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Abstract: Gain scheduling, a widely adopted control design approach, performs tasks by decomposing
into sub-problems. It has found successful applications across diverse fields, including aerospace and
industrial process control (Leith and Leithead (2000)). Reinforcement Learning (RL) has become
increasingly significant in process control applications, thanks to the advancement of sophisticated
algorithms and the rise in computational speeds. An attempt has been made to enhance the performance
of a Proportional-Integral (PI) controller by integrating the benefits of both gain scheduling and RL. The
manuscript focuses on designing a Gain Scheduled PI controller using Multi-Objective RL (GS-MORL).
Proposing the training of multiple RL-based PI controllers with distinct objectives with customized
reward functions to derive tuning parameters for each goal. The switching between these parameter
sets is facilitated by a gain schedule variable. The controller parameters are adjusted based on the
error between actual and desired responses. The aim is to enhance overall performance across various
performance indices, including the integral of absolute error and time response specifications. The
performance improvement from the proposed work has been demonstrated using two simulation case
studies, one involving an underdamped second-order system and an integrating type steam turbine
system. Comparative analysis against existing literature revealed superior performance across all indices.

Keywords: Gain Scheduling; Multi-Objective RL; PI controller; PPO algorithm; Steam Turbine
System; Step response.

1. INTRODUCTION

Evolution in Reinforcement Learning (RL) has surged and fu-
eled by advanced algorithms, enhanced computational speeds,
and efficient hardware resource utilization. This progress has
enabled the application of RL techniques in control systems,
overcoming certain limitations of traditional control methods.

A recent study (Nian et al. (2020)) suggests that employing
reinforcement learning (RL) for PID (Proportional-Integral-
Derivative) controller tuning is preferable over replacing the
controller entirely with an RL network in industrial process
control applications. Control systems are crucial in industrial
and experimental applications, ensuring smooth and efficient
operation. Various control schemes exist for industrial appli-
cations, with PID being the most commonly used (Ang et al.
(2005)) and effective controller. The conventional PID con-
trollers may prove ineffective for higher-order systems, time-
delay systems, time-varying systems, parameter-varying sys-
tems, nonlinear systems, and systems with uncertainties due to
their linear structure. Dealing with uncertainties in a system
stands as a fundamental concern in control theory. One of
the prominent techniques to deal with these systems is gain
scheduling. Gain-scheduling control of linear parameter vary-
ing systems (Rugh and Shamma (2000)) has garnered sub-
stantial focus in both theory and practical applications. The
authors emphasized linearization-focused scheduling and ap-
proaches based on linear parameter variations, providing exam-
ples of their applications in flight control and automotive engine
control. Recent work aimed to achieve an efficient and non-

conservative gain-scheduled control system (Elkhatem and En-
gin (2023)), ensuring high performance and stability across var-
ious flight conditions and transitions for the B747 aircraft using
evolutionary algorithms. Various gain scheduling techniques
(da Silva Campos et al. (2021), Man et al. (2022), Coutinho
et al. (2022), Romero et al. (2022)) have been proposed for
different systems. Singh and Kaur (2016) took a similar ap-
proach. The authors employed Fuzzy rule-based gain schedul-
ing to adjust parameters based on error and error change, em-
phasizing the necessity of understanding model dynamics. The
performance comparison of a fixed PI controller with the gain-
scheduled PI controller for the control of the boiler-turbine
system showed that the gain-scheduled PI controller performs
better than the other PI and PID controllers (Kashyap et al.
(2022)). In this work, it is proposed to employ gain scheduling
techniques to enhance the performance of linear systems across
various performance metrics, including Integral of Absolute
Error (IAE) and time domain specifications.

Tuning controllers for improved performance is a delicate bal-
ance. Achieving better rise time requires aggressive tuning
while minimizing overshoot demands a relatively sluggish ap-
proach. Therefore, optimizing all indices with a single set of
controller parameters may be contradictory to each other. To
address these challenges, a multi-objective RL framework has
been proposed in this work. Where multiple RL agents will be
trained to achieve different objectives with customized reward
functions. The efficacy of reinforcement learning hinges on
crafting a proficient, dense, and precise reward function tai-
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lored to the specific task (Chakraborty et al. (2023)). In process
control applications, the reward is designed to achieve desired
objectives in terms of overall performance or any particular
performance index like IAE, time domain specifications, etc.
In earlier works (Kumar and Detroja (2022), Kumar and De-
troja (2023)), control relevant reward functions were designed
to achieve better set-point tracking and disturbance rejection.
In the proposed approach, multiple controllers, each having a
specific objective, are designed using RL. The controller tuning
parameters obtained with multiple agents will be applied to
a single controller using the gain scheduling technique. The
scheduling variable is the error between the actual and desired
output of the plant. Based on the error magnitude, the controller
switches between different sets of tuning parameters to improve
overall performance. The proposed framework is termed as
’GS-MORL’ (Gain Scheduled PI controller design using Multi-
Objective RL) and is further explained in Section 3.

For the first time, multi-objective reinforcement learning has
been used for a gain scheduling based controller for linear sys-
tems for performance optimization. Recently proposed Proxi-
mal Policy Optimization (PPO) algorithm is computationally
efficient, can handle continuous variables, and provides better
performance (MacHalek et al. (2020)), therefore PPO algorithm
has been selected for training the RL agent in the present
study. Two realistic simulation case studies are presented in
the manuscript to highlight the benefits of the proposed GS-
MORL framework. These case studies include a Steam Turbine
system (Dulau and Bica (2014)), which is a second order sys-
tem with the integrator. The changes in operating zones due
to load changes will be taken care of by the boiler operation.
The results show that the proposed method achieved better
performance and smoother control compared to other methods.

The contributions of this study are as follows: 1) Formulating
control relevant reward functions for RL based controller de-
sign; 2) Multi-objective RL for the training of different agents
to achieve desired objectives; 3) Switching of the controller tun-
ing parameters using the gain scheduling technique to achieve
improvement across all the performance indices; 4) Design of
PI controller for second order system, 5) Design of PI controller
for steam turbine system, 6) Comparing the performance of the
proposed work with the other benchmark methods.

The manuscript is organized as follows. In Section 2, the ba-
sic RL philosophy and PPO algorithms are briefly explained.
The proposed Gain scheduled PI controller design using multi-
objective RL is explained in Section 4. Subsequently, the per-
formance of the proposed work in process applications is com-
pared followed by detailed analysis and conclusions.

2. MATERIALS AND METHODS

2.1 Reinforcement Learning

Reinforcement learning (Sutton and Barto (2018)), a data-
driven AI algorithm rooted in trial-and-error learning, involves
training an agent aiming to expand its capabilities. The RL
agent learns a policy, mapping states to actions, through a trial-
and-error search guided based on a reward signal function. In
discrete time steps, the agent interacts with an environment,
receiving state st , taking action at , and obtaining a reward
rt , creating a sequential trajectory throughout an episode. The
policy π guides the mapping of states to actions, and the

learning process is formalized using a Markov Decision Process
(MDP).

2.2 PPO Algorithm

Proximal Policy Optimization (PPO) (Schulman et al. (2017))
is an on-policy, model-free policy-gradient algorithm, suitable
for environments with discrete or continuous action spaces.
Unlike its predecessor TRPO (Trust Region Policy Optimiza-
tion) (Schulman et al. (2015)), PPO is simpler to implement
yet performs comparably well. It employs first-order methods
and clipping techniques to learn policies iteratively, ensuring
stability by constraining deviations from the existing policy.
PPO’s learned policy is inherently stochastic, facilitating ex-
ploration through action sampling. As training progresses, the
exploration randomness diminishes, and the agent increasingly
exploits learned policies.

3. PROPOSED GAIN SCHEDULED PI CONTROLLER
DESIGN USING MULTI-OBJECTIVE RL

The manuscript introduces a gain-scheduled PI controller de-
sign employing multi-objective reinforcement learning, re-
ferred to as GS-MORL for discussion. In this approach, the
control task is divided into three distinct segments. Each seg-
ment undergoes training with an individual RL-based con-
troller, targeting specific objectives. Subsequently, the param-
eters of these controllers are employed to switch between them,
determined by the gain scheduled parameter. Diverging from
traditional approaches, which involve creating a single con-
troller to manage the entire control task with a specific goal.
The PI controller’s tuning parameters are switched by updating
them according to the error band, which is the gain scheduling
variable in this case.

The schematic of the proposed GS-MORL architecture is de-
picted in Fig. 1. The PPO Network in Fig. 1 represents the
RL agent/policy, which is a parameterized neural network. The
continuous actions of the PPO network are the tuning parame-
ters of the PI controller. These are given as

a j = [K p j Ti j] (1)

K pmin
j ≤ K p j ≤ K pmax

j , Timin
j ≤ Ti j ≤ Timax

j (2)
Where K p j is the proportional gain, Ti j is the integral time, and
j = 1,2,3. j represents each training objective. The action space
is constrained to mitigate potential disruptions from the policy
network’s stochastic nature, ensuring a controlled and safe
operation of the control loop. PPO network makes decisions
based on state vector x j and reward r j from the environment.
The output of the PI controller is given as

u j = K p j(e j +
ie j

Ti j
) (3)

Where e j is the error and ie j is the integral error.

3.1 Objective-1 : Quick initial response

The reward functions are selected to attain the specified ob-
jectives for each segment, as elaborated further. The first ob-
jective of training focuses on improving rise time, making the
controller aggressive in the transient stage. The corresponding
reward considered to achieve this goal is given as

r1 =−tr − ess (4)
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Fig. 1. Schematic of the proposed GS-MORL agent training
Architecture

Where tr represents the rise time (the time required to reach
90% of its steady value) of the response and ess is the steady-
state error. The reward function is formulated in such a way
that the controller should be optimized for minimum rise time,
ultimately ensuring its convergence to the desired set point.
The presence of negative signs signifies that a longer rise time
incurs more penalties and diminishes the reward, which applies
similarly to other components.

3.2 Objective-2 : Minimizing overshoot

The controller’s second objective centers around minimizing
maximum overshoot. RL agents strive to achieve this by min-
imizing the maximum overshoot, and the following reward is
considered to attain this goal.

r2 =−Mp − IAE (5)

Where Mp represents the maximum overshoot and IAE is the
integral of absolute error. The reward function is formulated
to tune the controller for a critical damped response i.e. mini-
mizing the overshoot while avoiding over-damped response by
incorporating IAE.

3.3 Objective-3 : Fast settling and minimizing steady state
error

The third controller objective focuses on minimizing settling
time. RL agents aim to expedite the settling process in pursuit of
this goal. To attain it, the following reward is taken into account.

r3 =−ts − ess (6)

Where ts represents the settling time of the response. The
reward formulation requires tuning the controller to minimize
settling time.

The plant’s output is denoted as y j, with the reference signal
being yre f

j . This consistent reference signal can be applied
across all training cases.

3.4 Gain Scheduling

Following the discussed training process, three sets of tuning
parameters will be obtained. These parameters will be utilized
to create a single PI controller, managing the plant by switch-
ing between them through the gain scheduling technique. The
schematic representing the same is shown in Fig. 2. The Gain
Scheduler block, depicted in Fig. 2, switches between various
parameter sets to generate tuning parameters for the controller.
The corresponding equations are provided below.

Fig. 2. Gain Scheduled Control Architecture

K p =


K p1 if |e| ≥ β1

K p2 if β2 ≤ |e|< β1

K p3 otherwise
(7)

Ti =


Ti1 if |e| ≥ β1

Ti2 if β2 ≤ |e|< β1

Ti3 otherwise
(8)

Where,
error, e = yre f − y (9)

constants, β1,β2 = (0,1),β1 > β2 (10)
The selection of constants β1 and β2 can be done empirically
to get better performance. Equations (7) and (8) indicate that
the controller prioritizes aggressive performance, enhancing
transient response when the error exceeds β1. If the error falls
within β1 and β2, the controller shifts to the second tuning
parameters, aiming to minimize maximum overshoot. Finally,
when the third set of controller parameters to expedite system
settling. Hence with the proposed approach, the performance
of the controller will be optimized in terms of all performance
indices viz. Integral of Absolute Error, Maximum Overshoot,
Rise Time, and Setting Time. Section 4 illustrates this through
case studies.

4. RESULTS AND ANALYSIS

4.1 Design of PI Controller for Second Order System

To demonstrate the performance of the proposed framework,
an underdamped second-order system has been considered.
Typically tuning PI controllers for such systems is difficult as
this system has an infinite gain margin and phase margin. The
transfer function of the model is given as

G(s) =
K

τ2s2 +2ζ τs+1
(11)

Where K is the process gain, τ is the time constant and ζ is the
damping factor. A system with K = 1.5, τ = 3.16, and ζ = 0.95
has been considered in this case.

The gain scheduled PI controller design presented in Section
3 is employed to train the agents in this system. The plant
shown in Fig. 1 is replaced by this second-order system (11) and
trained for each of the objectives (4), (5) and (6) separately. The
hyperparameter settings for all training objectives are uniform
and can be found in Table 1. The rewards obtained during the
training processes are shown in Fig. 3. The red (dotted) plot
represents the reward during the training process concerning
the first objective (Eq. (4)). Blue (dash-dot) and green (dashed)
plots represent rewards for Eq. (5) and Eq. (6), respectively.
Table 2 presents tuning parameters for each objective alongside
their performance indices. Additionally, Fig. 4 displays the step
responses corresponding to these tuning parameter sets.
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Table 1. Hyper-Parameter Settings

Parameter Value

Learning Rate 5e-05
Kullback-Leibler(KL) Coefficient 0.2

Kullback-Leibler(KL) target 0.01
Clipping ratio 0.3

Training batch size 5
SGD mini-batch size 5
No of SGD Iterations 1

No of time steps 500
No of episodes 1000

Fig. 3. Reward during training of RL controller with different
objectives

Table 2. Static Performance Indices
(Training with different objectives)

Objective K p Ti IAE Mp(%) tr(s) ts(s)

Objective-1 4.67 15.71 34.24 36.3 2.4 23.7
Objective-2 1.63 8.2 22 9.9 4.6 17.5
Objective-3 2.19 8.64 19.7 18.3 3.7 14.8

Fig. 4. Step Response of the controllers with different objec-
tives

Observations from Fig. 3, Fig. 4, and Table 2 indicate success-
ful training of RL controllers based on their respective objec-
tives. The first method excels in achieving the best rise time,
the second method minimizes overshoot, and the third method

Table 3. Static Performance Indices
(For Second Order System)

Method K p Ti IAE Mp(%) tr(s) ts(s)

MATLAB 1.2 6.1 16.7 8.9 5.4 18.7
Shinskey 3 3.83 39.82 52.7 2.8 25.2
Skogestad 1.44 6.6 16.51 12.3 4.8 17.5

GS-MORL - - 16.4 8.5 3.7 14.8

Fig. 5. Comparison of step response among various methods

ensures a quicker settling of the system. However, in all cases,
trade-offs exist with other parameters, sacrificing them for the
sake of achieving the specified objective indices.

To enhance overall performance metrics, the gain scheduling
technique is employed. This technique dynamically adjusts
parameters according to (7) and (8) to achieve our performance
goals. Experimentation determined the constant parameters β1
and β2 to be 0.95 and 0.1, respectively. The label ’GS-MORL’ is
assigned to the response of this gain-scheduled multi-objective
controller for comparison.

Performance benchmarking of the gain scheduled controller
involves comparing it with various methods such as Shinskey
(1994) as discussed in O’Dwyer (2009) and Skogestad (2003).
Additionally, the MATLAB PID tuner, guided by human exper-
tise, is employed for controller tuning for comparative analysis.
The tuning parameters and corresponding performance indices
are detailed in Table 3. The step responses of these methods
are illustrated in Fig. 5. Referring to Table 3 and Fig. 5, it
is evident that the gain scheduled controller, formulated ac-
cording to the proposed framework, exhibits superior overall
performance compared to alternative controllers across all per-
formance indices. While there may be instances of better rise
time in certain cases, it comes at the expense of compromising
other parameters heavily.

4.2 Design of PI Controller for Steam Turbine System

The methodology has been applied to a physical process in-
volving a steam turbine unit within a thermal power plant sys-
tem. In this context, a gain scheduled PI controller is designed
using multi-objective RL. Refer to Fig. 6 for the schematic
representation of the steam turbine system. The steam turbine
transforms high-pressure and high-temperature steam’s stored
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Fig. 6. Steam Turbine system schematic

energy into rotary energy, subsequently converted into elec-
tricity by the generator. Each turbine section includes moving
blades connected to the rotor and stationary vanes that acceler-
ate steam to high velocity. The units may feature high-pressure
(HP), intermediate-pressure (IP), and low-pressure (LP) turbine
sections, depending on the configuration. The steam turbine
features high-pressure valves (HP Valve) and re-heater valves
(RH Valve). Steam enters the HP section via the HP Valve
and inlet piping. HP exhaust steam passes through the re-heater
(RH). Reheated steam enters the IP turbine section through the
RH Valve and inlet piping. The IP turbine’s exhaust flows to the
LP inlet. The conversion of steam energy into rotational energy
by the shaft occurs as the steam expands through three stages.
To generate power and maintain grid frequency, it’s crucial to
keep the shaft speed at a desired value, regardless of the load.
Disturbances in shaft speed occur due to load changes, neces-
sitating the regulation of steam flow through the operation of
the HP valve position to maintain the required speed. HP valve
regulation primarily addresses minor load adjustments, necessi-
tating boiler collaboration for significant load variations. Con-
sequently, this control mechanism operates effectively within
a specific operational range, resembling a linear system ideal
for testing the proposed work. The mathematical model of the
above process based on Dulau and Bica (2014) for the desired
speed to HP valve position is given as

G(s) =
0.0833(2.25s+1)

s(7.5s+1)(0.25s+1)
(12)

The behavior of the system is of integrating type having 2 poles
and 1 zero.

The method proposed in Section .3 is employed to train the RL
agent for various objectives, consistent with the earlier case.
The responses of the individual training objectives are shown
in Fig. 7 and the tuning parameters corresponding to each
objective are

K p1 = 8.31, Ti1 = 296.75 (13)
K p2 = 0.84, Ti2 = 2177.7 (14)
K p3 = 7.38, Ti3 = 305.4 (15)

With these sets of parameters, a gain scheduled controller has
been envisaged as shown in Fig. 2 using (7) and (8). The
performance has been compared with (Bialkowski (1996)) as
discussed in (O’Dwyer (2009)) and (Skogestad (2003)) along
with MATLAB PID tuner. The bench-marking methods in
this scenario differ from previous ones, involving the integra-
tion type second-order systems compared to non-integrating
second-order systems. The step response of these methods is
shown in Fig. 8 and the corresponding performance indices are
tabulated in Table 4. The gain scheduled controller exhibits
superior overall response compared to others, as evident from
Fig. 8 and Table 4. While Bialkowski shows better IAE and rise

Fig. 7. Step response of the controller with different objectives
for Steam Turbine model

Fig. 8. Comparison of step response of various methods for
Steam Turbine model

Fig. 9. Controller outputs/Plant Inputs for step change for
Steam Turbine model

time, it comes at the cost of significantly high overshoot and
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Table 4. Static Performance Indices
(For Steam Turbine System)

Method K p Ti IAE Mp(%) tr(s) ts(s)

MATLAB 4.932 250 75.02 20.6 6.8 21.8
Bialkowski 90 7.5 21.33 44 3.2 17.5
Skogestad 16.13 4 50.9 65.9 3.2 27.4

GS-MORL - - 46.4 16.6 5.5 17.5

prolonged controller output saturation, as illustrated in Fig. 9.
A similar case is observed with Skogestad also. This extended
saturation, resulting from a high gain, is undesirable for real
systems.

5. CONCLUSION

The manuscript introduces a gain scheduled PI controller de-
sign through multi-objective RL. The proposed approach is
validated on a second-order system and an integrating type real-
istic steam turbine model. Three distinct controllers are trained
using RL for different objectives. A gain scheduled controller
is devised, utilizing the three sets of tuning parameters to en-
hance overall performance. Comparative analysis with various
methods reveals significant performance improvements across
all indices for the proposed approach. In future research, the
authors aim to investigate the development of a gain scheduled
RL controller for more complex systems and multi-variable
systems.
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