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Abstract: This paper describes i-pIDtune 2.0, an updated interactive software tool that
integrates system identification and PID controller design. The tool supports experimental
design and execution under plant-friendly conditions, high-order ARX estimation, and control-
relevant model reduction leading to models that comply with IMC-PID tuning rules; these
controllers can then be evaluated in simulation. All four stages are depicted simultaneously and
interactively in one screen. The updated tool includes two significant new features: 1) support
for “bumpless” PI-D and I-PD closed-loop simulations that provide a broader understanding
of PID tuning effectiveness in practical settings and 2) extension to plants with integrating
dynamics. These new features are described and illustrated with two example problems.
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1. INTRODUCTION

The basic PID controller and its variants remain the
controllers of choice in many industrial applications; ex-
tending its use and effectiveness represents a worthwhile
pursuit. Internal model control (IMC) is a systematic
procedure for control system design based on the Q-
parametrization concept, which forms the basis of many
modern control design techniques (Morari and Zafiriou,
1989). The IMC design procedure applied to low-order
transfer functions common to process system applications
results in model-based tuning rules for PID-type con-
trollers (Rivera et al., 1986; Rivera and Flores, 2004). A
single adjustable parameter in these IMC-PID tuning rules
specifies the closed-loop speed of response and directly
influences the robustness of the closed-loop system.

System identification focuses on the building of dynamical
models from data (Ljung, 1999) and is often considered
the most challenging and time consuming step in control
engineering practice. Under conditions where significant
disturbances and noise are present, a rigorous system
identification approach becomes an essential requirement
for any controller design. However, by taking into ac-
count closed-loop performance requirements during system
identification, it becomes possible to both simplify the
modeling task and improve the usefulness of the model
with respect to the intended application of control design;
this is the essence of control-relevant identification (Rivera
et al., 1992). Illustrating such synergism was the motivat-
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ing philosophy behind the methodology presented in the
initial version of the interactive tool i-pIDtune, which is
described in Guzmán et al. (2012).

In recent decades, advances in information technologies
have provided powerful software tools for training engi-
neers (Dormido, 2004; Guzmán et al., 2023). Moreover,
interactive software tools have been proven as particularly
useful techniques with high impact on control education
(Guzmán et al., 2005, 2008; Guzmán et al., 2023). Interac-
tive tools provide a real-time connection between decisions
made during the design phase and results obtained in
the analysis phase of any control-related project. Prior
work involving the authors resulted in ITSIE (Guzmán

et al., 2012) and ITCRI (Álvarez et al., 2013). ITSIE
focuses exclusively on open-loop system identification and
ITCRI deals with the control-relevant identification based
on prefiltered prediction-error estimation. In this paper,
the goal is to describe the theory, features, and applica-
tion of i-pIDtune 2.0, an interactive tool that integrates
system identification and PID controller design. i-pIDtune
2.0 considers the estimation of a high-order ARX model
and control-relevant model reduction to obtain models
consistent with the IMC-PID tuning rules. Validation cri-
teria allow the user to verify both open-loop and closed-
loop metrics. Furthermore, the tool enables the user to
simulate closed-loop behavior and provides analysis tools
for assessing the benefit of choosing particular tuning
parameters for setpoint tracking and load disturbances.
The interactive tool is coded in Sysquake, a MATLAB-
like language with fast execution and excellent facilities
for interactive graphics (Piguet, 2004).
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2. THEORETICAL BACKGROUND

This section summarizes the major steps of the identifica-
tion methodology for IMC-PID tuning, which are included
in the proposed interactive tool. These steps include exper-
imental design and execution, high-order ARX estimation,
and control-relevant model reduction leading to models
that comply with the IMC-PID tuning rules.

2.1 Plant to be identified and controlled

The plant to be identified and subsequently controlled
consists of a discrete-time system sampled at a value
specified by the user (default value Ts = 1 min) and
subject to noise and disturbances according to:

y(t) = p(q)(u(t) + n1(t)) + (1− ϕ q−1)−1 n2(t) (1)

where y(t) is the measured output signal, u(t) is the
input signal that is designed by the user, p(q) is the zero-
order-hold-equivalent transfer function for p(s) and q is
the forward-shift operator, n1 is a white noise signal that
allows to evaluate the effects of input disturbances in the
data, while n2 is a second independent white noise signal
that is introduced directly to the output. The parameter ϕ
allows this second added noise effect to be autocorrelated
and not associated with the plant dynamics.

2.2 Experimental design and data preprocessing

The success of the identification methodology hinges on
the availability of informative input/output data obtained
from a sensibly designed identification experiment. The
input signals used in this tool are: (i) Pseudo-Random
Binary Sequences (PRBS) and (ii) multisine signals. In
i-pIDtune 2.0, the input signal can be designed through di-
rect parameter specification or by applying time constant-
based guidelines. The input signal guidelines have been
shared in prior work and thus for the sake of brevity the
interested reader is referred to Guzmán et al. (2012) for
a detailed description. Data preprocessing in i-pIDtune
2.0 supports mean subtraction, differencing, subtraction
of baseline values, and (through differencing the output
signal) the option to remove an integrator known a priori.

2.3 ARX Model Estimation

i-pIDtune 2.0 uses simulated data from (1) to estimate
a prediction-error (PEM) model characterized by an Au-
toRegressive with eXternal input (ARX) model structure

A(q)y(t) =B(q)u(t− nk) + e(t) (2)

y(t) = p̃(q)u(t) + p̃e(q)e(t) (3)

where p̃(q) refers to the estimated plant model and p̃e(q)
is the noise model. A(q), and B(q) are polynomials in q,
while nk is the system delay, represented as an integer
multiple of sampling intervals.

ARXmodel estimation possesses two attractive properties,
namely, computational simplicity and consistency. The
parameters of (2) can be determined by minimizing the
squared prediction error

arg min
p̃,p̃e

1

N

N∑
i=1

e2(i) = argmin
θ

1

N

N∑
i=1

[
y − φT (t|θ)θ

]2
(4)

where N represents the number of data, θ is a vector
including the model parameters to be identified and φ(t|θ)
is the model output for a given combination of the model
parameters θ.

The use of Parseval’s Theorem enables a frequency-domain
analysis of bias effects in PEM estimation that allows deep
insights into the selection of design variables for these
techniques. As the number of observations N → ∞, the
least-squares estimation problem denoted by (4) can be
written as

lim
N→∞

1

N

N∑
i=1

e2(t) =
1

2π

π∫
−π

Φe(ω)dω (5)

where Φe(ω), the prediction-error power spectrum is

Φe(ω) =
1

|p̃e(ejω)|2
(
|p(ejω)− p̃(ejω)|2Φu(ω)

+ |p(ejω)|2σ2
n1

+ |1− ϕ e−jω|−2 σ2
n2

)
(6)

Equation (6) helps explain systematic bias effects in iden-
tification, which can be readily explored in i-pIDtune 2.0.
This includes issues relating to the spectral content in the
input signal and the associated multi-objective optimiza-
tion problem resulting from varying magnitudes of the
noise variances σ2

n1
and σ2

n2
.

In this work, the ARX model structure selection is accom-
plished through the use of cross-validation, where a data
set other than the estimation data set is used to determine
the predictive ability of a model. Because ARX estimation
consists of solving a linear least squares problem (4),
model estimation can be applied using a large number of
model structures without incurring significant computa-
tional burden. A set of model structures is obtained by
specifying a range for the orders of the model described
in (2): na, nb and nk. The model structure that minimizes
the loss function displays the lowest percent unexplained
variance in the output.

2.4 Control-Relevant Model Reduction for IMC-PID

The application of the Internal Model Control (IMC) de-
sign procedure to establish PID tuning rules is described in
detail in Morari and Zafiriou (1989) and Rivera and Flores
(2004). The IMC design procedure is a two step design
process that provides a suitable tradeoff between perfor-
mance and robustness. In the first step a stable and causal
Q-parametrized controller is obtained that is optimal with
respect to norm criteria on the control error. In the second
step, the controller from Step 1 is enhanced with a low-pass
filter to ensure that the controller is proper. Filter param-
eters are used to tune the control system for robustness
or a desired speed-of-response, and can be adjusted on-
line once the controller is commissioned. For many simple
models of interest to process control applications, the IMC
controller implemented in classical feedback form leads to
a PID-type controller. Table 1 contains IMC-PID tuning
rules for first- and second-order models with RHP (Right
Half Plane) zero (with and without integrator) that are
used in i-pIDtune 2.0. More comprehensive tables with
additional entries are found in Morari and Zafiriou (1989),
Rivera and Jun (2000), and Rivera and Flores (2004).
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2(β+λ)+τ

2β2+4βλ+λ2 2(β + λ) + τ
2τ(β+λ)
2(β+λ)+τ

βλ2

2β2+4βλ+λ2

Table 1. IMC-PID tuning rules used in i-pIDtune 2.0 for first and second-order plants, with and
without integrator and with RHP (β > 0) zero. The general PID controller form is represented

by c(s) = Kc(1 +
1

τIs
+ τDs) 1

(τF s+1) .

For plants with delay or higher than second-order, a
model reduction step is necessary in order to arrive at
a model that conforms to the IMC-PID tuning rules.
Here, we apply control-relevant model reduction to directly
obtain reduced-order models without delay that conform
to the IMC-PID tuning rules in Table 1. i-pIDtune 2.0
obtains and compares tuning rules for PI, PID and PID
with filter designs interactively on the same screen. The
model reduction procedure is based on the control-relevant
approach described in Rivera and Morari (1987). In this
framework, the frequency bandwidth over which a good
model fit is necessary dictated by the IMC-PID tuning
rule, the value for the IMC filter parameter λ, and the
setpoint-disturbance direction faced by the closed-loop
system. Consider the model reduction problem arising
from minimizing the 2-norm of the control error ec = r−y

J1 = ∥ec∥2 =

 ∞∫
0

| ec(t) |2 dt

1/2

. (7)

The closed-loop system resulting from a feedback con-
troller c(s) designed from the estimated model p̃ is char-
acterized by the nominal sensitivity operator ϵ̃ = (1 +
p̃c)−1 and complementary sensitivity operator η̃ = p̃c(1 +
p̃c)−1. For c(s) implemented on the true plant model p,
the control performance deterioration caused by mismatch
between plant and model is represented by

ec =
ϵ̃

1 + η̃ em
(r − d), (8)

where em = (p− p̃)p̃−1 is the multiplicative error between
the true plant and the estimated model, and d represents
the load disturbance. Stability of the control system is
most rigorously determined by applying Nyquist Stability;
a sufficient condition and computationally simpler require-
ment is the Small Gain Theorem

|η̃(ȷω)em(ȷω)| ≤ 1 for all ω. (9)

When (9) holds, (8) can be expanded into a Taylor series
which is truncated after the first term to yield

ec ≈ ϵ̃(1− η̃em)(r − d). (10)

The previous approximation (10) is especially valid when
|η̃(ȷω)em(ȷω)| ≪ 1 over the bandwidth defined by ϵ̃(r −
d). Substituting (10) into (7), we obtain an approximate
expression for the objective function which can be written
in the frequency domain using Parseval’s Theorem. The

statement of the control-relevant parameter estimation
problem (CRPEP) is obtained by minimizing the contri-
bution arising from model reduction error, that is,

min
p̃

 1

π

∞∫
0

|ϵ̃(ȷω)|2|η̃(ȷω)|2|r − d|2|em(ȷω)|2dω

1/2

. (11)

The CRPEP in (11) minimizes the weighted 2-norm of
the multiplicative error. The weight function |ϵ̃η̃(r − d)|
explicitly incorporates the desired closed-loop shape and
speed of response, as well as the setpoint and disturbance
characteristics of the problem.

The interactive tool includes a frequency-weighted curve-
fitting algorithm presented in Rivera and Morari (1987)
to solve the model-reduction problem in (11). The algo-
rithm of Rivera and Morari (1987) relies on the iterative
solution of a linear least-squares problem in the spirit of
Sanathanan and Koerner (1963) that is computationally
fast and facilitates interactive analysis in i-pIDtune 2.0.

2.5 PID control structures

As discussed previously, the interactive tool uses the ideal
form for the PID controller with filter according to the
following equation:

u(s) = Kc

(
1 +

1

τIs
+ τDs

)
1

τF s+ 1
ec(s) (12)

where τD = τF = 0 is considered for an PI controller,
and τF = 0 for a classical PID controller. For the PID
controller, so-called “bumpless” PI-D and I-PD configura-
tions are available using the setpoint weighting structure
(Åström and Hägglund, 2006):

u(s) = Kc

(
ep(s) + ec(s)

1

τIs
+ ed(s)τDs

)
(13)

with ep = α r − y and ed = γ r − y, α and γ serving as
weighting factors. This allows to obtain an equivalent two-
degrees-of-freedom control algorithm where the feedback
controller is kept as the original PID controller but with
reference filtering capabilities with the following structure:

Fr(s) =
1 + ατIs+ γτIτDs2

1 + τIs+ τIτDs2
(14)

γ = 0 for the PI-D configuration, and γ = α = 0 for the
I-PD algorithm.
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Fig. 1. Main screen of i-pIDtune 2.0, displaying results for the first-order with delay plant example described in Section 4.

2.6 Model validation

i-pIDtune 2.0 provides classical methods for validation
such as simulation, crossvalidation, residual analysis on
the prediction errors and step responses. The percent
output variance on the crossvalidation data set is also re-
ported. Furthermore, the most informative form of control-
relevant validation is the closed-loop response resulting
from the estimated model, which in i-pIDtune 2.0 is con-
trasted simultaneously with the open-loop response.

3. INTERACTIVE TOOL DESCRIPTION

This section summarizes the main capabilities of the
interactive tool. To test the interactive features, the
reader is cordially invited to download the tool at
https://arm.ual.es/i-pidtune/. The main graphical
interface is shown in Fig. 1, and has been designed fol-
lowing the main steps in a control-relevant identification,
as follows:

• Input signal definition. There is a section called Input
signal parameters, located in the upper left corner,
where the input signal type (PRBS or multisine) can
be selected. Furthermore, a checkbox called Guidelines
is available to determine the signal design by following
the guidelines given in Guzmán et al. (2012) or select-
ing the signal parameters directly. More information
on input design options can be found in Guzmán et al.
(2012). At the right of these parameters, there are two
graphics, namely Input signal, which shows one cycle

of the input signal, and Power Spectrum or AutoCor-
relation (depending on the option chosen in the menu
Options), which shows the input signal correlation or
the input signal power spectrum, respectively. In the
graph Full input signal located in the left of the central
part of the screen, the full input signal is presented.

• Data preprocessing and model estimation. Above the
Output signal graph, the different data preprocessing
options are available, namely, mean subtraction, dif-
ferencing, substraction of baseline values, and remove
ramp or integrator. On the other hand, in the section
calledModel parameters, located in the bottom central
part of the screen, the parameters na, nb and nk for
the high-order ARX model, ARX OS, are shown.

• Closed-loop specification. Below the Model parameters
section, a slider called Lambda allows us to modify the
λ for the IMC filter time constant used by the IMC-
PID tuning rules presented in Table 1. Moreover, the
noise sources in the data and the output, n1 and
n2, can be changed using the sliders called Noise 1
and Noise 2, respectively. On the other hand, five
different checkboxes are available to select among the
desired control structure, PI, PID, PI-D, I-PD or PID
with filter. Once the control structure is selected, the
corresponding controller parameters are depicted.

• Model validation. The Output signal graphic includes
a vertical line which allows interactively defining the
estimation (yellow area) and validation data (white
area) sets. This figure also shows the ‘simulated’ real
data (in black) together with the response of the high-
order ARX model (in green). The model validation
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results are presented in two different graphics: Cor-
relation function of residuals and Step Responses. In
the case of the Step Responses graph, four different
responses can be shown, for the high-order ARX
model, for the PI model (control-relevant model for
PI controller tuning), for the PID model (control-
relevant model for PID controller tuning) and for the
PID with filter model (control-relevant model for PID
controller with filter tuning). For the case of the high-
order ARXmodel, its goodness of fit in % is displayed,
and the confidence intervals can be shown by using
the corresponding option in the menu Parameters.

• Closed-loop response. The closed-loop responses for
the selected control algorithms are shown in the fig-
ures Closed-loop output and Closed-loop input for the
process output and the control signal, respectively.

4. ILLUSTRATIVE EXAMPLES

Two examples are presented to show the operation and ex-
panded functionality of i-pIDtune 2.0. In the first example,
a first-order with deadtime plant is considered. The system
is represented by the transfer function:

p(s) =
e−5s

(10s+ 1)
(15)

with a default sample time of Ts = 1 min. The main aim of
this example is to analyze the control-relevant method and
to compare the resulting PID controller tuning. Results
are shown in Fig. 1. A PRBS input signal is used for
identification, with parameters: m = 4 (number of cycles),
αs = 2, (factor representing the closed-loop speed of
response), βs = 3 (factor representing the settling time
of the process), τLdom = 10 (low estimate of τdom) and
τHdom = 13 (high estimate of τdom). For more information
about these parameters, see Guzmán et al. (2012).

A high-order ARX model, ARX-[10 10 4], is obtained
from this identification signal. Its open loop response is
shown in the Step Responses graph (ARX-OS), at the
lower left-hand side of the tool, together with the response
of three control-relevant models for PI, PID, and PID
with filter. The validation criteria indicate the modest
(37.6%) fit in the ARX model, due to the noise signals
n1 and n2, is the result of ARX model estimation being a
trade-off between the fit to the noise model and the fit
to the transfer function. However, despite a modest fit
of the ARX model from an “open-loop” point of view,
this result is a very important contribution for control-
relevant design. The ARX model enables cleaning the
noisy data and estimating the main process dynamics,
which are then used to estimate the reduced control-
relevant models. These results would be very difficult
to obtain from conventional methods based on process
reaction curve and relay tests.

Regarding the closed-loop parameters, the parameter λ
of the IMC controller is lowered from the default value
of 10 to λ = 6.1, thus implying the desire for a faster
speed of response. The open-loop response of the resulting
reduced models are shown in Step Responses graph. It
can be observed how the model for PID controller with
filter is the one obtaining the closest response to the
high-order ARX model. The inputs and outputs of the

resulting feedback system are shown in Closed-loop input
and Closed-loop output graphs, respectively. Notice the
poor performance of the closed-loop system for the PI
controller (red solid line) and PID controller (blue solid
line), with a large overshoots of approximately 20% of the
setpoint change magnitude. This fact is due to the bad
fit of the open loop reduced models for these controllers.
From the Step Responses graph, it is possible to note how
there is a substantial mismatch in the static gain between
the PI model and PID model and the high-order ARX
model, ARX-OS. Recall that the proposed control-relevant
model reduction method tries to estimate a model without
delay corresponding to the model structures described in
Table 1. The PID with filter model has a much closer
“control-relevant” fit, enabling a faster bandwidth and
hence its closed-loop response (for setpoint tracking) is
much better than for PI and PID.

Evaluating the I-PD response yields some interesting in-
sights. The setpoint tracking response is overdamped and
improved substantially compared to PID, mimicking that
of the PID with filter controller. Disturbance rejection
(which remains unchanged regardless of PID, PI-D, or I-
PD) is faster than for the PID with filter controller. The
two-degree-of-freedom response from the I-PD controller
demonstrates added versatility that can be obtained from
IMC-tuned PID parameters. When the closed-loop speci-
fication is relaxed (e.g., λ = 20; not shown), the control-
relevant approximate models for the PI, PID, and PID
with filter cases are very similar, and practically identical
(although de-tuned) closed-loop responses are obtained for
the three cases.

The second example is an integrating system with delay

p(s) =
e−5s

s
. (16)

The i-pIDtune 2.0 window is shown in Fig. 2. Again a
PRBS input signal is used, with parameters: m = 6,
αs = 2, βs = 3, τLdom = 3 and τHdom = 5. Here the Remove
Ramp option is used in the identification, which recognizes
the presence of integrating dynamics in the data; a similar
ARX model fit to the data (36.2%) is obtained. For λ = 10,
all three reduced models (PI model, PID model and PID
with filter model) approximate the delay with a RHP zero,
with differences manifesting themselves in the closed-loop
responses (seen in Fig. 2); the PI model being the most
inferior. As with the first example, the I-PD response
substantially improves the PID response and could be
argued to be better than the PID with filter case.

5. CONCLUSIONS

This paper describes an interactive tool integrating system
identification and IMC-PID controller design. By using
i-pIDtune 2.0 it is possible to achieve interactively such
synergism, being that the motivating philosophy behind
the methodology described in this paper. The tool pro-
vides different functionality modes which make possible
to use its capabilities for students and engineers with a
small learning curve. The tool is freely available from
https://arm.ual.es/i-pidtune/. The interactive tool
allows the student to analyze a straightforward control-
relevant procedure and to compare the closed-loop results
from different reduced models.
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Fig. 2. Results for the second example (a delayed plant with integrator) described in Section 4.
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