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Abstract: The use of multiobjective optimization procedures for control tuning has been constantly 

explored, presenting satisfactory results, and generating significant contributions to control engineering. In 

this way, the field of robust control can benefit significantly from the integration of multiobjective 

optimization design procedures for robust Proportional-Integral-Derivative (RPID) controller synthesis, 

enabling innovative solutions to complex control challenges. Due to this fact, this paper explores an 

approach to utilize multiobjective optimization algorithms in a simplified procedure, considering uncertain 

systems in the form of interval plants with uncertain poles, the Kharitonov theorem is used to obtain a 

region of stability as search space for the multiobjective algorithm, being the optimization process 

performed over a nominal system model. Two numerical cases and a flexible actuator model were used to 

demonstrate the procedure for RPI synthesis, resulting in robustly stable controllers with optimized 

performance over error and control signal effort measures. 
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1. INTRODUCTION 

Robust synthesis of Proportional-Integral-Derivative (PID) 

controllers is an important task in control engineering 

practices. This arises from the inherent reliance upon nominal 

models, used in the process of controller design, which is 

susceptible to uncertainties, inaccuracies, and modelling errors 

(Fortuna, Frasca, & Buscarino, 2022). 

Considering that, many recent contributions were presented in 

diverse applications related to robust PID (RPID) synthesis, 

where the robustness of the solutions was tested by the 

inclusion of disturbances in the model, Miranda-Colorado and 

Aguilar (2020) presented an application where the control 

position of a quadrotor vehicle was performed by a PID and 

the orientation through a model-based controller, tuned by a 

cuckoo search algorithm.  

In the paper of Khamies et al. (2021) an RPID controller was 

presented, and tested for frequency stabilization of power 

systems, being the combination of a PID and a linear quadratic 

Gaussian controller, and the parameters optimal setting 

obtained by the metaheuristic Improved lightning attachment 

procedure optimization. Santos et al. (2023) showed a 

topology for the design of robust autopilots with application 

on autonomous surface vessels and an optimization based on 

the Interior Points Algorithm was proposed to tune the RPID. 

Other interesting results are from Fiuzy and Shamaghdari 

(2023) where an RPID 𝐻∞ strategy is presented and an 

optimization process employed to obtain the stabilization 

region for a type of uncertain fractional order system, and 

Mourtas et al. (2023) where a modified metaheuristic, based 

on the beetle antennae search algorithm, is presented to fine-

tune the RPID, minimizing the mean square error of the 

simulated closed-loop system. 

While prior studies have effectively utilized optimization 

strategies for the synthesis of RPID-like controllers, 

incorporating the use of multiobjective optimization design 

procedures can be an interesting contribution to the field of 

robust control.  

Some advantages of using multiobjective optimization 

algorithms are related to the possibility of obtaining multiple 

optimal solutions in a single step (Coello et al., 2007), and the 

use of multiobjective optimization strategies in the controllers 

tuning process, was explored in many applications, e.g., in 

didactic experiments for control engineering education 

(Kagami, Kovalski da Costa, Mendes, & Freire, 2019); for 

automatic drugs administration in anaesthesia procedures 

(Kagami et al., 2021); magnetic levitation systems 

(Reznichenko & Podržaj, 2023); water treatment plants 

(Lúcio, Mariani, & Coelho, 2023); among others. 

In this work, a general procedure of multiobjective 

optimization for robust PI synthesis is presented, considering 

the nominal plant representation and the Kharitonov theorem 

as key tools of the analysis. 

In the next section the robust stability concept, based on 

Kharitonov’s theorem is presented. Section 3 presents the 

Preprints, 4th IFAC Conference on
Advances in Proportional-Integral-Derivative Control
Almería, Spain | June 12-14, 2024

© 2024 the authors. Accepted by IFAC for publication
under a Creative Commons License CC-BY-NC-ND

170



 

 

     

 

proposed strategy and adopted in the section 4 simulations, 

followed by a conclusion and future works in section 5. 

2. ROBUST STABILITY 

Robustness can be defined as the system’s insensitivity to 

uncertainties or the ability to maintain its performance under 

undesirable effects and is therefore related to system reliability 

(Tsui, 2022).  

Common sources of uncertainties include parameter 

variations, unmodeled dynamics, and environmental 

disturbances, and the performance and stability of the closed-

loop system can be adversely affected by the presence of such 

discrepancies between the assumed model and the actual 

dynamics of the plant (Yedavalli, 2014). 

Instead of attempting a replica, a transfer function aims to 

represent the key dynamics of a system, which can be used to 

evaluate controllers and simulate behaviours. An interesting 

approach consists of the use of interval representations to 

describe parametric uncertainties in the plant (Bhattacharyya, 

Datta, & Keel, 2009). 

An interval polynomial 𝔓(𝑠) with degree 𝑛, described in the 

form: 

𝔓(𝑠) = [𝑎0] + [𝑎1]𝑠 + [𝑎2]𝑠2 + ⋯ + [𝑎𝑛]𝑠𝑛 ,   (1) 

where [𝑎𝑖] ∈ [𝑎𝑖 , 𝑎𝑖] , 𝑖 = 0, … , 𝑛 are the interval coefficients 

with lower (𝑎𝑖) and upper (𝑎𝑖) bounds, is assumed the degree 

of all polynomials are invariant over the uncertainty set (0 ∉
[𝑎𝑖 , 𝑎𝑖]), and the set of all possible polynomials is named the 

interval family, being a transfer function that uses this 

representation called interval plant (Bhattacharyya et al., 

2009). 

Considering an interval plant, Kharitonov’s theorem 

(Kharitonov, 1978) allows to verify the asymptotic stability of 

the entire interval family, checking the Hurwitz stability of 

four polynomials, also named Kharitonov polynomials:  

𝐾1(𝑠) = 𝑎0 + 𝑎1𝑠 + 𝑎2𝑠2 + 𝑎3𝑠3 + 𝑎4𝑠4 … ; 

𝐾2(𝑠) = 𝑎0 + 𝑎1𝑠 + 𝑎2𝑠2 + 𝑎3𝑠3 + 𝑎4𝑠4 … ; 

𝐾3(𝑠) = 𝑎0 + 𝑎1𝑠 + 𝑎2𝑠2 + 𝑎3𝑠3 + 𝑎4𝑠4 … ; 

𝐾4(𝑠) =  𝑎0 + 𝑎1𝑠 + 𝑎2𝑠2 + 𝑎3𝑠3 + 𝑎4𝑠4 + ⋯. 

(2) 

A controller that stabilizes the four Kharitonov polynomials is 

considered a controller robustly stable (Polyak & 

Shcherbakov, 2021). 

3. PROCEDURES FOR ROBUST PID TUNING 

EMPLOYING MULTIOBJECTIVE OPTIMIZATION 

This section describes the PID tuning strategy proposed, which 

was adopted to obtain the results presented in the next section. 

The procedure is based on the Multiobjective Optimization 

Design procedure for controller tuning presented by Reynoso-

Meza et al. (2017) and consists of three main steps: (i) identify 

the interval plant and use it to obtain the four Kharitonov 

polynomials, and the stability region of the interval family that 

will be used as the search space during the optimization 

process; (ii) the multiobjective problem statement; and (iii) the 

multiobjective optimization and decision-making stage. 

3.1  Interval and Kharitonov Plants 

Since the system’s behaviours were modelled and the 

uncertainties among poles location established, or in the 

characteristic equation coefficients, the four Kharitonov 

polynomials (2) can be obtained (2) and used to represent the 

four Kharitonov plants. 

For each Kharitonov plant it is necessary to identify its 

stability region of the controller gains, e.g. the strategy 

presented by Guan, Li, & Dong (2023), where the interval of 

controller gains are obtained through an optimization process. 

The strategy adopted in this paper is based in the presented by 

Reynoso-Meza & Sánchez (2018), here the ultimate gain (𝑘𝑢), 

a frequency range 𝜔, and two pseudo-decision variables 𝑘𝑝̂ ∈

[0, 1] and 𝑘𝑖̂ ∈ [0, 1], are used to obtain the proportional (𝑘𝑝) 

and integral (𝑘𝑖) gains: 

𝑘𝑝 = (𝑘𝑝̂)𝑘𝑢, and (3) 

𝑘𝑖 = 𝑘𝑖𝑚𝑖𝑛
+ (𝑘𝑖̂)𝑘𝑖𝑚𝑎𝑥

, (4) 

where 𝑘𝑖𝑚𝑖𝑛
 and 𝑘𝑖𝑚𝑎𝑥

 are the bounds of stability for a specific 

value of 𝑘𝑝. In this approach, the pseudo-decision variables 

(𝑘𝑝̂ and 𝑘𝑖̂) are used by the optimization algorithm to map the 

feasible search space limited by the ultimate gain (𝑘𝑢), being 

𝑘𝑝̂ interpreted as a ratio of 𝑘𝑢 which is assigned to 𝑘𝑝, and 𝑘𝑖̂ 

a ratio in the interval [𝑘𝑖𝑚𝑖𝑛
, 𝑘𝑖𝑚𝑎𝑥

] assigned to 𝑘𝑖 for the 

related 𝑘𝑝. 

Since each Kharitonov plant has its own stability region, the 

search space, to obtain suitable values of 𝑘𝑝 and 𝑘𝑖, need to 

consider the simultaneous stability of each Kharitonov plant, 

that can be obtained by the intersection of all regions, however 

we used the following approach: 

𝑘𝑢 = min(𝑘𝑢,𝐾1 , 𝑘𝑢,𝐾2 , 𝑘𝑢,𝐾3 , 𝑘𝑢,𝐾4), (5) 

𝑘𝑖 = min(𝑘𝑖,𝐾1 , 𝑘𝑖,𝐾2 , 𝑘𝑖,𝐾3 , 𝑘𝑖,𝐾4), (6) 

where 𝑘𝑢,𝐾1 , 𝑘𝑢,𝐾2 , 𝑘𝑢,𝐾3 , 𝑘𝑢,𝐾4 are the ultimate gains of the 

Kharitonov plants and 𝑘𝑖,𝐾1 , 𝑘𝑖,𝐾2 , 𝑘𝑖,𝐾3 , 𝑘𝑖,𝐾4 the integral gains 

calculated by their respective 𝑘𝑢,𝐾. The minimum values 

assigned to 𝑘𝑢 and 𝑘𝑖 ensures that both gains are inner the 

stability region. The same process can be used to obtain the 

derivative gain. 

3.2  Multiobjective Problem Statement 

A multiobjective optimization problem (MOP), represented by 

𝑘 ≥ 2 cost functions 𝐽1…𝑘(𝜽), without loss of generality, can 

be written as: 
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min
𝜽

𝑱(𝜽) , 𝑱(𝜽) = [𝐽1(𝜽), … , 𝐽𝑘(𝜽)] (7) 

subject to: 

𝑔𝑖(𝜽) ≤ 0, 𝑖 = [1, … , 𝑚] 

ℎ𝑗(𝜽) = 0, 𝑗 = [1, … , 𝑛], 
(8) 

with 𝑚 inequality and 𝑛 equality restriction, where 𝜽 is the 

decision vector 𝑝-dimensional, from a set U of feasible 

solutions: 

𝜽 = [𝜃1, … , 𝜃𝑝]  |  𝜽 ∈ U. (9) 

The existence of 𝑘 ≥ 2 cost functions in control tuning 

problems allow us to include possible conflicting objectives, 

e.g. errors and control signal effort measures, that enrich 

information regarding the problem. 

3.3 Multiobjective Optimization and Decision-Making Stage 

In the macro stage of the multiobjective optimization 

processes, a multiobjective algorithm is addressed, aiming to 

approximate the Pareto front, providing a set of non-dominated 

solutions, and representing the optimal trade-offs between the 

conflicting objectives. 

Obtaining the Pareto front during the multiobjective 

optimization process causes the existence of multiple potential 

solutions, optimal in their context. Therefore, the use of a 

Multicriteria Decision Making Method (MCDM) is necessary 

to select a single feasible solution to solve the original problem 

(Ojha, Singh, Chakraborty, & Verma, 2019). 

The MCDMs differ mainly due to how the problem is 

structured to select the most preferable solution, in this work 

we used the Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS) (Hwang & Yoon, 1981; Lai, Liu, & 

Hwang, 1994), its strategy is based on selecting the alternative 

with best cost (𝐵𝐶), considering its distance (𝐷𝑊(𝜽)) from an 

undesirable solution (𝐽𝑊(𝜽)) and proximity (𝐷𝐵(𝜽)) to an 

ideal solution (𝐽𝐵(𝜽)), the TOPSIS concept is presented in Fig. 

1, where 𝐷𝐵(𝜽) and 𝐷𝑊(𝜽) are related to a potential solution 

of the Pareto front: 

𝐷𝐵(𝜽) = √∑ (𝐽𝑖(𝜽) − 𝐽𝐵(𝜽))
2𝑛

𝑖=1
, (10) 

𝐷𝑊(𝜽) = √∑ (𝐽𝑖(𝜽) − 𝐽𝑊(𝜽))
2𝑛

𝑖=1
 , 

(11) 

𝐵𝐶 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
𝐷𝑊 + 𝐷𝐵

𝐷𝑊

}. (12) 

4. SIMULATIONS AND RESULTS 

In this section, to illustrate the strategy outlined in the previous 

section, we present three examples: two numerical cases and 

one involving the robust stabilization of a flexible actuator. 

These examples highlight the benefits of employing 

multiobjective optimization in robust control synthesis. 

In the simulations, the Nondominated Sorting Genetic 

Algorithm II (NSGA-II) (Deb et al., 2002), was employed, 

considering a population of 100 individuals and 100 

generations, in addition to a 90% crossover and a 10% 

mutation probability. 

For the examples in the sequence, the cost functions are 

𝐽1(𝜽) the Integral Absolute Error (IAE) and 𝐽2(𝜽) the Integral 

Absolute Variation of Control signal (IAVU): 

 𝐽1(𝜽) = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡𝑓

𝑡=𝑡0

,     𝐽2(𝜽) = ∫ |
𝑑𝑢(𝑡)

𝑑𝑡
| 𝑑𝑡

𝑡𝑓

𝑡=𝑡0

, (13) 

and 𝜽 = [𝑘𝑝, 𝑘𝑖], considering 𝑘𝑝̂ and 𝑘𝑖̂ and (3-6) as the search 

space in the joint stability of Kharitonov polynomials.  

To provide statistical consistency of the results, we performed 

51 repetitions of the optimization process, normalized the cost 

function in the interval [1,10] and selected the Pareto front 

with median hypervolume (Shang et al., 2021). 

4.1  Example 1  

Consider the high-order interval plant: 

𝔊(𝑠) = 
1.7𝑠2+2.8𝑠+2.3𝑠

[𝑎5]𝑠5+[𝑎4]𝑠4+[𝑎3]𝑠3+[𝑎2]𝑠2+[𝑎1]𝑠+[𝑎0]
; (14) 

where [𝑎5] = [1.2, 2.0], [𝑎4] = [13.4, 18.6], [𝑎3] =
[53.0, 60.9], [𝑎2] = [77.5, 83.0], [𝑎1] = [55.0, 58.5], and 

[𝑎0] = [0.8, 1.3]. 

Using the Kharitonov theorem (2), the four plants are: 

𝐺𝐾1(𝑠) = 
1.7𝑠2+2.8𝑠+2.3𝑠

1.2𝑠5+13.4𝑠4+60.9𝑠3+83.0𝑠2+55.0𝑠+0.8
; 

𝐺𝐾2(𝑠) = 
1.7𝑠2+2.8𝑠+2.3𝑠

2.0𝑠5+13.4𝑠4+53.0𝑠3+83.0𝑠2+58.5𝑠+0.8
; 

𝐺𝐾3(𝑠) = 
1.7𝑠2+2.8𝑠+2.3𝑠

1.2𝑠5+18.6𝑠4+60.9𝑠3+77.5𝑠2+55.0𝑠+1.3
; 

𝐺𝐾4(𝑠) = 
1.7𝑠2+2.8𝑠+2.3𝑠

2.0𝑠5+18.6𝑠4+53.0𝑠3+77.5𝑠2+58.5𝑠+1.3
. 

(15) 

The stability region for each transfer function is presented in 

Fig. 2, where is possible to identify the intersection set, the 

desired search space for the 𝑘𝑝 and 𝑘𝑖 gains. 

 

Fig. 1. TOPSIS concept. 
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Fig. 2. Stability regions – example 1. 

As result of the optimization process over a nominal model, 

obtained by the mean value of interval coefficients, with 51 

repetitions and selection of the Pareto front with median 

hypervolume (Fig. 3), we applied the TOPSIS method, 

resulting in the PI controller: 

𝐶𝑃𝐼(𝑠) =
13.2557𝑠 + 0.2530

𝑠
. 

 (16) 

 
Fig. 3. Pareto front – example 1. 

To verify the robust stability of the optimized controller, a 

Monte Carlo simulation with 5000 tests was performed, the 

step response and the control signal are presented in Fig. 4 and 

Fig. 5 as an interval family approximation. 

 
Fig. 4. Step response – example 1. 

 
Fig. 5. Control signal – example 1. 

4.2  Example 2 

Consider a generic open-loop transfer function with interval 

coefficients: 

𝔊(𝑠) =
1

[𝑎3]𝑠3 + [𝑎2]𝑠2 + [𝑎1]𝑠 + [𝑎0]
; (17) 

where [𝑎3] = [1, 2], [𝑎2] = [4, 6], [𝑎1] = [2, 3], and [𝑎0] =
[1, 2].  

Considering the process described in section 3, the stability 

region for the Kharitonov plants can be seen in Fig. 6, and the 

Pareto front with median hypervolume in Fig. 7. 

 

Fig. 6. Stability regions – example 2. 

 

Fig. 7. Pareto front – example 2. 

The obtained PI controller (18) by the employ of TOPSIS 

MCDM was tested in a Monte Carlo simulation, with 5000 

samples, which can be seen in Fig. 8 and Fig. 9, for the step 

response and the control signal, respectively. The variations 

observed in the Monte Carlo simulation are caused by the 

unknow location of the poles, near the unstable region, in the 

interval family approximation. 

𝐶𝑃𝐼(𝑠) =
0.7501𝑠 + 0.3539

𝑠
 

 
(18) 

 

Fig. 8. Step response – example 2. 
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Fig. 9. Control signal – example 2. 

4.2  Example 3 

Consider an Ionic Polymer-Metal Composite (IPMC) actuator, 

an electroactive polymer also called “artificial muscles” with 

applications as flexible sensors and actuators in industrial 

environments, robotics, and biomedicine (Hao et al., 2019). 

An interval plant for IPMC actuators was presented by Sano et 

al. (2010) made by Nafion NE-1110 (DuPont) through five 

times gold plating process and sodium counter-ion, with 

dimensions 40(mm)×5(mm)×0,28(mm), voltage as control 

signal [−2.5, 2.5] V, with open-loop transfer function: 

𝔊(𝑠) =
𝐹(𝑠)

𝑉(𝑠)
=

𝑠

[𝑎3]𝑠3 + [𝑎2]𝑠2 + [𝑎1]𝑠 + [𝑎0]
, (19) 

where [𝑎0]=[2.658, 5.674]10−3 , [𝑎1]=[1.395, 2.704]10−1, 

[𝑎2]=[4.944, 7.410]10−1, and [𝑎3]=[4.888, 8.011]10−2. 

The controller proposed by Sano et al. (2010) is the RPID:  

𝐶𝑅𝑒𝑓(𝑠) =
0.03𝑠2 + 1.78𝑠 + 11.3

𝑠
. (20) 

Considering the interval plant (19), the Kharitonov plants were 

used to obtain the stabilization set, being the multiobjective 

optimization problem the minimization of IAE and IAVU, 

through the use of NSGA-II algorithm, the Pareto front with 

median hypervolume for the 51 repetitions is presented in Fig. 

10, with the TOPSIS selected controller as: 

𝐶𝑃𝐼(𝑠) =
2.2614𝑠 + 0.8771

𝑠
. 

 
(21) 

We compared the obtained controller with the one presented 

in the reference, which step response and control signal are 

presented in Fig. 10 and Fig. 11, also the performance of the 

proposed controller was tested in the four Kharitonov plants, 

being presented in Fig. 13 and Fig. 14 the step response and 

the control signal, respectively. 

 
Fig. 10. Pareto front – IPMC. 

 
Fig. 11. Step response – IPMC. 

 
Fig. 12. Control signal – IPMC. 

 
Fig. 13. Step response – IPMC Kharitonov plants. 

 
Fig. 14. Control signal – IPMC Kharitonov plants. 
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