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Abstract—The set of all stabilizing controllers of a given It is also shown in [3] how to determine thg:,b)
low order structure that guarantee specifications on the values for which the closed-loop system is stable and (2)

gain margin, phase margin and a bound on the sensitivity 5 gatisfied, starting with = 1, and a single plant pair
corresponds to a region in n-dimensional space defined by the p P ' Substituti 1 ',t 2 i
coefficients of the controllers. For several practical criteria (P1(s), P2(s)). Substituting (1) into (2) gives,

defined in the paper it is shown that the optimal controller

lies on the surface of that region. Moreover, it is shown how
to reduce that region to avoid actuator saturation during

operation.

U+ a(Uy + bUs) + a*(Vy + bVa + b%V3) > 0 (4)

Yw > 0 where

— 2
|. INTRODUCTION AND PROBLEM STATEMENT U = 1-1/M
Low order controllers, such as a PID controller with a U = 2-Real(P), Uy =2 Real(P,)
filtered D term, or cascaded loops consisting of a simple Vi = |Pi|?>, Vo =2 Real(P\P;), V3 = | P

gain outer loop and a filtered PI or PD inner loop, are wide% . L .
L ) or an(a, b) pair which is on the boundary of the domain
used in industry [1],[2]. Controllers of low-order structureOf the allowed(a, b) values, there exists such that (4) is

with and without the addition of notch filters represent a

large portion of controllers used in mechanical application%‘;i‘\a/qa:sgty\'lvﬂnfeesateé??t pz;t't%uelagéfg |si;nlzrélrr:1)ur_;_1r,“|]tss
Consider the open-loop transfer functiab(s), written ( P ) & ' K

in general form as Uy + bUs 4 a(Vy + bV + b2V3) = 0. (5)
L(s) = a[Pi(s) + bPa(s)] (1) Solving (5) fora gives

for plantsP; (s) and Py(s) and gains: andb. With Py (s) = Uy + bUs

P(s) and Py(s) = sP(s), L(s) = (a + bs)P(s) represents a=—F—— (6)

a PD controller. WithP, = (1 + k;/s)P and Py(s) = Vi + bV + b2V3

sP(s)H(s), L(s) corresponds to a filtered PID controller. Substituting (6) into the equality of (4) gives a fourth-order
It is shown in [3] that gain and phase margin conditiongquation forb whose coefficients are functions of

are guaranteed by the following condition on the closed-

loop sensitivity, wab” + 23b” + 02b” + b+ 20 =0, Y

1 ) where
m S M fors= Jw, Yw Z 0, ke [17K], (2) P U‘/32 n U22V3 B UQUQ"/S

where the sensitivity boundl/ > 1 and the gain uncertainty 25, = (—U,Vs + 20,Va)U; — UsU Vs

of the plant,k, is in thg interval[1, K]. The equality. of (2) . LUV + U2V — UsUsVi

guarantees the following lower bounds on the gain margin, o . . o o

GM, and phase margin?}M, vz = UVs +.(2U2V2. — U2z - Ulv3).U1 + UV

M —Up Uy Vo + UV + 22UV Vs — UpUsV,
GM = 20log;, (K)+ 20log,, (M_1> r1 = UMVy+ (—UVa — UsVy + 2U0,V1) Uy
. 1 +2UV1 Vo — UUL

PM = 2arcsin (2]\/[) . 3 vo = —UhUWVA+UV24+ 02V .
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The boundary of alloweda,b) values for a givenM  From lemma 2.1 the optimal solution must lie on the
can be calculated as follows: For a giversolve (7) forb.  boundary of thga,b) domain. Wheng is small enough or
Noting thatb has four solutions (for a givew), pick the zero (meaning the sensor noise is neglected), the optimal
positive real solution(s) and use (6) to find their correspondolution is the maximum possible (qualitatively best
ing a. Select thg(a, b) pairs for which the resulting closed- sensitivity solution).
loop system is stable and (2) is satisfied. Searching over aAnother practical optimal criterion is based on the obser-
range of frequencies;, gives two vectors ab, (a(w),b(w)) vation that the noise should be below a certain level. The
which lie on the boundary of the allowed, b) values. This optimal criterion will then be théa, b) pair for whicha is
algorithm can be extended to include plant gain uncertaintnaximum andab is below a given level. Another required

in an interval [3]. controller can be the one whose high frequency naise,
The approach can be extended to design PID controlleisthe lowest while the low frequency sensitivity,is better
with a filter H(s) on the D-term, i.e., than a given figure. Again from Lemma 2.1 for this optimal
k. criterion the optimal solution lies on the boundary.
L(s) = a [(1 + l) Pi(s)+ ng(s)H(s)] Lemma 2.1 suits a more general case. It shows that for
A 5 ~ the criterionJ = f(a) + g(ab) where f(a) and g(ab) are
= a [P1(8) + ng(s)} : (8)  monotonic the optimal solution lies on the boundary of the

(a,b) domain.

> o Proof (by contradiction): Let, by be a point for which

, s+p J = Jy is minimum and (2) is an inequality. Therefore,
H(s) = a1tz fix k; andp and calculate its boundary there is an open ball with radiusaroundag, b, for which
(a,b). Itis shown in [3] how to pick the intervals gf and  (2) is still an inequality. However at one of the following

It involves searching ok; and H(s) as follows: Choose the
structure of the filterH (s), for example,H (s) =

k; for calculating(a, b). pointsag +¢€/2,by £¢/2, J > Jo becausef, g are strongly
The extension to include notch filters operating on theénonotonic. Thusig, by is not a minimum point.
signal at the plant input, that is, In many applications the criterion is to find a controller
k. whose crossover frequency is given, where the optimality
L(s) = a Kl + ;) Pi(s) + bP(s)H(s) | N(s), criterion is a controller whose low frequency sensitivity,
1/a, is minimum and/or high frequency noise is minimum.
where N (s) are notch filters, is straightforward. Under reasonable conditions, specified in the following

The region of all controllers whose structure is given byemma, this optimal solution also lies on the boundary of
(8) is defined as alla, b) pairs for all possiblek;, p) pairs.  the (a,b) domain.
The problem considered here is under what conditions the | emma 2.2:Let (a,b) denote the set of alk,b pairs
optimal controller lies on the hyper-plane of that regionsatisfying (2) andas,, b.,) denote the subset ¢f, b) whose

and not on an internal point. This is a significant questiogrossover frequency is, that is all(a.,, b.,) pairs in(a, b)
because it shrinks the space in the search for the optimgitisfying

controller.

1. OPTIMIZATION | (P(w) + bo Pa(jw))| = 1. ©)

For a controller of the structure of (8), the answer to thé\ssuming a solution with crossover frequenggxists, then

question of which(a, b) pair is optimal clearly depends on 1) jf |Py(jw) + b, Py(jw)| is an increasing function of
the optimization criterion. Seron and Goodwin [4] note that b, then the maximum value of,, satisfies equality

“In general, the process noise spectrum is typically con- of (2);
centrated at low frequencies, while the measurement noisep) the minimum value of:,b,, satisfies the equality of
spectrum is typically more significant at high frequencies.” 2)

The conclusion is that an optimal controller is a resulppgqf ofi (by contradiction): Let,, b,, satisfy (9), witha,,

of weighting the performance at low frequencies and Onf)eing maximum and for which,,, b, (2) is an inequality.
noise at high frequencies. Since the high frequency noise{$,en pecause of the monotonic property there exista,,
proportional toab and low frequency performance 19a,  andp < b, in (a, b) satisfying (9), which is a contradiction.
a practical optimal criterion can be Proof of 2 (by contradiction): (9) can be written in the form

J=a(l/a) + B(ab) . G = —auby(real(Py/Py)) +
Lemma 2.1:Let J = f(a) + g(ab) where f, g are VI1/P12 = (awbe )2 (imag(P2/Py))? .
strongly monotonic be a functional operating on tlagb)
domain defined by (2). Then the minimum df on the If (a.,b,) is a solution of (9) and is not an equality of (2),
domain(a,b) will be achieved on a point for which (2) is there exists another solutiofig, ), in any small enough
an equality (that is, on the boundary of &l b) satisfying neighborhood of(a,,, b,,) for which ab < a,b,. This is a
(2)). contradiction.
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Example 1 C(s) = a(1 + bs). Condition 1 of lemma 2.2 [1l. CONCLUSIONS

is satisfied because This paper examines an analytically-based algorithm for

|PL(jw) + b P (jw)| = /(1 + b2w?)|P(jw)] finding low order controllers that satisfy closed loop gain
and phase margin constraints and a bound on the sensitivity.
The application of the algorithm gives a dense set of con-
trollers that lie on the hyper-plane of all possible controllers.
The paper gives practical criteria for which the optimal
controller is a member of this hyper-plane. In addition, it
shows how to extend the hyper-plane to include actuator
saturation constraint.

is an increasing function df.

Example 2 C(s) = a(1 + bH(s)). Condition 1 of lemma
2.2 is satisfied if|1 + bH(jw)||P(jw)| is an increasing
function of b. This will be true if the phase off (jw) is
in the interval[—=/2, 7/2]. This condition can be relaxed
to b|H (jw)| > —real(H (jw)). ImportantH (s) filters with
phase in the intervdl-r/2, 7 /2] are: (i) H = s/(1+s/p),

that is, a low pass filter of order 1 on the derivative term, REFERENCES
. B 5, o i
a_-nd (i) H=s/(1+ 253/‘*)."‘ $ /w?), that is, a low pass [1] K.J. Astrom, and T. Hagglund. “The Future of PID ContraControl
filter of order 2 on the derivative. Engineering Practice9(5):1163-1175, 2001.
. . [2] A. Isaksson and T. Hagglund. “Editorial: PID ControfEE Proc.-
A. Constraint Optimization Control Theory Appl.149(1):1-2, January, 2002.

; ; tAr i _ [3] O.Yanivand M. Nagurka “Design of PID Controllers Satisfying Gain
Other practlcal opt|mal criterion would include any op Margin and Sensitivity Constraints on a Set of Plan#iitomatica

timal criterion subject to hard limitation constraints on the  40(1):111-116, 2004
control efforts to avoid actuator saturation. Such conditiong4] M. Seron, J. Braslavsky, and G.C. Goodwin (199%)indamental
wil shink the (a,0) domain. We how next how (0 extract 1, ST &0 A C2nUeio B SeL o o oy ang on
these sub-domains. Two possibilities are addressed, one IN" jinear Control Systemluwer Academic Publisher.
which there exist two independent actuators, which are the
inputs to P; and P,, and the second with a single actuator.
The two theorems given above are replaced by the following
while the proof remains the same.
Lemma 2.3:Let J = f(a) + g(ab) where f,g are
strongly monotonic be a functional operating on tlagb)
domain defined by (2) intersected with another dom@in
Then the minimum of/ on that domain will be achieved
on a point for which (2) is an equality or a point on the
boundary ofD.
Lemma 2.4:Let (a,b) denote the set of alla,b) pairs
satisfying (2) intersected with another domain and
(aw,b,) denote a subset whose crossover frequenay, is
that is all (a, b,,) pairs in(a,b) satisfying

|aw, (P1(jw) + b Pa(jw))| = 1. (10)

Assuming a solution with crossover frequengcgxists, then
1) if |P(jw) + by P2(jw)| is an increasing function of
b,, then the maximum value af, satisfies equality

of (2) or is on the boundary ab;

2) the minimum value ofz,,b, satisfies equality of (2)

or is on the boundary obD.

Consider the discrete version of the controller, that is,
C(z) = a+ab(1 —z71). It is required to find a controller
whose output isie(k) +ab(e(k) —e(k—1)) and is bounded
wheree(k) is the input to the controller at timé. Given
the constants:,,;, andu,,.., the controller should satisfy

Umin < ae(k) + able(k) —e(k — 1)) < wmaz, (12)

which, geometrically, is alla, ab) pairs between and on two
lines in thea — ab plane. Now assume that tife, ab) pair

is updated at each sampling time. (A question not addressed
here is how fast it can be updated without sacrificing
performance or even stability.) Then the boundary of the
allowed (a, ab) pairs will be the intersection of the original
(a,ab) domain and the domain dictated by (11).
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