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Abstract: Multi-objective optimization techniques are practical techniques for controller tuning
purposes. A wide variety of papers use such an approach or propose new algorithms to
approximate the Pareto front. Nevertheless, despite the expressive volume of works dealing
with it, there is no standard benchmark testbed that could be used as a baseline comparison
among different techniques. This work addresses such a gap, with a first step proposing a linear-
SISO testbed with guidelines and rules and providing a basic example for a PI controller. Such
a benchmark is expected to promote further research on the topic.
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1. INTRODUCTION

Controller tuning is a multi-objective task. That means
several requirements, constraints, and specifications must
be fulfilled. Such demands are usually in conflict, and
control engineers must propose trade-off solutions.

For single-input, single-output (SISO) processes, it is usual
to achieve a trade-off between performance and robustness.
That is because the tuning process requires a model (M)
of the process. Therefore, such balance is relevant to
guarantee a successful implementation of the controller.
For the multi-input, multi-output (MIMO) case, besides
such a trade-off, it is usual to encounter that, given coupled
dynamics, an improvement in one of the outputs implies
the degradation in a different output.

Multi-objective optimization is a suitable way to deal
with such a situation. A design objective vector is stated
instead of defining a single cost function. Then, all design
objectives are optimized simultaneously. Consequently,
a set of design alternatives with different trade-offs is
calculated instead of a single solution. Such solutions are
Pareto optimal: it is only possible to improve an objective
by worsening another. Such an approach has been used
with success in control systems engineering (Reynoso-
Meza et al., 2014; Moarref et al., 2016; Lim et al., 2017;
Cao et al., 2017).

Different reviews collect and summarise the advantages
of such approaches. Nevertheless, there needs to be more
standardization to evaluate the performance of a given
algorithm. Benchmarks allow researchers to have a higher
degree of reproducibility and comparability of diverse con-
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trol techniques(Kroll and Schulte, 2014). Even if it is
possible to find literature on control engineering bench-
marks (Dixon and Pike, 2006; Bejarano et al., 2017; Kroll
and Schulte, 2014; Mercader et al., 2019; Romero and
Sanchis, 2011; Fernandez et al., 2011; Atanasijevic-Kunc
et al., 2010; Eriksson et al., 2019) and solutions involving
multi-objective techniques (Xue et al., 2010; Kagami et al.,
2019), there is yet to be a specific benchmark dedicated
to evaluating the performance of multi-objective optimiza-
tion algorithms.

This paper aims to provide a first framework to test multi-
objective optimization algorithms and PI controllers. The
remainder of this paper is as follows: Section 2 provides
a brief background on multi-objective optimization tech-
niques. In Section 3, the benchmark proposal is presented;
in Section 4, an example using a PI controller is provided.
Finally, some concluding remarks and future work are
discussed.

2. BACKGROUND

In this section, a brief background on multi-objective
optimization techniques is provided.

2.1 Multi-objective optimization

There is not a single solution for a multi-objective problem
(MOP) because there is not generally a better solution for
all the objectives. Therefore, a Pareto set X p is approxi-
mated. Each solution in this set defines an objective vector
in the Pareto front Jp (See Figure 1).

Successful implementation of multi-objective optimization
techniques requires (at least) three steps: the MOP state-
ment, the multi-objective optimization (MOO) process,
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Fig. 1. Pareto front approximation concept.

and the multi-criteria decision-making (MCDM) stage.
Next, a brief description of such steps is given. Readers are
referred to Meza et al. (2016) for a complete description
of such stages.

Multi-objective problem definition  In the MOP state-
ment, the designer must define design objectives and con-
straints. Additionally, it requires a parametric model and
a cost function to calculate such information.

Without loss of generality, a multi-objective optimization
statement is defined as follows:

subject to:
K(x)<0 (2)
L(z)=0 (3)
xigxiggﬂ,iz[l,...,n] (4)

where @ = [21, %9, ..., 2,] is defined as the decision vector
with dim(x) = n; J(x) as the objective vector and K (),
L(x) as the inequality and equality constraint vectors
respectively; x;,7; are the lower and the upper bounds
in the decision space.

Multi-objective optimization process The MOO process
aims to approximate the Pareto front and set using a given
algorithm. All the solutions in the Pareto front are a set
of Pareto optimal and non-dominated solutions.

e Pareto optimality (Miettinen, 1999): An objective
vector J(x!) is Pareto optimal if there is not another
objective vector J(x?) such that J;(x?) < J;(z!) for
all i € [1,2,...,m] and J;(z?) < Jj(x') for at least
one j, j €[1,2,...,m].

e Dominance (Coello and Lamont, 2004): Given two ob-
jective vectors J(z!), J(x?), objective vector J (')
is dominated by objective vector J(x?) if J;(x?) <
Ji(z!) for all i € [1,2,...,m] and J;(z?) < J;(z')
for at least one j, j € [1,2,...,m]. This is denoted as
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Most of the algorithms use such definitions in their opti-
mization processes to approximate the Pareto front. Usu-
ally, we must rely entirely on approximations Jp, Xp
since the actual Pareto front is usually unknown. Different
alternatives for algorithms exist, ranging from classical op-
timization techniques (Messac et al., 2003) to evolutionary
multi-objective optimization (Coello, 2003).

2.2 Controller tuning as a multi-objective problem

A basic control loop is depicted in Figure 2. It comprises
transfer functions P(s) and C(s) of a process and a
controller, respectively. The objective of this control loop
is to keep the desired output Y'(s) of the process P(s) in
the desired reference R(s). The controller C(s) will achieve
this task, using error E(s) as information to compute a
control action U (s). Block H(s) is a measuring instrument,
usually considered unitary.

0, ©) £, [G] 29, 7] 2.
T (] ——

Fig. 2. Basic control loop.

The control problem consists of selecting adequate param-
eters of the proposed controller C(s) in order to achieve a
desirable performance using a model M(s) of the process
in the control loop, as well as robust stability margins to
guarantee a reasonable performance when controlling the
process P(s). As commented by Garpinger et al. (2014),
conflicting objectives may appear when seeking a good
performance and a desirable robustness level. Since those
design objectives are usually conflicting, MOO techniques
could appeal to controller tuning.

3. BENCHMARK PROPOSAL

Next, we will present the experimental setup under con-
sideration. Later, definitions and conditions to evaluate
algorithms will be presented.
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3.1 SISO processes

The set consists of a series of single-input, single-output
processes. The test set proposed by Astrom and Hagglund
(2004) is used for such a purpose:

6—5
P =
1(5) =157
T € {0.02,0.05,0.1,0.2,0.3,0.5,0.7,1,1.3, 1.5, 2,
4,6,8,10, 20, 50, 100, 200, 500, 1000}

—S

()

e
—_ 6
ek (6)

T € {0.01,0.02,0.05,0.1,0.2,0.3,0.5,0.7,1,1.3,

1.5,2,4,6,8,10, 20,50, 100, 200, 500}
1
P =
30) = GE DA T
T € {0.005,0.01,0.02,0.05,0.1,0.2,0.5,2, 5,10}

PQ(S) =

(7)

P = Q
ne{3,4,56,7,8}

1

P = 9
5(5) (14 s)(1+ as)(1+ a2s)(1 + ads)’ )
a€{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
e—SLl
P, =—TNT+L1 =1 1
6(5) s(L+sT1) 1+ L =1, (10)
Ly € {0.01,0.02,0.05,0.1,0.3,0.5,0.7,0.9, 1.0}
T
Pi(s) = T+ Ly =1 11
7(8) (1+8T)(1 +ST1)€ s L1 + L1 ) ( )
Te{1,2,5,10}
L, {0.01,0.02,0.05,0.1,0.3,0.5,0.7,0.9,1.0}
1—as
Ps(s) = GiDP (12)

a € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0, 1.1}

1
Py(s) = (s +1)((sT)2 + 1.4sT + 1)7

T € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}

(13)

3.2 Multi-objective problem statement

Only time performance measures are considered, allowing
design concept comparisons (i.e. different controller struc-
tures).

e Design objectives:

win J(2) = (Trap(@). Trv (@) (14)
Where:

hi@) = Tia(e) = 70 (15)

() =T @) = e (16)

where x g1, is the base-line controller for process P;(s),? €
{1,2,---,9}. TAE stands for the integral of the absolute
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value of the error, and TV for the total variation of the
control action.

e Constraints:

Such constraints will bring pertinency and interpretability
for visualization purposes. On the one hand, meeting the
constraints means that only the portion of the Pareto front
dominating the baseline controller is accepted. On the
other hand, this will give some degree of interpretability
regarding how much improvement is obtained. Stability
must be guaranteed in the approximated Pareto front.

It is relevant to notice that bounds for decision variables
are not declared. This is due to the diversity of the
processes. Additionally, the right choice of boundaries is
not a straightforward issue, and checking and evaluating
proposals in this matter is interesting.

e Base line controllers

The baseline controller suggested is the Proportional-
Integral (PI) controller tuned via the Ziegler-Nichols pro-
cedure, using ultimate gain and period of the process
P; ... 9(s). This way it is possible to approximate a Pareto
front dominating such a baseline solution.

e Profile test

Following a recommendation from Astrém et al. (1998) for
an optimization statement, most of the industrial control
loops are intended to reject disturbances. Therefore, a
unitary disturbance for each output of the process is
defined.

e Optimization conditions

A budget of 1000 function evaluations (simulations) is
defined. The rationale behind this number is that com-
plex processes and simulations are being used nowadays
as parametric models of control systems. Therefore, it
must be considered that such simulations could be com-
putationally expensive. That could also promote research
on surrogate models (Peitz and Dellnitz, 2018) for such
instances.

e Convergence performance measures for population
based optimization algorithms

Hypervolume (Auger et al., 2012) is used to measure the
performance of population based optimization algorithms
used to approximate the Pareto front. Intuitively, it is the
volume enclosed by the Pareto front approximation, using
a nadir point as a reference. Hypervolume is selected due
to its capabilities to measure convergence and diversity.

If population-based algorithms are used, 11 runs should be
reported, indicating the best, worst, median, mean, and
standard deviation values. If local algorithms are used,
initial solution selection should be indicated.

Using the normalized objectives defined above, the nadir
m

point correspond to the a vector nadir = [1,---,1].
Such selection will allow us to evaluate pertinency and
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ensure understanding due to different scales among design
objectives. As a baseline algorithm, it is also suggested
to include a random strategy, using the same budget of
1000 function evaluations and 11 runs. This will give
information regarding the advantage (or lack of) of using
a given optimization strategy. Lastly, to evaluate the
computational complexity of the algorithms proposed,
a CPU-time normalization is proposed, using the time
required to sample 1000 solutions (random approach).

o Platform

A platform is provided using Matlab® and Simulink© to
perform the tests!. It is essential to notice that the inte-
gration step must be the same within tests for comparison
purposes.

4. EXAMPLE

To illustrate how to report the experimental setup, a
performance evaluation of a simple random approach is
provided.

4.1 Algorithm description

A random approach is used for comparative purposes. A
uniform sampling will be carried out within boundaries
for each one of the processes under study. Boundaries
are defined as: kp = [0, K,] and ki = [0, I,], where Ku
is the ultimate gain of the process P;(s) and I, is the
ultimate gain for the transfer function % - P;(s). Matlab
and Simulink 2021B are used in a DELL Precision 3561,
11th. Generation, Intel Core i7-11800H, 2.3 GHz and 16GB
RAM.

4.2 Results and discussion

Figures 3, 4, 5, 6, 7, 8, 9, 10 and 11 depicts the Hyper-
volume results of the random approach for each family.
Due to space limitations, only graphical visualization is
commented on here.

It is possible to notice diverse behaviors:

e For the process family Pj(s), the greater the time
constant value, the lower the variability in the hyper-
volume, with a medium value around 0.55 and 0.65;

e For the process family Ps(s), the greater the time
constant value, the lower the variability and the
higher the hypervolume;

e For families P3(s), Py(s) and Ps(s) the hypervolume
has very low variability intra-members in each family;

e For family Ps(s), each member has a very low vari-
ability, with some members easily improving the
Ziegler Nichols baseline controller;

e For family P;(s), the performance is quite diverse due
to the reason that two parameters are used to build
this transfer function;

e For family Pg(s) the variability increases with the «
value of the non-minimum phase;

e For family Py(s), the higher the T value, the higher
the hypervolume’s variability and the medium value.

L Available at: https://www.mathworks.com/matlabcentral/
profile/authors/2438888
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Fig. 4. Hypervolume Ps(s).

The above-commented conclusions drawn from the dis-
persion plots give an idea regarding the value of using
more elaborated methods to approximate the Pareto front.
Therefore, they might give additional insights regarding
which kind of process the practitioners of the area should
focus on.

5. CONCLUSIONS

This paper proposes a testbed benchmark for multi-
objective controller tuning for linear SISO processes. This
benchmark states different guidelines and rules, allowing a
comparison of different algorithms with a limited budget of
function evaluations. Particularly, a PI controller case, was
presented, but different structures could also be evaluated.
A more comprehensive testbed, including MIMO and SISO
non-linear processes, is under development to cover a wider
variety of cases in controller tuning.
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