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Abstract: In this paper, the higher-order sinusoidal-input describing function (HOSIDF) of
the fractional-order hybrid integrator-gain system (HIGS) is derived analytically. The HIGS
element, designed as a nonlinear component, aims to overcome limitations inherent in linear
control, such as the waterbed effect. The HIGS element has been generalized by replacing the
integer-order integrator with a fractional one. Here, a modified version of the fractional-order
HIGS (FO-HIGS) is introduced with the aim of shaping the nonlinearity at low frequencies.
Additionally, this paper demonstrates that obtaining an analytical solution for the HOSIDF of
the FO-HIGS enables us to gain better insight into the tuning of the control architecture.

Keywords: Hybrid integrator-gain systems, Frequency domain analysis, Fractional-order
systems, Higher-order sinusoidal-input describing function, PID controllers.

1. INTRODUCTION

The main drawback of linear time-invariant (LTI) con-
trollers are their fundamental limitations like the wa-
terbed effect and Bode’s gain-phase relationship, as seen
in Freudenberg et al. (2000). The fundamental limitations
can be relaxed by applying a nonlinear element to control
an LTI plant. This approach has been followed using both
hybrid systems and more general nonlinearities. Overcom-
ing the fundamental limitations has been shown using reset
controllers, hybrid integrator-gain system (HIGS)-based
controllers, and variable-gain controllers, see, e.g., Zhao
et al. (2019); van Dinther et al. (2021); Hunnekens et al.
(2016). Utilizing nonlinear elements that can be described
in the frequency domain to create a viable alternative
to LTI controllers is highly beneficial. This is especially
crucial given the complexity of industrial devices, where
the plant’s measured frequency-response function (FRF)
often represents the most precise existing information.
A comparative overview of frequency domain methods for
nonlinear systems is presented in Rijlaarsdam et al. (2017).
Methods like sinusoidal-input describing function (SIDF)
and higher-order SIDF (HOSIDF), are presented to ap-
proximate nonlinear elements in the frequency domain,
see Nuij et al. (2006). In the SIDF approach, the steady-
state response of a convergent nonlinear system (Pavlov
et al., 2004), is represented by the first component of the
Fourier series expansion, while the higher components are
considered in the HOSIDF analysis to provide additional
insights into the behavior of a nonlinear system.
An example of a nonlinear controller analyzed in the

⋆ This work is supported by ASMPT.

frequency domain is the Constant in gain, Lead in phase
(CgLp) element. In Saikumar et al. (2019), a reset-based
CgLp element is suggested as a remedy for Bode’s gain-
phase relationship. Similar to the reset element, HIGS also
holds the potential for overcoming the limitations of LTI
controllers (Deenen et al., 2017). Furthermore, the sector-
boundedness of the HIGS element provides us with the op-
portunity to explore the development of a circle criterion-
like frequency-domain stability method for a HIGS-based
control system (Deenen et al., 2021).
Like the reset element, HIGS also generates higher-order
harmonics in its output for all input frequencies, presented
in van Eijk et al. (2023). In van Eijk et al. (2023), the HIGS
element is generalized by placing it in parallel with a linear
low-pass filter to shape the higher-order harmonics. In
Hosseini et al. (2022), the HIGS element is also generalized
with the aim to further suppress HOSIDFs by replacing
the integer-order integrator of HIGS with a fractional-
order one. With both generalizations, it becomes possible
to tune the phase of the SIDF as well as the influence
of higher-order harmonics. In this work, we modify the
nonlinear element developed in Hosseini et al. (2022) such
that it does not produce any higher-order harmonics below
a certain threshold frequency.
To this respect, the main contributions of this paper are:

• Modifying the definition of the FO-HIGS by intro-
ducing an additional condition within the upper gain-
region, which is one of the two gain-regions of the FO-
HIGS element. This adjustment aims to maintain the
output within the upper gain-region below a certain
threshold frequency, which leads to an element with
no higher-order harmonics at those frequencies.

Preprints, 4th IFAC Conference on
Advances in Proportional-Integral-Derivative Control
Almería, Spain | June 12-14, 2024

© 2024 the authors. Accepted by IFAC for publication
under a Creative Commons License CC-BY-NC-ND

466



• Introducing the analytic formula for the HOSIDFs of
FO-HIGS, enabling a more comprehensive analysis of
its frequency-domain properties.

• Designing two CgLp elements using conventional
HIGS and FO-HIGS, and investigating the presence
of higher-order harmonics in a closed-loop control
system involving these elements.

The structure of the paper is as follows. In Section 2,
preliminary information is presented. In Section 3, the
modified version of the FO-HIGS is introduced, and the
analytical solution for its HOSIDF is derived. In Section 4,
HIGS-based CgLp and FO-HIGS-based CgLp elements are
presented, as well as their frequency domain responses. In
Section 5, the performance of FO-HIGS is compared with
HIGS and PID when controlling a second-order system.
Section 6 states the conclusions and future works.

2. PRELIMINARIES

2.1 Describing function

The SIDF (D1(ω, ê)) is a quasi-linearization of a nonlinear
element subject to a sinusoidal input ē(t) = ê sin(ωt), with
amplitude ê ∈ R>0, excitation frequency ω ∈ R>0, and
time t ∈ R. The SIDF has also been extended to the nth-
order SIDF or HOSIDF (Dn(ω, ê)) in Nuij et al. (2006).
Considering the output of a nonlinear system converging
to a (unique) solution ū which is periodic with the same
period T = 2π

ω as the sinusoidal input, then it can be
presented as the SIDF and HOSIDF of the nonlinear
element as follows

ū(t) =

∞∑
n=1

|Dn(ω, ê)| sin
(
nωt+ ∠Dn(ω, ê)

)
, (1)

where as shown in Nuij et al. (2006), this nth-order SIDF
is given by

Dn(ω, ê) = bn + jan, (2)

with Fourier coefficients

an =
2

T

∫ T

0

1

ê
ū(t) cos(nωt)dt, (3a)

bn =
2

T

∫ T

0

1

ê
ū(t) sin(nωt)dt, (3b)

and j =
√
−1.

2.2 Fractional-order derivative

The Liouville-Caputo (LC) fractional-order derivative,
which is used for FO-HIGS, is defined as (Shchedrin et al.,
2018)

LCDη
xf(x) :=

1

Γ(1− η)

∫ x

−∞
dt(x− t)−η df(t)

dt
, (4)

where η ∈ [0, 1] is the derivative order, x ∈ R is the
upper-bound of the integral, and Γ(.) is the Euler Gamma
function, defined as

Γ(z) =

∫ ∞

0

e−ttz−1dt, (5)

where z ∈ C, and Real(z) > 0. According to Shchedrin
et al. (2018), for a sinusoidal function f(t) we have

LCDη
t [sin(ωt)] = ωη sin

(
ωt+

πη

2

)
. (6)

For convenience in the following, writing LC in LCDη
x will

be refrained.

3. FO-HIGS, FROM MODIFIED DEFINITION TO
HOSIDF FORMULA

In this section, the FO-HIGS in Hosseini et al. (2022) is
modified. In Section 3.1, we propose an additional condi-
tion aiming to maintain the FO-HIGS within the upper
gain-region below a certain frequency, thereby preventing
premature departure and eliminating higher-order har-
monics. In Section 3.2, the HOSIDF of the FO-HIGS is
derived analytically.

3.1 FO-HIGS definition

We define the FO-HIGS in state-space representation as

Hα
f :


ẋh(t) = ωhD

1−α
t e(t), if (e(t), ė(t), u(t)) ∈ Fα

1 ,

xh(t) = khe(t), if (e(t), ė(t), u(t)) ∈ Fα
2 ,

xh(t) = 0, if (e(t), ė(t), u(t)) ∈ Fα
3 ,

u(t) = xh(t),
(7)

where xh ∈ R is the state variable, u ∈ R is the output,
e ∈ R is the input, kh ∈ R>0 is the gain value, ωh ∈ R>0 is
the integrator frequency, and α ∈ [0, 1] is the integration
order. The FO-HIGS can operate in three different regions,
where the integrator-region is

Fα
1 = F \ (Fα

2 ∪ Fα
3 ), (8)

the upper gain-region is

Fα
2 :=

{
(e, ė, u) ∈ F | u = khe ∧

(
ωhD

1−α
t (e)e > khėe...

∨D1−α
t (e)e < 0 ∨ (e = 0 ∧ ωhD

1−α
t (e)ė > khė

2)
)}

,

(9)

the lower gain-region is

Fα
3 =

{
(e, ė, u) ∈ F | u = 0 ∧

[
D1−α

t (e)e < 0 ∨ ...(
e = 0 ∧

(
D1−α

t (e)ė < 0 ∨ (ė = 0 ∧ D1−α
t (e) ̸= 0)

))]}
,

(10)

and

F :=

{
(e, ė, u) ∈ R3 | eu ≥ 1

kh
u2

}
. (11)

The three regions are created in such a way that FO-HIGS
is bounded within region F and has a continuous output
signal. A derivation of these conditions, except the newly
added condition u = khe ∧ D1−α

t (e)e < 0 to the upper
gain-region Fα

2 , can be found in Hosseini et al. (2022).
The new condition has been added to upper gain-region
Fα

2 to prevent premature departure from the upper gain-
region for a sinusoidal input, as explained in Section 3.2.
The output of FO-HIGS for a sinusoidal input e(t) = sin(t)
is depicted in Fig. 1. It can be seen that by decreasing α
from 1 to 0, the output gradually goes from the behaviour
of a HIGS to that of a proportional gain. Also, it can be
seen that the output of FO-HIGS is bounded between 0
and khe(t).

3.2 HOSIDF of FO-HIGS

To derive the FO-HIGS’s HOSIDF formula, it is necessary
to compute its steady-state response to a sinusoidal input.
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Fig. 1. Output response of FO-HIGS when subject to a
sinusoidal input e(t) = sin (t), with ωh = 1, kh = 1,
and various values for α.

Let’s consider e(t) = ê sin(ωt) as the input and u(t) as
the output of the system (7), where t ∈ [0, 2π

ω ). It is
defined here that the frequency ωL marks the point where
ẋh(0) from the integrator-mode equals ẋh(0) from the
upper gain-mode. Considering the conditions in (8)-(10),
if ω > ωL, the FO-HIGS initiates in the integrator-mode,
while for ω ≤ ωL, it begins in the upper gain-mode.
For the case where FO-HIGS initiates from the integrator
mode (ω > ωL), ωt = γ marks the point at which
the system switches to the upper gain-mode. Considering
the conditions in (9), the system remains in this mode
until khê sin(ωt) intersects the zero line at ωt = π. This
pattern is also demonstrable for the subsequent half cycle
(ωt ∈ [π, 2π)). The switching point γ, is calculated in
Hosseini et al. (2022) as below

γ = −2 arctan

(
cos(πα2 )− khω

α

ωh

sin(πα2 )

)
, (12)

where by setting γ = 0 and solving it for ω, the frequency
ωL is derived as

ωL =

(
ωh

kh
cos
(πα

2

))1/α

. (13)

Thus, for ω > ωL, the FO-HIGS is in the integrator-region
for t ∈ [0, γ

ω ), and then moves to the upper gain-region.
First, we will demonstrate that it remains there within
the range of t ∈ [ γω ,

π
2ω ) by showing that ẋh(t) from the

integrator-mode stays greater than ẋh(t) from the upper
gain-mode. Therefore, we expect the inequality

D1−α
t ωhe(t) > khė(t), (14)

to hold for t ∈ [ γω ,
π
2ω ). By substituting e(t) = sin (ωt), the

inequality in (14) can be simplified as below

ωt > arctan

(
khω

α

ωh
− cos

(
πα
2

)
sin
(
πα
2

) )
, (15)

by considering γ from (12), we have

t >
1

2

γ

ω
, (16)

which means the inequality (14) holds for t ∈ [ γω ,
π
2ω ).

However, staying in the upper gain-region cannot be
guaranteed for t ∈ [ π

2ω ,
π
ω ). Leaving the upper gain-region

means D1−α
t ωhe(t) < khė(t), where for the interval t ∈

[ π
2ω ,

π
ω ), ė(t) ≤ 0. Therefore, by preventing the negative

values for ẋh(t) in the integrator-mode, we can always
guarantee D1−α

t ωhe(t) > khė(t). In this respect, the new
condition (u = khe∧D1−α

t (e)e < 0) has been added to the
upper gain-region Fα

2 . The same is true for the next half

period [πω ,
2π
ω ).

Hence, the FO-HIGS’s steady-state response for ω > ωL is
given by

u(t) =


ωh

ωα ê
(
sin(ωt− πα

2 ) + sin(πα2 )
)
, 0 ≤ t < γ

ω ,

khê sin(ωt),
γ
ω ≤ t < π

ω ,
ωh

ωα ê
(
sin(ωt− πα

2 )− sin(πα2 )
)
, π

ω ≤ t < γ+π
ω ,

khê sin(ωt),
γ+π
ω ≤ t < 2π

ω .
(17)

For ω ≤ ωL, the FO-HIGS initially operates in the upper
gain region. In the interval t ∈ [0, π

2ω ), inequality (14) must
be satisfied, which consequently leads to inequality (15).
Given ω ≤ ωL, replacing ωL from (13) with ω on the right
side of the inequality in (15) results in ωt > 0. Therefore,
within the interval t ∈ [0, π

2ω ), the FO-HIGS cannot exit
the upper gain-region. For the range t ∈ [ π

2ω ,
π
ω ), similar to

the scenario when ω > ωL, it is essential to avoid negative
values for ẋh(t) = D1−α

t (e) of the integrator-mode. In this
respect, the condition (u = khe ∧D1−α

t (e)e < 0) will pre-
vent departing from the upper gain-region. In conclusion,
when the FO-HIGS starts from its upper gain-region, it
will remain there till t = π

ω . For the next half cycle, the
same happens. Hence, in case ω ≤ ωL, the output of the
FO-HIGS is always equal to khê sin(ωt).

The below theorem expresses the HOSIDF of FO-HIGS.

Theorem 1. The HOSIDF formula for FO-HIGS is as
follows

H α
n (ω) = bn + jan, (18)

where α is the order of the fractional integrator, and n ∈ N
is the order of the harmonic. For ω ≤ ωL

a1 = 0, b1 = kh, (19)

and
an = 0, bn = 0, ∀n ≥ 2. (20)

For ω > ωL, an and bn are as in (21)-(23).

Proof. For the case where ω ≤ ωL we have u(t) =
khê sin(ωt), then for a1 and b1 we have

a1 =
2

T

∫ T

0

kh sin(ωt) cos(ωt)dt = 0, (24a)

b1 =
2

T

∫ T

0

kh sin(ωt) sin(ωt)dt = kh, (24b)

and for an and bn (n ≥ 2)

an =
2

T

∫ T

0

kh sin(ωt) cos(nωt)dt = 0, (25a)

bn =
2

T

∫ T

0

kh sin(ωt) sin(nωt)dt = 0. (25b)

When ω > ωL, substitute the steady-state response from
(17) as ū(t) into (3). Next is calculating the integral over
the interval [0, T ), where T = 2π

ω . This computation yields

the values for an and bn as expressed in (21) 1 -(23). ■

Definition 1. Considering H α
1 (ω) as the SIDF of the FO-

HIGS for ω > ωL, the cut-off frequency (ωr) of this filter
is defined as the frequency at which the equation
1 It is worth noting that the SIDF for FO-HIGS in Hosseini et al.
(2022) requires multiplication by two due to a typographical error in
the definition of a1 and b1. The authors acknowledge this oversight
and provide the corrected version in (21).
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a1 =
ωh

2πωα

[
− cos

(
2γ −

πα

2

)
+ cos

(
πα

2

)
− 2γ sin

(
πα

2

)
+ 2 cos

(
γ −

πα

2

)
− 2 cos

(
γ +

πα

2

)]
+

kh

2π
[cos (2γ)− 1], (21a)

b1 =
ωh

2πωα

[
2γ cos

(
πα

2

)
− sin

(
2γ −

πα

2

)
+ 3 sin

(
πα

2

)
− 2 sin

(
γ +

πα

2

)
+ 2 sin

(
γ −

πα

2

)]
+

kh

2π
[2π − 2γ + sin (2γ)], (21b)

an =−
ωh

π(n+ 1)ωα

[
cos

(
(n+ 1)γ −

πα

2

)
− cos

(
πα

2

)]
−

ωh

π(1− n)ωα

[
cos

(
(1− n)γ −

πα

2

)
− cos

(
πα

2

)]
+

ωh

πnωα

[
cos

(
nγ −

πα

2

)
− cos

(
nγ +

πα

2

)]
−

kh

π(n+ 1)

[
1− cos ((n+ 1) γ)

]
−

kh

π(1− n)

[
1− cos ((1− n)γ)

]
, ∀ oddn ≥ 2,

(22a)

bn =−
ωh

π(n+ 1)ωα

[
sin

(
(n+ 1)γ −

πα

2

)
+ sin

(
πα

2

)]
+

ωh

π(1− n)ωα

[
sin

(
(1− n)γ −

πα

2

)
+ sin

(
πα

2

)]
+

ωh

πnωα

[
sin

(
nγ −

πα

2

)
− sin

(
nγ +

πα

2

)
+ 2 sin

(
πα

2

)]
+

kh

π(n+ 1)

[
sin ((n+ 1)γ)

]
−

kh

π(1− n)

[
sin ((1− n)γ)

]
, ∀ oddn ≥ 2,

(22b)

an = 0, bn = 0, ∀ evenn ≥ 2. (23)
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Fig. 2. HOSIDF of FO-HIGS with kh = 1, ωh = 1, and α =
0.6. From (27), the cut-off frequency ωr = 2.69 rad/s.

lim
ω→∞

|H α
1 (ω)| = lim

ω→0
|H α

1 (ω)|, (26)

is satisfied. Then, for ωr, this relationship yields

ωr =

(
ωh

kh

∣∣∣(4/π − j) sin
(απ

2

)
+ cos

(απ
2

)∣∣∣) 1
α

. (27)

The magnitudes of the first and higher-order harmonics
of FO-HIGS with α = 0.6 are depicted in Fig. 2. It can
be seen that the higher-order harmonics are not produced
below a specific frequency, and for the same parameters,
they all share the same ωL = 0.41 rad/s. Moreover, the
notches in the HIGS’s HOSIDFs (van Eijk et al., 2023)
can also be observed in the FO-HIGS HOSIDFs.

4. FO-HIGS-BASED CGLP ELEMENTS

An element with adjustable phase lag and magnitude
characteristics of a linear low-pass filter can be created
using HIGS in either a parallel or series interconnection
with LTI elements. A CgLp element can be formed by
arranging these structures in series with a lead component.
In Fig. 3, a HIGS and FO-HIGS-based CgLp element is
presented. Placing a lead in front of a nonlinear element
(Cai et al., 2020; van den Eijnden et al., 2020) has proven
beneficial for transient response, while it does not affect
the first harmonic. We used the same rationale to place
the lead first in our design.

4.1 Parallel architecture

The parallel generalized HIGS is introduced in Hosseini
et al. (2022) and van Eijk et al. (2023). Responses of a
linear low-pass filter

F (s) =
1

s/ωr + 1
, (28)

with corner-frequency ωr ∈ R>0 and corresponding
integer-order HIGS are combined with ratio β ∈ [0, 1]. The
parameters for HIGS are considered as α = 1, kh = 1 and
ωh will be derived from (27) by substituting the arbitrary
value for ωr. β = 0 and β = 1 lead to pure linear and
nonlinear responses, respectively. In this case, a linear
integer-order lead element

L(s) =
s/ωr + 1

s/ωf + 1
, (29)

is combined with the parallel structure. The low-pass filter
1

s/ωf+1 , with ωf ∈ R>0 and ωf ≫ ωr, is added to ensure

that L(s) is a proper transfer function. The HOSIDF of
this structure is given by (Karbasizadeh, 2023, Chapter
10)

Gp
n(jω) =

{
L(jω)

(
βH 1

n (ω) + (1− β)F (jω)
)
, for n = 1,

L(jω)ej(n−1)∠L(jω)βH 1
n (ω), for n ≥ 2.

(30)

4.2 Series architecture

In the series architecture, a fractional-order lead filter

Lα(s) =
(s/ωr + 1)α

(s/ωf + 1)α
, (31)

is followed by FO-HIGS to create the CgLp element in Fig.
3b. Its HOSIDF can be calculated as follows

Gs
n(jω) = Lα(jω)ej(n−1)∠Lα(jω)H α

n (ω). (32)

Fig. 4 illustrates the SIDF and third-order SIDF of a
HIGS and FO-HIGS-based CgLp element. It is noticeable
that the third-order SIDFs of the two architectures are
different, especially at low frequencies. Moreover, based
on FO-HIGS’s SIDF, varying values of α result in distinct
phases of SIDF. Therefore, when α is fixed, the parameter
β is adjusted to demonstrate a phase behavior similar to
that of an FO-HIGS-based CgLp element for a desired
frequency range.

5. ILLUSTRATIVE EXAMPLE

In this section, an example is employed to demonstrate
how the attained phase lead from CgLp elements, arising
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Fig. 3. Architectures for HIGS-based CgLp element.
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Fig. 5. Block diagram of the closed-loop system.

from the two structures, can enhance tracking performance
when incorporated into a PID controller. Also, the differ-
ences between the two proposed structures regarding their
higher-order harmonics are investigated.
The closed-loop structure consists of the CgLp element in
series with the PID controller and the plant, as shown in
Fig. 5. A second-order mass-spring-damper system, mod-
eled in Saikumar et al. (2019) based on a precision planar
positioning stage, is considered as the plant in this study
and is given by the following transfer function

P(s) =
104.996

s2

ω2
n
+ 2ζs

ωn
+ 1

, (33)

where ωn = 87.962 and ζ = 0.25.

5.1 Controller design using CgLp elements

Three different controllers are designed to provide 30◦

phase lead at the bandwidth frequency ωc = 2π ×
100 rad/sec. Initially, the entire phase lead is supplied by
the PID controller

CPID(s) = Kp

(
1 +

ωi

s

)(
1 + s

ωd

1 + s
ωt

)
, (34)

where a low-pass filter is added to the pure PID controller
case because other CgLp elements also have a low-pass
filter. Therefore, we have

C1(s) = CPID(s)×
(

1

1 + s
ωf

)
, (35)

with ωf = 2π×2000 rad/sec. The tuning procedure follows
the rule of thumb method described in Munnig Schmidt
et al. (2020). Here, Kp ∈ R represents the PID gain, ensur-
ing zero dB gain at bandwidth frequency ωc, ωi = ωc/10
is the frequency at which integral action is stopped, dif-
ferentiating action is started at ωd = ωc/a and terminated
at ωt = aωc, where we choose a = 2.12 to have 30◦ phase
lead at the bandwidth frequency.
Two additional controllers are configured as CgLp-PID
controllers, comprising the CgLp elements in Fig. 3, in
series with a PID. Based on the phase advantage of the
CgLp elements, we attempted to provide most of the
required phase from the CgLp elements. Therefore, the
parameters for PID are adjusted to provide only 4◦ phase
lead, and the CgLp part is tuned to provide 26◦ phase
lead at the bandwidth frequency. The structure of the PID
element in the CgLp-PID controllers remains identical to
(34) and is tuned according to the same rules of thumb
but with a = 1.2. Therefore, the other controllers are as

C2 = Case1× CPID, (36)

and
C3 = Case2× CPID, (37)

where the parameters for Case 1 (parallel architecture) and
Case 2 (series architecture) are arbitrarily set as α = 0.7,
β = 0.73, and ωr = 2π × 35 rad/sec, to provide the same
phase at the bandwidth frequency. The corresponding ωh

for each case can be calculated using (27).

5.2 Results

In the previous subsection, three controllers were designed
to share the same phase margin and bandwidth frequency.
By using the nonlinear CgLp element in Cases 1 and 2, we
could achieve more gain at low frequencies, which is desired
in most control applications. Note that the same procedure
can be done by applying these CgLp elements to every
PID controller with different parameters. In Fig. 6, the
step responses for all three controllers are depicted. Upon
examining the overshoot, both HIGS and FO-HIGS have
demonstrated superior performance compared to linear
control despite being designed for the same phase margin.
In linear control, a greater phase margin is required to
dampen the overshoot further, whereas here, it has been
achieved with the same amount of phase margin and
bandwidth. This improvement might be attributed to the
presence of a lead element ahead of the nonlinear element
(Cai et al., 2020; van den Eijnden et al., 2020).
The subtle differences between HIGS and FO-HIGS may
stem from their use of lead elements with varying orders, as
exemplified in (Karbasizadeh, 2023, Chapter 9) in the con-
text of reset control systems. Additionally, the inclusion of
a parallel linear element in HIGS (Case 1) could contribute
to these variations. Future research should delve deeper
into this aspect to ascertain the underlying reasons for the
observed differences.
In Section 3.2, we have analytically derived that the FO-
HIGS element remains within its upper gain-region in the
steady-state solution when exposed to a single sinusoidal
input with a frequency ω ≤ ωL. To validate whether this
behaviour is still observed in closed-loop, we consider the
same closed-loop control systems as considered in the step
response example, but now with an input r(t) = sin(ωint).
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Fig. 7. Trajectory of the output of FO-HIGS and HIGS in
the e-u plane.

In Fig. 7, the e-u plane for HIGS and FO-HIGS are de-
picted for an input frequency ωin = 2π× 2.5 rad/sec. Note
that this frequency is lower than ωL = 2π×4.8 rad/sec, as
can be derived from (13) when substituting the parameter
values corresponding to controller C3. From Fig. 7 it is
evident that the FO-HIGS element stays in the upper gain-
region for all time in one period, whereas the HIGS element
operates in both the gain- and integrator-region.

6. CONCLUSION

In this paper we propose a modified FO-HIGS, designed
to exhibit absolute gain behavior below a specified fre-
quency ωL. Through analytical derivation, we establish
the HOSIDF of this modified system, demonstrating the
absence of higher-order harmonics at frequencies below
ωL. Notably, when α = 1, corresponding to the classical
HIGS, this desired behavior is absent. However, for values
of α < 1, the system can exhibit such desired behavior. In
addition, this paper involves incorporating the novel FO-
HIGS element, along with a lead, to create a CgLp filter
with tunable phase. This filter is then tuned for control-
ling a second-order system, and the results are compared
with classical HIGS and PID controllers. As anticipated,
the transient response aligns with that of HIGS, showing
improvement over PID, while the steady-state (below ωL)
exhibits pure gain behavior, confirming the validity of our
theory in the closed-loop system.
Looking ahead, our future work will delve into the
frequency-domain stability analysis of closed-loop systems
containing an FO-HIGS element. Furthermore, we will
focus on developing a frequency-domain tuning method
while taking noise and disturbances into account.
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