

s

)
P1(s) + bP2(s)H(s)

]

= a
[
P̃1(s) + bP̃2(s)

]
. (8)

It involves searching onki andH(s) as follows: Choose the
structure of the filterH(s), for example,H(s) = p

s+p or

H(s) = p2

s2+ps+p2 , fix ki andp and calculate its boundary
(a, b). It is shown in [3] how to pick the intervals ofp and
ki for calculating(a, b).

The extension to include notch filters operating on the
signal at the plant input, that is,

L(s) = a

[(
1 +

ki

s

)
P1(s) + bP2(s)H(s)

]
N(s),

whereN(s) are notch filters, is straightforward.
The region of all controllers whose structure is given by

(8) is defined as all(a, b) pairs for all possible(ki, p) pairs.
The problem considered here is under what conditions the
optimal controller lies on the hyper-plane of that region
and not on an internal point. This is a significant question
because it shrinks the space in the search for the optimal
controller.

II. OPTIMIZATION

For a controller of the structure of (8), the answer to the
question of which(a, b) pair is optimal clearly depends on
the optimization criterion. Seron and Goodwin [4] note that
“In general, the process noise spectrum is typically con-
centrated at low frequencies, while the measurement noise
spectrum is typically more significant at high frequencies.”
The conclusion is that an optimal controller is a result
of weighting the performance at low frequencies and of
noise at high frequencies. Since the high frequency noise is
proportional toab and low frequency performance to1/a,
a practical optimal criterion can be

J = α(1/a) + β(ab) .

Lemma 2.1:Let J = f(a) + g(ab) where f, g are
strongly monotonic be a functional operating on the(a, b)
domain defined by (2). Then the minimum ofJ on the
domain(a, b) will be achieved on a point for which (2) is
an equality (that is, on the boundary of all(a, b) satisfying
(2)).

From lemma 2.1 the optimal solution must lie on the
boundary of the(a, b) domain. Whenβ is small enough or
zero (meaning the sensor noise is neglected), the optimal
solution is the maximum possiblea (qualitatively best
sensitivity solution).

Another practical optimal criterion is based on the obser-
vation that the noise should be below a certain level. The
optimal criterion will then be the(a, b) pair for whicha is
maximum andab is below a given level. Another required
controller can be the one whose high frequency noise,ab,
is the lowest while the low frequency sensitivity,a, is better
than a given figure. Again from Lemma 2.1 for this optimal
criterion the optimal solution lies on the boundary.

Lemma 2.1 suits a more general case. It shows that for
the criterionJ = f(a) + g(ab) wheref(a) and g(ab) are
monotonic the optimal solution lies on the boundary of the
(a, b) domain.

Proof (by contradiction): Leta0, b0 be a point for which
J = J0 is minimum and (2) is an inequality. Therefore,
there is an open ball with radiusε arounda0, b0 for which
(2) is still an inequality. However at one of the following
pointsa0± ε/2, b0± ε/2, J > J0 becausef, g are strongly
monotonic. Thusa0, b0 is not a minimum point.

In many applications the criterion is to find a controller
whose crossover frequency is given, where the optimality
criterion is a controller whose low frequency sensitivity,
1/a, is minimum and/or high frequency noise is minimum.
Under reasonable conditions, specified in the following
lemma, this optimal solution also lies on the boundary of
the (a, b) domain.

Lemma 2.2:Let (a, b) denote the set of alla, b pairs
satisfying (2) and(aω, bω) denote the subset of(a, b) whose
crossover frequency isω, that is all(aω, bω) pairs in(a, b)
satisfying

|aω(P1(jω) + bωP2(jω))| = 1. (9)

Assuming a solution with crossover frequencyω exists, then

1) if |P1(jω) + bωP2(jω)| is an increasing function of
bω, then the maximum value ofaω satisfies equality
of (2);

2) the minimum value ofaωbω satisfies the equality of
(2).

Proof of 1 (by contradiction): Letaω, bω satisfy (9), withaω

being maximum and for whichaω, bω (2) is an inequality.
Then because of the monotonic property there exista > aω

andb < bω in (a, b) satisfying (9), which is a contradiction.
Proof of 2 (by contradiction): (9) can be written in the form

aω = −aωbω(real(P2/P1))±√
|1/P1|2 − (aωbω)2(imag(P2/P1))2 .

If (aω, bω) is a solution of (9) and is not an equality of (2),
there exists another solution,(a, b), in any small enough
neighborhood of(aω, bω) for which ab < aωbω. This is a
contradiction.



Example 1: C(s) = a(1 + bs). Condition 1 of lemma 2.2
is satisfied because

|P1(jω) + bωP2(jω)| =
√

(1 + b2ω2)|P (jω)|
is an increasing function ofb.
Example 2: C(s) = a(1 + bH(s)). Condition 1 of lemma
2.2 is satisfied if|1 + bH(jω)||P (jω)| is an increasing
function of b. This will be true if the phase ofH(jω) is
in the interval[−π/2, π/2]. This condition can be relaxed
to b|H(jω)| > −real(H(jω)). ImportantH(s) filters with
phase in the interval[−π/2, π/2] are: (i)H = s/(1+s/p),
that is, a low pass filter of order 1 on the derivative term,
and (ii) H = s/(1 + 2ξs/ω + s2/ω2), that is, a low pass
filter of order 2 on the derivative.

A. Constraint Optimization

Other practical optimal criterion would include any op-
timal criterion subject to hard limitation constraints on the
control efforts to avoid actuator saturation. Such conditions
will shrink the (a, b) domain. We show next how to extract
these sub-domains. Two possibilities are addressed, one in
which there exist two independent actuators, which are the
inputs toP1 andP2, and the second with a single actuator.
The two theorems given above are replaced by the following
while the proof remains the same.

Lemma 2.3:Let J = f(a) + g(ab) where f, g are
strongly monotonic be a functional operating on the(a, b)
domain defined by (2) intersected with another domainD.
Then the minimum ofJ on that domain will be achieved
on a point for which (2) is an equality or a point on the
boundary ofD.

Lemma 2.4:Let (a, b) denote the set of all(a, b) pairs
satisfying (2) intersected with another domainD and
(aω, bω) denote a subset whose crossover frequency isω,
that is all (aω, bω) pairs in (a, b) satisfying

|aω(P1(jω) + bωP2(jω))| = 1. (10)

Assuming a solution with crossover frequencyω exists, then
1) if |P1(jω) + bωP2(jω)| is an increasing function of

bω, then the maximum value ofaω satisfies equality
of (2) or is on the boundary ofD;

2) the minimum value ofaωbω satisfies equality of (2)
or is on the boundary ofD.

Consider the discrete version of the controller, that is,
C(z) = a + ab(1− z−1). It is required to find a controller
whose output isae(k)+ab(e(k)−e(k−1)) and is bounded
wheree(k) is the input to the controller at timek. Given
the constantsumin andumax, the controller should satisfy

umin ≤ ae(k) + ab(e(k)− e(k − 1)) ≤ umax, (11)

which, geometrically, is all(a, ab) pairs between and on two
lines in thea− ab plane. Now assume that the(a, ab) pair
is updated at each sampling time. (A question not addressed
here is how fast it can be updated without sacrificing
performance or even stability.) Then the boundary of the
allowed(a, ab) pairs will be the intersection of the original
(a, ab) domain and the domain dictated by (11).

III. C ONCLUSIONS

This paper examines an analytically-based algorithm for
finding low order controllers that satisfy closed loop gain
and phase margin constraints and a bound on the sensitivity.
The application of the algorithm gives a dense set of con-
trollers that lie on the hyper-plane of all possible controllers.
The paper gives practical criteria for which the optimal
controller is a member of this hyper-plane. In addition, it
shows how to extend the hyper-plane to include actuator
saturation constraint.
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